Strength characterization of 3D hollow sandwich composite with Al-GF/PP faceplate under aerodynamic load
-
摘要: 随着高速列车的不断提速,特别是在通过隧道或会车时,气动载荷对蒙皮结构的强度特性提出了更高的要求。热塑性铝合金-玻纤/聚丙烯( Al-GF/PP)面板-三维中空夹层复合材料是一种以纤维金属层板为面板、三维中空复合复合材料为芯材的三明治夹层材料,具有轻质高强、隔音隔热等优势,可用于高速列车车门、裙板等蒙皮结构。通过比较不同高度(10~25 mm)的三维中空复合材料在平压、侧压及弯曲性能上的表现发现,随着厚度增加,其力学性能呈下降趋势,较厚的三维中空复合材料芯材弯矩较大,结构稳定性低。对Al-GF/PP面板-三维中空夹层复合材料进行了4 kPa、5 kPa、6 kPa、7 kPa的气动载荷测试。结果表明:当“8”形纤维受到垂直于面板方向的作用力时,纬向承担了主要载荷,这有助于减小纤维在加载方向上的位移量。芯材与上面板连接处承受的载荷应力最大,位移主要出现于结构的受载侧,最大位移值分别为1.80 μm、2.26 μm、2.72 μm和3.19 μm,该数量级的气动载荷不会导致试样出现宏观的变形失效。Abstract: With the increasing speed of high-speed trains, especially when passing through tunnels or meeting cars, aerodynamic loads place higher demands on the strength characteristics of the skin structure. 3D hollow sandwich composite with thermoplastic aluminum alloy-glass fibre/polypropylene (Al-GF/PP) faceplate is a kind of sandwich material with fiber metal laminates as faceplate and 3D hollow composite as core material, which has the advantages of lightweight and high strength, sound and heat insulation, and can be used in the skin structure of high-speed train doors, skirts and so on. By comparing the performance of 3D hollow composites with different heights (10-25 mm) in flatwise compressive, edgewise compressive and flexural properties, it is found that the mechanical properties show a decreasing trend with the increase of the thickness, and the thicker 3D hollow composites have higher bending moments in the core and low structural stability. Aerodynamic load tests of 4 kPa, 5 kPa, 6 kPa and 7 kPa were carried out on the 3D hollow sandwich composite with Al-GF/PP faceplate. The results show that when the "8" fibres are subjected to forces perpendicular to the faceplate, the weft fibres carry the main load, which help to reduce the displacement of the fibres in the loading direction. The highest loading stress is applied at the joint between the core and the upper panel, and the main displacement occurs on the loaded side of the structure, with maximum displacement values of 1.80 μm, 2.26 μm, 2.72 μm, and 3.19 μm, respectively, and the aerodynamic loading of this order of magnitude does not lead to macroscopic deformation and failure of the specimens.
-
表 1 三维中空复合材料的物理参数
Table 1. Physical parameters of 3D hollow sandwich composite
Weave thickness/mm Actual thickness/mm Surface density/
(kg·m−2)10 8.5 2.1 15 12.4 2.2 20 17.6 2.9 25 23.3 3.0 表 2 Al-GF/PP面板-三维中空复合材料有限元(FEM)建模参数
Table 2. Finite element method (FEM) parameters of 3D hollow sandwich composite with Al-GF/PP faceplate
Hight h/mm Faceplate thickness hf/mm Curve equation (Bundle diameter of fiber is 0.5 mm) 8.5 0.5 $\begin{aligned}& x=0.8 \sin (360 t) \\& y=1.76(1-t) \\& {\textit{z}}=10 t\end{aligned} $ 表 3 Al-GF/PP面板-三维中空复合材料FEM参数
Table 3. FEM parameters of 3D hollow sandwich composite with Al-GF/PP faceplate
Parameter Faceplate Core ρ/(g·cm−3) 1.4×10−9 2.1×10−9 E1/MPa 11230 16560 E2/MPa 14670 4750 v12 0.151 0.334 G12/MPa 1660 1730 G13/MPa 4780 2120 G23/MPa 4780 2120 Notes: ρ—Densities; E—Young's modulus; v12—Poisson's ratio; G12, G13, G23—Shear modulus; 1—Fiber direction; 2 and 3—Two normal directions of the fiber. -
[1] ÖNDER A, ROBINSON M. Investigating the feasibility of a new testing method for GFRP/polymer foam sandwich composites used in railway passenger vehicles[J]. Composite Structures, 2020, 233: 111576. doi: 10.1016/j.compstruct.2019.111576 [2] LI X, WU Z, YANG J, et al. Experimental study on transient pressure induced by high-speed train passing through an underground station with adjoining tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 224: 104984. doi: 10.1016/j.jweia.2022.104984 [3] WANG H, SHAO J, ZHANG W, et al. Three-point bending response and energy absorption of novel sandwich beams with combined reentrant double-arrow auxetic honeycomb cores[J]. Composite Structures, 2023, 326: 117606. doi: 10.1016/j.compstruct.2023.117606 [4] 陶杰, 李华冠, 潘蕾, 等. 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报, 2015, 7(5): 626-636.TAO Jie, LI Huaguan, PAN Lei, et al. Research and development trend of fiber metal laminates[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 7(5): 626-636 (in Chinese). [5] 马威, 管海陆, 张晓琼, 等. 