气动载荷下Al-GF/PP面板-三维中空夹层复合材料的强度特性

林艳艳, 郭兴豪, 吴灿, 李华冠, 项俊贤, 陈熹, 陶杰

林艳艳, 郭兴豪, 吴灿, 等. 气动载荷下Al-GF/PP面板-三维中空夹层复合材料的强度特性[J]. 复合材料学报, 2024, 41(10): 5315-5327. DOI: 10.13801/j.cnki.fhclxb.20240306.002
引用本文: 林艳艳, 郭兴豪, 吴灿, 等. 气动载荷下Al-GF/PP面板-三维中空夹层复合材料的强度特性[J]. 复合材料学报, 2024, 41(10): 5315-5327. DOI: 10.13801/j.cnki.fhclxb.20240306.002
LIN Yanyan, GUO Xinghao, WU Can, et al. Strength characterization of 3D hollow sandwich composite with Al-GF/PP faceplate under aerodynamic load[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5315-5327. DOI: 10.13801/j.cnki.fhclxb.20240306.002
Citation: LIN Yanyan, GUO Xinghao, WU Can, et al. Strength characterization of 3D hollow sandwich composite with Al-GF/PP faceplate under aerodynamic load[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5315-5327. DOI: 10.13801/j.cnki.fhclxb.20240306.002

气动载荷下Al-GF/PP面板-三维中空夹层复合材料的强度特性

基金项目: 国家自然科学基金(52305374;52175327);江苏省高等学校基础科学研究项目(23KJB430020;22KJA430006);南京工程学院校级科研基金项目(YKJ202226);中国科协青年人才托举工程(2021QNRC001)
详细信息
    通讯作者:

    李华冠,博士,教授,硕士生导师,研究方向为超混杂复合材料及夹层结构设计制造技术 E-mail: lihuaguan@njit.edu.cn

  • 中图分类号: TB332;TQ327.1

Strength characterization of 3D hollow sandwich composite with Al-GF/PP faceplate under aerodynamic load

Funds: National Natural Science Foundation of China (52305374; 52175327); Natural Science Foundation of the Jiangsu Higher Education Institution of China (23KJB430020; 22KJA430006); University Research Foundation of Nanjing Institute of Technology (YKJ202226); Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)
  • 摘要: 随着高速列车的不断提速,特别是在通过隧道或会车时,气动载荷对蒙皮结构的强度特性提出了更高的要求。热塑性铝合金-玻纤/聚丙烯( Al-GF/PP)面板-三维中空夹层复合材料是一种以纤维金属层板为面板、三维中空复合复合材料为芯材的三明治夹层材料,具有轻质高强、隔音隔热等优势,可用于高速列车车门、裙板等蒙皮结构。通过比较不同高度(10~25 mm)的三维中空复合材料在平压、侧压及弯曲性能上的表现发现,随着厚度增加,其力学性能呈下降趋势,较厚的三维中空复合材料芯材弯矩较大,结构稳定性低。对Al-GF/PP面板-三维中空夹层复合材料进行了4 kPa、5 kPa、6 kPa、7 kPa的气动载荷测试。结果表明:当“8”形纤维受到垂直于面板方向的作用力时,纬向承担了主要载荷,这有助于减小纤维在加载方向上的位移量。芯材与上面板连接处承受的载荷应力最大,位移主要出现于结构的受载侧,最大位移值分别为1.80 μm、2.26 μm、2.72 μm和3.19 μm,该数量级的气动载荷不会导致试样出现宏观的变形失效。

     

    Abstract: With the increasing speed of high-speed trains, especially when passing through tunnels or meeting cars, aerodynamic loads place higher demands on the strength characteristics of the skin structure. 3D hollow sandwich composite with thermoplastic aluminum alloy-glass fibre/polypropylene (Al-GF/PP) faceplate is a kind of sandwich material with fiber metal laminates as faceplate and 3D hollow composite as core material, which has the advantages of lightweight and high strength, sound and heat insulation, and can be used in the skin structure of high-speed train doors, skirts and so on. By comparing the performance of 3D hollow composites with different heights (10-25 mm) in flatwise compressive, edgewise compressive and flexural properties, it is found that the mechanical properties show a decreasing trend with the increase of the thickness, and the thicker 3D hollow composites have higher bending moments in the core and low structural stability. Aerodynamic load tests of 4 kPa, 5 kPa, 6 kPa and 7 kPa were carried out on the 3D hollow sandwich composite with Al-GF/PP faceplate. The results show that when the "8" fibres are subjected to forces perpendicular to the faceplate, the weft fibres carry the main load, which help to reduce the displacement of the fibres in the loading direction. The highest loading stress is applied at the joint between the core and the upper panel, and the main displacement occurs on the loaded side of the structure, with maximum displacement values of 1.80 μm, 2.26 μm, 2.72 μm, and 3.19 μm, respectively, and the aerodynamic loading of this order of magnitude does not lead to macroscopic deformation and failure of the specimens.

