留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CQDs-rGO/ZnO复合材料的制备及其光催化降解甲硝唑的性能

叶红勇 杨艳菊 王明辉 左广玲 杜佳

叶红勇, 杨艳菊, 王明辉, 等. CQDs-rGO/ZnO复合材料的制备及其光催化降解甲硝唑的性能[J]. 复合材料学报, 2024, 41(6): 3047-3057. doi: 10.13801/j.cnki.fhclxb.20240306.003
引用本文: 叶红勇, 杨艳菊, 王明辉, 等. CQDs-rGO/ZnO复合材料的制备及其光催化降解甲硝唑的性能[J]. 复合材料学报, 2024, 41(6): 3047-3057. doi: 10.13801/j.cnki.fhclxb.20240306.003
YE Hongyong, YANG Yanju, WANG Minghui, et al. Preparation of CQDs-rGO/ZnO composites and photocatalytic degradation of metronidazole[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20240306.003
Citation: YE Hongyong, YANG Yanju, WANG Minghui, et al. Preparation of CQDs-rGO/ZnO composites and photocatalytic degradation of metronidazole[J]. Acta Materiae Compositae Sinica. doi: 10.13801/j.cnki.fhclxb.20240306.003

CQDs-rGO/ZnO复合材料的制备及其光催化降解甲硝唑的性能

doi: 10.13801/j.cnki.fhclxb.20240306.003
基金项目: 国家自然科学基金 (22201146)
详细信息
    通讯作者:

    叶红勇,硕士,副教授,研究方向为光催化功能材料 E-mail: yhyxyz@nyist.edu.cn

  • 中图分类号: TB333

Preparation of CQDs-rGO/ZnO composites and photocatalytic degradation of metronidazole

Funds: National Natural Science Foundation of China (22201146)
  • 摘要: ZnO的低可见光活性及光生载流子迁移率低且容易复合的缺点限制了其在光催化领域的实际应用。为此,本文采用超声辅助浸渍法制备了碳量子点(CQDs)-还原氧化石墨烯(rGO)/ZnO三元复合催化剂,通过XRD、SEM、TEM、X射线能量散射光谱(XEDS)、XPS、BET、UV-Vis DRS、VB-XPS、光致发光(PL)、瞬态光电流响应(TPR)及电化学阻抗(EIS)等表征手段对其晶体结构、形貌和光电性能进行了表征。以模拟抗生素废水甲硝唑(MTZ)为降解对象,考察了CQDs-rGO/ZnO复合催化剂的光催化活性。结果表明:rGO和CQDs的引入,能够优化ZnO的能带结构、增强其对可见光的吸收。rGO和CQDs的强导电性,可促进光生载流子的快速转移和分离,有效提升CQDs-rGO/ZnO复合催化剂的光催化活性。淬灭实验表明,羟基自由基(•OH)和超氧自由基(${\text{•}}{\rm{O}}_2^ - $)是反应过程中的主要活性物质。在CQDs复合量为1%时,CQDs-rGO/ZnO的光催化活性最好,可见光照射2.5 h,对MTZ的降解率可达87.8%。经历4次循环后,依然可以降解75.2%的MTZ,说明CQDs-rGO/ZnO复合催化剂理化性能稳定。

     

  • 图  1  不同样品的XRD图谱

    Figure  1.  XRD patterns of different samples

    图  2  ZnO (a)、rGO/ZnO (b)、CGZ-3 (c)的SEM图像

    Figure  2.  SEM images of ZnO (a), rGO/ZnO (b), CGZ-3 (c)

    图  3  CGZ-3复合催化剂的XEDS能谱和SEM映射图

    Figure  3.  XEDS spectra and SEM mapping images of CGZ-3

    σ—Standard deviation

    图  4  (a) CQDs的TEM及HRTEM图像;CGZ-3的TEM图像(b)、HRTEM图像(c)

    Figure  4.  (a) TEM and HRTEM images of CQDs; TEM image (b) and HRTEM image (c) of CGZ-3

    图  5  ZnO、rGO/ZnO和CGZ-3的N2吸附-解吸等温线

    Figure  5.  N2 adsorption-desorption isotherm of ZnO, rGO/ZnO and CGZ-3

    BET—Brrunauer-Emmett-Teller

    图  6  ZnO和CGZ-3的XPS图谱:(a) 全扫描谱;(b) Zn2p;(c) O1s;(d) C1s

    Figure  6.  XPS spectra of ZnO and CGZ-3: (a) Full survey spectra; (b) Zn2p; (c) O1s; (d) C1s