碳纤维/不锈钢极薄带纤维金属层板制备工艺及其弯曲性能[J]. 复合材料学报, 2024, 41(2): 1047-1057.MA Wei, GUAN Hailu, ZHANG Xiaoqiong, et al. Preparation process and bending properties of carbon fiber/stainless steel ultra-thin strip fiber metal laminates[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1047-1057(in Chinese). [6] 亓昌, 付利荣, 刘海涛, 等. 热塑性纤维金属层板抗冲击性能研究与优化[J]. 重庆理工大学学报(自然科学), 2023, 37(4): 115-122.QI Chang, FU Lirong, LIU Haitao, et al. Research and optimization of impact resistance of thermoplastic fiber metal laminates[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(4): 115-122(in Chinese). [7] ZHOU H, ZHENG C, LU A, et al. An experimental study of the effects of degrees of confinement on the response of thermoplastic fibre-metal laminates subjected to blast loading[J]. Thin-Walled Structures, 2023, 192: 111125. doi: 10.1016/j.tws.2023.111125 [8] LIN Y Y, LI H G, ZHANG Z W, et al. Low-velocity impact resistance of Al/GF/PP laminates with different interface performance[J]. Polymers, 2021, 13(24): 4416. doi: 10.3390/polym13244416 [9] PENG J, CAI D, ZHANG N, et al. Experimental investigation on mechanical behavior of 3D integrated woven spacer composites under quasi-static indentation and compression after indentation: Effect of indenter shapes[J]. Thin-Walled Structures, 2023, 182: 110213. doi: 10.1016/j.tws.2022.110213 [10] LIN Y Y, LI H G, KUANG N, et al. Experimental and numerical research on flexural behavior of fiber metal laminate sandwich composite structures with 3D woven hollow integrated core[J]. Journal of Sandwich Structures & Materials, 2022, 24: 1790-1807. [11] TIAN H. Review of research on high-speed railway aerodynamics in China[J]. Transportation Safety and Environment, 2019, 1: 1-21. doi: 10.1093/tse/tdz014 [12] CHEN Y, WU Q. Study on unsteady aerodynamic characteristics of two trains passing by each other in the open air[J]. Journal of Vibro Engineering, 2018, 20(2): 1161-1178. doi: 10.21595/jve.2018.18695 [13] XIONG X, ZHU L, ZHANG J, et al. Field measurements of the interior and exterior aerodynamic pressure induced by a metro train passing through a tunnel[J]. Sustainable Cities and Society, 2020, 53: 101928. doi: 10.1016/j.scs.2019.101928 [14] SAKUMA Y, PAIDOUSSIS M, PRICE S. Effect of boundary layer development on the dynamics of trains and train-like articulated systems travelling in confined fluid[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126: 38-47. doi: 10.1016/j.jweia.2013.12.008 [15] 张忆宁. 动车组碳纤维增强复合材料设备舱强度研究[D]. 北京: 北京交通大学, 2020.ZHANG Yining. Research on strength of carbon fiber reinforced composite equipment compartment of EMU[D]. Beijing: Beijing Jiaotong University, 2020(in Chinese). [16] 王英学, 高波, 任文强. 高速铁路隧道缓冲结构气动载荷与结构应力特性分析[J]. 力学学报, 2017, 49(1): 48-54.WANG Yingxue, GAO Bo, REN Wenqiang. Aerodynamic load and structure stress analysis on hood of high-speed railway tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 48-54(in Chinese). [17] HAN S, ZHANG J, XIONG X, et al. Influence of high-speed maglev train speed on tunnel aerodynamic effects[J]. Building and Environment, 2022, 223: 109460. doi: 10.1016/j.buildenv.2022.109460 [18] 仇亚萍, 沈真, 陈海军, 等. 高速磁悬浮列车用碳纤维复合材料裙板的设计与分析[J]. 复合材料科学与工程, 2021(2): 95-101.QIU Yaping, SHEN Zhen, CHEN Haijun, et al. Design and analysis of carbon fiber composite skirt plate for high-speed maglev train[J]. Composite Science and Engineering, 2021(2): 95-101(in Chinese). [19] 徐世南, 张继业, 李田, 等. 高速列车过隧道时底板压力分析[J]. 计算机辅助工程, 2015, 24(4): 28-38.XU Shinan, ZHANG Jiye, LI Tian, et al. Analysis of floor pressure of high-speed train passing through tunnel[J]. Computer Aided Engineering, 2015, 24(4): 28-38(in Chinese). [20] 梅元贵, 李绵辉, 郭瑞. 高速铁路隧道内列车交会压力波气动载荷分布特性[J]. 中国铁道科学, 2019, 40(6): 60-67.MEI Yuangui, LI Mianhui, GUO Rui. Aerodynamic load distribution characteristics of pressure wave when trains passing each other in high-speed railway tunnel[J]. China Railway Science, 2019, 40(6): 60-67(in Chinese). [21] International Union of Railways. Loadings of coach bodies and their components: UIC 566—1990[S]. Paris: International Union of Railways, 1990. [22] European Committee for Standardization. Railway applications—Structural requirements of railway vehicle bodies: DIN EN 12663: 2000[S]. Berlin: German Institute for Standardization, 2000. [23] 中国国家标准化管理委员会. 