     

  • 图  1   三维中空复合材料的制备工艺流程

    Figure  1.   Preparation process of 3D hollow sandwich composite

    图  2   三维中空复合材料真空导流工艺

    Figure  2.   Vacuum diversion technology of 3D hollow sandwich composite

    图  3   固化工艺对三维中空复合材料力学性能的影响:(a) 弯曲性能;(b) 平压性能

    Figure  3.   Effect of curing process on mechanical properties of 3D hollow sandwich composite: (a) Flexural properties; (b) Flatwise compressive properties

    图  4   三维中空复合材料试样

    Figure  4.   3D hollow sandwich composite specimens

    图  5   三维中空复合材料典型平压载荷-位移曲线(a)和典型失效形式(b)

    Figure  5.   Typical flatwise compressive load-displacement curves (a) and typical failure modes (b) of 3D hollow sandwich composite

    图  6   三维中空复合材料弯曲(a)和侧压(b)实验结果

    Figure  6.   Typical flexural (a) and edgewise compressive (b) results of 3D hollow sandwich composite

    图  7   厚度对三维中空复合材料力学性能的影响

    Figure  7.   Effect of thickness on mechanical properties of 3D hollow sandwich composite

    图  8   Al-GF/PP面板-三维中空复合材料模型参数

    Figure  8.   Model parameters of 3D hollow sandwich composite with Al-GF/PP faceplate

    图  9   Al-GF/PP面板-三维中空复合材料平压实验应力云图(a)及芯层失效过程(b)

    Figure  9.   Stress nephogram of 3D hollow sandwich composite with Al-GF/PP faceplate in flatwise compressive (a) and failure process of core layer (b)

    S—Stress (kPa); SNEG—Distance from the middle plane of the unit to the reference plane

    图  10   气动载荷下Al-GF/PP面板-三维中空夹层复合材料的强度分析:(a) 模型;(b) 在施压后的位移云图

    Figure  10.   Strength analysis of 3D hollow sandwich composite with Al-GF/PP faceplate based on aerodynamic effects: (a) Finite element model;(b) Displacement cloud image after pressure

    U—Displacement (μm)

    图  11   “8”形纤维在压向的位移情况:(a) “8”形纤维代表点示意图;4 kPa (b)、5 kPa (c)、6 kPa (d)、7 kPa (e)的各点压向位移

    Figure  11.   Displacement of the "8" shape fiber in the pressure direction: (a) Schematic diagram of "8" shaped fibers representing points; Displacement at each point of 4 kPa (b), 5 kPa (c), 6 kPa (d), 7 kPa (e)

    图  12   “8”形纤维在不同压力下的应力

    Figure  12.   Stress of "8" shaped fibers under different pressures

    图  13   Al-GF/PP面板-三维中空夹层复合材料的铺层结构及制备工艺

    Figure  13.   Layup and preparation process of 3D hollow sandwich composite with Al-GF/PP faceplate

    图  14   (a) Al-GF/PP面板-三维中空夹层复合材料试样;(b)实验安装示意图

    Figure  14.   (a) Strength experiment of 3D hollow sandwich composite with Al-GF/PP faceplate; (b) Experimental installation diagram

    图  15   对Al-GF/PP面板-三维中空夹层复合材料A面施压前后:(a)施加前;(b)施加4 kPa;(c)施加6 kPa;(d)施加后

    Figure  15.   A side of 3D hollow sandwich composite with Al-GF/PP faceplate before and after application:(a) Before application; (b) Apply 4 kPa; (c) Apply 6 kPa; (d) After application

    图  16   对Al-GF/PP面板-三维中空夹层复合材料B面施压前后:(a)施加前;(b)施加4 kPa;(c)施加6 kPa;(d)施加后

    Figure  16.   B side of 3D hollow sandwich composite with Al-GF/PP faceplate before and after application: (a) Before application; (b) Apply 4 kPa; (c) Apply 6 kPa; (d) After application

    图  17   经过气动载荷试验后Al-GF/PP面板-三维中空夹层复合材料超声C扫结果

    Figure  17.   Ultrasonic C-scan results of 3D hollow sandwich composite with Al-GF/PP faceplate after aerodynamic load

    AMP—Amplitude

    表  1   三维中空复合材料的物理参数

    Table  1   Physical parameters of 3D hollow sandwich composite

    Weave thickness/mm Actual thickness/mm Surface density/
    (kg·m−2)
    10 8.5 2.1
    15 12.4 2.2
    20 17.6 2.9
    25 23.3 3.0
    下载: 导出CSV

    表  2   Al-GF/PP面板-三维中空复合材料有限元(FEM)建模参数

    Table  2   Finite element method (FEM) parameters of 3D hollow sandwich composite with Al-GF/PP faceplate

    Hight h/mm Faceplate thickness hf/mm Curve equation (Bundle diameter of fiber is 0.5 mm)
    8.5 0.5 x=0.8sin(360t)y=1.76(1t)z=10t
    下载: 导出CSV

    表  3   Al-GF/PP面板-三维中空复合材料FEM参数

    Table  3   FEM parameters of 3D hollow sandwich composite with Al-GF/PP faceplate