    图  7  ZnO、rGO/ZnO和CGZ-3的UV-Vis DRS光谱(a)、Tauc's plot法计算的带隙Eg (b)、价带(VB)-XPS光谱(c)和能带位置变化示意图(d)

    Figure  7.  UV-Vis DRS spectra (a), band gap Eg evaluation by Tauc's plot (b), valence band (VB)-XPS spectra (c), schematic representation of the position variation of the energy bands (d) of ZnO, rGO/ZnO and CGZ-3

    CB—Conduction band; α—Absorption coefficient; —Photon energy; NHE—Normal hydrogen electrode; EVB—VB potential

    图  8  ZnO、rGO/ZnO和CGZ-3的光致发光(PL)光谱(a)、瞬态光电流响应(TPR)曲线(b)、电化学阻抗谱(EIS) (c)

    Figure  8.  Photoluminescence (PL) spectra (a), transient photocurrent response (TPR) curves (b) and electrochemical impedance spectroscopy (EIS) (c) of ZnO, rGO/ZnO and CGZ-3

    图  9  不同样品对甲硝唑(MTZ)的可见光催化降解效果(a)和动力学曲线(b)

    Figure  9.  Photocatalytic activity (a) of the different samples through degrading metronidazole (MTZ), and kinetics profiles (b)

    Ct—Concentration of MTZ after time t; C0—Initial concentration of MTZ

    图  10  (a) CGZ-3对MTZ的循环使用效果;(b) CGZ-3使用前后的XRD图谱;(c) CGZ-3使用后的SEM图像

    Figure  10.  (a) Recycle effect of CGZ-3 on MTZ; (b) XRD patterns of the fresh and used CGZ-3; (c) SEM image of the used CGZ-3

    图  11  不同淬火剂对MTZ降解的影响

    Figure  11.  Effect of different trapping agents on MTZ degradation

    IPA—Isopropyl alcohol; SOD—Superoxide dismutase; TEOA—Triethanolamine; FFA—Furfuryl alcohol; KSO—Potassium peroxodisulfate

    图  12  CQDs-rGO/ZnO的光催化机制示意图

    Figure  12.  Schematic diagram of the photocatalytic mechanism of CQDs-rGO/ZnO

    λ—Wave length

    表  1  CGZ-X样品及主要试剂使用量

    Table  1.   CGZ-X samples and main reagent dosage

    Sample rGO/ZnO/mg CQDs
    (0.1 mg/mL)/ mL
    CQDs:rGO/ZnO
    mass ratio
    CGZ-1 200 10 0.50
    CGZ-2 200 15 0.75
    CGZ-3 200 20 1.00
    CGZ-4 200 25 1.25
    Notes: CQDs−Carbon quantum dots; rGO−Reduced graphene oxide.
    下载: 导出CSV
  • [1] 张东硕, 蔡昊, 高凯茵, 等. Zn2SiO4-ZnO-生物炭复合物的制备及其可见光催化H2O2降解甲硝唑[J]. 无机材料学报, 2020, 35(8): 923-930. doi: 10.15541/jim20190530

    ZHANG Dongshuo, CAI Hao, GAO Kaiyin, et al. Preparation and visible-light photocatalytic degradation on metronidazole of Zn2SiO4-ZnO-biochar composites[J]. Journal of Inorganic Materials, 2020, 35(8): 923-930(in Chinese). doi: 10.15541/jim20190530
    [2] 罗伟, 冯晓青, 黄影, 等. 微波水热合成花球状BiOCl光催化降解甲硝唑[J]. 中国环境科学, 2020, 40(4): 1545-1554. doi: 10.3969/j.issn.1000-6923.2020.04.020

    LUO Wei, FENG Xiaoqing, HUANG Ying, et al. Photocatalytic degradation of metronidazole using flower-like BiOCl prepared by microwave hydrothermal method[J]. China Environmental Science, 2020, 40(4): 1545-1554(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.04.020
    [3] 冯雪兰, 杨千里, 王玉珏, 等. 气液介质阻挡放电降膜反应器降解甲硝唑实验研究[J]. 环境科学学报, 2016, 36(11): 3965-3970.