夹层结构或芯子平压性能试验方法: GB/T 1453—2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People's Republic of China. Test method for flat compressive properties of sandwich structures or cores: GB/T 1453—2005[S]. Beijing: China Standards Press, 2005(in Chinese). [24] 中国国家标准化管理委员会. 夹层结构侧压强度试验方法: GB/T 1454—2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People's Republic of China. Test method for edgewise compressive strength of sandwich structures: GB/T 1454—2005[S]. Beijing: China Standards Press, 2005(in Chinese). [25] 中国国家标准化管理委员会. 夹层结构弯曲性能试验方法: GB/T 1456—2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People's Republic of China. Test method for flexural properties of sandwich structures: GB/T 1456—2005[S]. Beijing: China Standards Press, 2005(in Chinese). [26] 中国国家标准化管理委员会. 硬质泡沫塑料弯曲性能的测定第2部分: 弯曲强度和表观弯 曲弹性模量的测定: GB/T 8812.2—2007[S]. 北京: 中国标准出版社, 2007.Standardization Administration of the People's Republic of China. Determination of flexural properties of rigid cellular plastics second parts: Determination of flexural strength and apparent flexural modulus of elasticity: GB/T 8812.2—2007[S]. Beijing: China Standards Press, 2007(in Chinese). [27] QI Z, TAN Y, LI G, et al. Effects of hyperbranched polyamide functionalized graphene oxide on curing behavior and mechanical properties of epoxy composites[J]. Polymer Testing, 2018, 71: 145-155. doi: 10.1016/j.polymertesting.2018.08.029 [28] SADIGHI M, HOSSEINI S A. Finite element simulation and experimental study on mechanical behavior of 3D woven glass fiber composite sandwich panels[J]. Composites Part B: Engineering, 2013, 55: 158-166. doi: 10.1016/j.compositesb.2013.06.030 [29] AMOOYI DIZAJI R, YAZDANI M, ALIFHOLIZADEH E, et al. Effect of 3D-woven glass fabric and nanoparticles incorporation on impact energy absorption of GLARE composites[J]. Polymer Composite, 2018, 39(10): 3528-3536. doi: 10.1002/pc.24373 [30] 李华冠, 丁颖, 章月, 等. 玻璃纤维立体织物增强环氧树脂泡沫夹层复合材料的制备及力学性能[J]. 复合材料学报, 2023, 40(1): 601-612.LI Huaguan, DING Yin, ZHANG Yue, et al. Preparation and mechanical properties of glass fiber stereoscopic fabric reinforced epoxy resin foam sandwich composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 601-612(in Chinese). [31] CAO Y, QING Y, LI Y, et al. 3D integrated hollow lightweight E-glass fiber reinforced epoxy composites with excellent electromagnetic wave absorption and thermal insulation[J]. Composites Science and Technology, 2023, 235: 109967. doi: 10.1016/j.compscitech.2023.109967 [32] 王狄辉, 周光明, 刘畅, 等. 整体中空夹层复合材料平压性能的实验[J]. 工程塑料应用, 2016, 44(10): 90-93.WANG Dihui, ZHOU Guangming, LIU Chang, et al. Experimental study on flat compression properties of monolithic hollow sandwich composites[J]. Application of Engineering Plastics, 2016, 44(10): 90-93(in Chinese). [33] ZHANG J, JIANG G. Parametric modeling of three-dimensional geometry of warp-knitted loop based on variation of process parameters[J]. The Journal of the Textile Institute, 2018, 1: 2-5. [34] 钟志珊. 整体中空夹层复合材料力学性能研究[D]. 南京: 南京航空航天大学, 2007.ZHONG Zhishan. Investigation on mechanical property of hollow integrated sandwich composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese). [35] WU T, ZHANG C, GUO X. Dynamic responses of monopile offshore wind turbines in cold sea regions: Ice and aerodynamic loads with soil-structure interaction[J]. Ocean Engineering, 2024, 292: 116536. doi: 10.1016/j.oceaneng.2023.116536 [36] TANG J, ZHOU Z, CHEN H, et al. Research on the lightweight design of GFRP fabric pultrusion panels for railway vehicle[J]. Composite Structures, 2022, 286: 115221. doi: 10.1016/j.compstruct.2022.115221 [37] LIU C, ZHANG Y, HESLEHURST R. Impact resistance and bonding capability of sandwich panels with fibre-metal laminate skins and aluminium foam core[J]. Journal of Adhesion Science and Technology, 2014, 28(24): 2378-2392. doi: 10.1080/01694243.2014.967744 [38] LIN Y Y, LI H G, WANG Q L T, et al. Effect of plasma surface treatment of aluminum alloy sheet on the properties of Al/GF/PP laminates[J]. Applied Surface Science, 2020, 507: 145062. doi: 10.1016/j.apsusc.2019.145062