    FENG Xuelan, YANG Qianli, WANG Yujue, et al. Degradation of metronidazole using a gas-liquid dielectric barrier discharge falling film reactor[J]. Acta Scientiae Circumstantiae, 2016, 36(11): 3965-3970(in Chinese).
    [4] VASSEGHIAN Y, DRAGOI E N, ALMOMANI F, et al. Graphene-based materials for metronidazole degradation: A comprehensive review[J]. Chemosphere, 2022, 286: 131727. doi: 10.1016/j.chemosphere.2021.131727
    [5] LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environmental Science & Technology, 2010, 44(9): 3468-3473.
    [6] LI W, MU B, YANG Y. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology[J]. Bioresource Technology, 2019, 277: 157-170. doi: 10.1016/j.biortech.2019.01.002
    [7] 李嗣扬, 曹仲, 申文娟, 等. Fe(1−x)S-BC/g-C3N4的制备及其光芬顿降解盐酸四环素的性能[J]. 环境化学, 2023, 42(12): 4442-4452.

    LI Siyang, CAO Zhong, SHEN Wenjuan, et al. Fabrication of Fe(1−x)S-BC/g-C3N4 and its heterogeneous photo-Fenton degradation effect of tetracycline hydrochloride[J]. Environmental Chemistry, 2023, 42(12): 4442-4452(in Chinese).
    [8] RAJABI S, NASIRI A, HASHEMI M. Enhanced activation of persulfate by CuCoFe2O4@MC/AC as a novel nanomagnetic heterogeneous catalyst with ultrasonic for metronidazole degradation[J]. Chemosphere, 2022, 286: 131872.
    [9] SHEIKHSAMANY R, FAGHIHIAN H, FAZAELI R. Synthesis of novel HKUST-1-based SnO2 porous nanocomposite with the photocatalytic capability for degradation of metronidazole[J]. Materials Science in Semiconductor Processing, 2022, 138: 106310. doi: 10.1016/j.mssp.2021.106310
    [10] 叶红勇, 赖宏伟, 吴淑杰, 等. 常温直接沉淀法制备ZnO纳米棒[J]. 高等学校化学学报, 2007, 28(2): 312-315. doi: 10.3321/j.issn:0251-0790.2007.02.024

    YE Hongyong, LAI Hongwei, WU Shujie, et al. Synthesis of ZnO nanorods by a direct precipitation method at room temperature[J]. Chemical Journal of Chinese Universities, 2007, 28(2): 312-315(in Chinese). doi: 10.3321/j.issn:0251-0790.2007.02.024
    [11] 孙翼飞, 余飞, 袁欢, 等. 具有优异光激发NO2气敏性能和MB光催化降解效率的ZnO-MoS2纳米复合材料[J]. 复合材料学报, 2023, 40(6): 3428-3440.

    SUN Yifei, YU Fei, YUAN Huan, et al. ZnO-MoS2 nano-composites with excellent light-activated NO2 gas sensitivity and MB photocatalytic degradation efficiency[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3428-3440(in Chinese).
    [12] 冯效迁, 赵艺霖, 张启俭, 等. ZnO基材料在光催化降解有机污染物中的应用[J]. 功能材料, 2023, 54(10): 10039-10045, 10057. doi: 10.3969/j.issn.1001-9731.2023.10.006

    FENG Xiaoqian, ZHAO Yilin, ZHANG Qijian, et al. Application of ZnO-based materials in photocatalytic degradation of organic pollutants[J]. Journal of Functional Materials, 2023, 54(10): 10039-10045, 10057(in Chinese). doi: 10.3969/j.issn.1001-9731.2023.10.006
    [13] 张国英, 魏雪敏, 巴依吉丽, 等. 碳量子点-半导体复合光催化剂研究进展[J]. 天津师范大学学报(自然科学版), 2019, 39(4): 1-6.

    ZHANG Guoying, WEI Xuemin, BAYI Jili, et al. Research progress of photocatalyst of carbon quantum dots combined with semiconductors[J]. Journal of Tianjin Normal University (Natural Science Edition), 2019, 39(4): 1-6(in Chinese).
    [14] 李孟蝶, 王祖民, 齐健, 等. 金属氧化物异质结的构建及在光催化CO2还原反应中应用的研究进展[J]. 高等学校化学学报, 2023, 44(10): 35-51.

    LI Mengdie, WANG Zumin, QI Jian, et al. Progress in the construction of metal oxide heterojunctions and their application in photocatalytic CO2 reduction[J]. Chemical Journal of Chinese Universities, 2023, 44(10): 35-51(in Chinese).
    [15] YU H, ZHANG H C, HUANG H, et al. ZnO/carbon quantum dots nanocomposites: One-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature[J]. New Journal of Chemistry, 2012, 36(4): 1031-1035. doi: 10.1039/c2nj20959d
    [16] OMER K M, MOHAMMAD N N, BABAN S O. Up-conversion fluorescence of phosphorous and nitrogen Co-doped carbon quantum dots (CDs) coupled with weak LED light source for full-spectrum driven photocatalytic degradation via ZnO-CDs nanocomposites[J]. Catalysis Letters, 2018, 148(9): 2746-2755. doi: 10.1007/s10562-018-2459-4
    [17] DING D L, LAN W, YANG Z W, et al. A simple method for preparing ZnO foam/carbon quantum dots nanocomposite and their photocatalytic applications[J]. Materials Science in Semiconductor Processing, 2016, 47(1): 25-31.
    [18] 马金环, 魏智强, 梁家浩, 等. 水热法合成rGO/Mo0.7Co0.3S2超级电容器电极复合材料[J]. 复合材料学报, 2022, 39(10): 4580-4589.

    MA Jinhuan, WEI Zhiqiang, LIANG Jiahao, et al. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4580-4589(in Chinese).
    [19] KASHINATH L, NAMRATHA K, BYRAPPA K. Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes[J]. Applied Surface Science, 2015, 357: 1849-1856.
    [20] ZHU Z, GUO F, LI A, et al. Simple synthesis of BiOI/ZnO/rGO for efficient photocatalytic degradation of antibiotic chloramphenicol under visible light[J]. Journal of Environmental Sciences, 2023, 134: 65-76. doi: 10.1016/j.jes.2022.05.045
    [21] MALIK A R, SHARIF S, SHAHEEN F, et al. Green synthesis of RGO-ZnO mediated ocimum basilicum leaves extract nanocomposite for antioxidant, antibacterial, antidiabetic and photocatalytic activity[J]. Journal of Saudi Chemical Society, 2022, 26(2): 101438. doi: 10.1016/j.jscs.2022.101438
    [22] ELUMALAI N, PRABHU S, SELVARAJ M, et al. Investigation on synergistic effect of rGO and carbon quantum dots-embedded ZnO hollow spheres for improved photocatalytic aqueous pollutant removal process[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(24): 28633-28647. doi: 10.1007/s10854-021-07239-w
    [23] 李家耀, 韩维杰, 杨周平, 等. 土豆基碳量子点的制备、Mn掺杂及在Ag+检测中的应用[J]. 人工晶体学报, 2021, 50(11): 2093-2102. doi: 10.3969/j.issn.1000-985X.2021.11.013

    LI Jiayao, HAN Weijie, YANG Zhouping, et al. Synthesis of potato-based carbon quantum dots, Mn doping and their application in Ag+ detection[J]. Journal of Synthetic Crystals, 2021, 50(11): 2093-2102(in Chinese). doi: 10.3969/j.issn.1000-985X.2021.11.013
    [24] 田鑫, 夏冬, 戴理民, 等. 不同品种马铃薯雪花全粉品质特性与分子结构表征[J]. 食品工业科技, 2017, 38(13): 7-12, 18.

    TIAN Xin, XIA Dong, DAI Limin, et al. Research on quality characteristics and molecular structure characterization of different varieties of potato flakes[J]. Science and Technology of Food Industry, 2017, 38(13): 7-12, 18(in Chinese).
    [25] HUA Z L, WAN S G, SUN L, et al. Role of non-ion surfactants in three-dimensional ordered porous biomass carbon foam derived from the liquefied eucalyptus sawdust for metronidazole adsorption[J]. Journal of Chemical Technology and Biotechnology, 2018, 93(10): 3044-3055. doi: 10.1002/jctb.5663
    [26] LIU X, PAN L, ZHAO Q, et al. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI)[J]. Chemical Engineering Journal, 2012, 183: 238-243.
    [27] NIE H, WEI K, LI Y, et al. Carbon dots/Bi2WO6 composite with compensatory photo-electronic effect for overall water photo-splitting at normal pressure[J]. Chinese Chemical Letters, 2021, 32(7): 2283-2286. doi: 10.1016/j.cclet.2021.01.041
    [28] SAKTHIVEL K, HAEKYOUNG K. Development and characterization of solar active Ag-ZnO/g-C3N4 as a highly efficient photocatalyst for the detoxification of organic pollutant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 679: 132644. doi: 10.1016/j.colsurfa.2023.132644
    [29] WEI Z, HUANG S, ZHANG X, et al. Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites[J]. Journal of Materials Science: Materials in Electronics, 2020, 31: 5176-5186. doi: 10.1007/s10854-020-03077-4
    [30] DEEPAK S, RITESH V, ANKUSH C, et al. Soapnut plant-mediated ZnO and Ag-ZnO nanoparticles for environmental and biological applications[J]. Emergent Materials, 2023, 6: 1841-1862. doi: 10.1007/s42247-023-00564-2
    [31] WU X, ZHAO Q, GUO F, et al. Porous g-C3N4 and α-FeOOH bridged by carbon dots as synergetic visible-light-driven photo-fenton catalysts for contaminated water remediation[J]. Carbon, 2021, 183: 628-640. doi: 10.1016/j.carbon.2021.07.006
    [32] QU Y, XU X, HUANG R, et al. Enhanced photocatalytic degradation of antibiotics in water over functionalized N, S-doped carbon quantum dots embedded ZnO nanoflowers under sunlight irradiation[J]. Chemical Engineering Journal, 2020, 382: 123016. doi: 10.1016/j.cej.2019.123016
    [33] 杜春艳, 宋佳豪, 谭诗杨, 等. 石墨烯桥联的ZnO/Ag3PO4复合材料的制备及其对环丙沙星的降解性能[J]. 复合材料学报, 2021, 38(7): 2254-2264.

    DU Chunyan, SONG Jiahao, TAN Shiyang, et al. Preparation of graphene bridged ZnO/Ag3PO4 composite and its degradation performance for ciprofloxacin[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2254-2264(in Chinese).
    [34] XUE B, LI Q, WANG L, et al. Ferric-ellagate complex: A promising multifunctional photocatalyst[J]. Chemosphere, 2023, 332: 138829. doi: 10.1016/j.chemosphere.2023.138829
    [35] ZHAO W, WANG Y, YANG Y, et al. Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction: Preparation, characterization, and photocatalytic properties[J]. Applied Catalysis B: Environmental, 2012, 115-116: 90-99. doi: 10.1016/j.apcatb.2011.12.018
    [36] FU Y, XU Y, MAO Y, et al. Multi-functional Ag/Ag3PO4/AgPMo with S-scheme heterojunction for boosted photocatalytic performance[J]. Separation and Purification Technology, 2023, 317: 123922. doi: 10.1016/j.seppur.2023.123922
    [37] WANG Q, ZHENG S Z, MA W G, et al. Facile synthesis of direct Z-scheme PPy/NH2-UiO-66 heterojunction for enhanced photocatalytic Cr(VI) reduction, industrial electroplating wastewater treatment, and tetracycline degradation[J]. Applied Catalysis B: Environment and Energy, 2024, 344: 123669.
    [38] HUANG S, XU Y, XIE M, et al. A Z-scheme magnetic recyclable Ag/AgBr@CoFe2O4 photocatalyst with enhanced photocatalytic performance for pollutant and bacterial elimination[J]. RSC Advances, 2017, 49(7): 30845-30854. doi: 10.1039/C7RA03936K
    [39] DU H, LI N Y, YANG L X, et al. Plasmonic Ag modified Ag3VO4/AgPMo S-scheme heterojunction photocatalyst for boosted Cr(VI) reduction under visible light: Performance and mechanism[J]. Separation and Purification Technology, 2023, 304: 122204. doi: 10.1016/j.seppur.2022.122204
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  56
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-02
  • 修回日期:  2024-02-01
  • 录用日期:  2024-02-08
  • 网络出版日期:  2024-03-08

目录

    /

    返回文章
    返回