    Parameter Faceplate Core
    ρ/(g·cm−3) 1.4×10−9 2.1×10−9
    E1/MPa 11230 16560
    E2/MPa 14670 4750
    v12 0.151 0.334
    G12/MPa 1660 1730
    G13/MPa 4780 2120
    G23/MPa 4780 2120
    Notes: ρ—Densities; E—Young's modulus; v12—Poisson's ratio; G12, G13, G23—Shear modulus; 1—Fiber direction; 2 and 3—Two normal directions of the fiber.
    下载: 导出CSV
  • [1]

    ÖNDER A, ROBINSON M. Investigating the feasibility of a new testing method for GFRP/polymer foam sandwich composites used in railway passenger vehicles[J]. Composite Structures, 2020, 233: 111576. DOI: 10.1016/j.compstruct.2019.111576

    [2]

    LI X, WU Z, YANG J, et al. Experimental study on transient pressure induced by high-speed train passing through an underground station with adjoining tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 224: 104984. DOI: 10.1016/j.jweia.2022.104984

    [3]

    WANG H, SHAO J, ZHANG W, et al. Three-point bending response and energy absorption of novel sandwich beams with combined reentrant double-arrow auxetic honeycomb cores[J]. Composite Structures, 2023, 326: 117606. DOI: 10.1016/j.compstruct.2023.117606

    [4] 陶杰, 李华冠, 潘蕾, 等. 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报, 2015, 7(5): 626-636.

    TAO Jie, LI Huaguan, PAN Lei, et al. Research and development trend of fiber metal laminates[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2015, 7(5): 626-636 (in Chinese).

    [5] 马威, 管海陆, 张晓琼, 等. 碳纤维/不锈钢极薄带纤维金属层板制备工艺及其弯曲性能[J]. 复合材料学报, 2024, 41(2): 1047-1057.

    MA Wei, GUAN Hailu, ZHANG Xiaoqiong, et al. Preparation process and bending properties of carbon fiber/stainless steel ultra-thin strip fiber metal laminates[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1047-1057(in Chinese).

    [6] 亓昌, 付利荣, 刘海涛, 等. 热塑性纤维金属层板抗冲击性能研究与优化[J]. 重庆理工大学学报(自然科学), 2023, 37(4): 115-122.

    QI Chang, FU Lirong, LIU Haitao, et al. Research and optimization of impact resistance of thermoplastic fiber metal laminates[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(4): 115-122(in Chinese).

    [7]

    ZHOU H, ZHENG C, LU A, et al. An experimental study of the effects of degrees of confinement on the response of thermoplastic fibre-metal laminates subjected to blast loading[J]. Thin-Walled Structures, 2023, 192: 111125. DOI: 10.1016/j.tws.2023.111125

    [8]

    LIN Y Y, LI H G, ZHANG Z W, et al. Low-velocity impact resistance of Al/GF/PP laminates with different interface performance[J]. Polymers, 2021, 13(24): 4416. DOI: 10.3390/polym13244416

    [9]

    PENG J, CAI D, ZHANG N, et al. Experimental investigation on mechanical behavior of 3D integrated woven spacer composites under quasi-static indentation and compression after indentation: Effect of indenter shapes[J]. Thin-Walled Structures, 2023, 182: 110213. DOI: 10.1016/j.tws.2022.110213

    [10]

    LIN Y Y, LI H G, KUANG N, et al. Experimental and numerical research on flexural behavior of fiber metal laminate sandwich composite structures with 3D woven hollow integrated core[J]. Journal of Sandwich Structures & Materials, 2022, 24: 1790-1807.

    [11]

    TIAN H. Review of research on high-speed railway aerodynamics in China[J]. Transportation Safety and Environment, 2019, 1: 1-21. DOI: 10.1093/tse/tdz014

    [12]

    CHEN Y, WU Q. Study on unsteady aerodynamic characteristics of two trains passing by each other in the open air[J]. Journal of Vibro Engineering, 2018, 20(2): 1161-1178. DOI: 10.21595/jve.2018.18695

    [13]

    XIONG X, ZHU L, ZHANG J, et al. Field measurements of the interior and exterior aerodynamic pressure induced by a metro train passing through a tunnel[J]. Sustainable Cities and Society, 2020, 53: 101928. DOI: 10.1016/j.scs.2019.101928

    [14]

    SAKUMA Y, PAIDOUSSIS M, PRICE S. Effect of boundary layer development on the dynamics of trains and train-like articulated systems travelling in confined fluid[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126: 38-47. DOI: 10.1016/j.jweia.2013.12.008

    [15] 张忆宁. 动车组碳纤维增强复合材料设备舱强度研究[D]. 北京: 北京交通大学, 2020.

    ZHANG Yining. Research on strength of carbon fiber reinforced composite equipment compartment of EMU[D]. Beijing: Beijing Jiaotong University, 2020(in Chinese).

    [16] 王英学, 高波, 任文强. 高速铁路隧道缓冲结构气动载荷与结构应力特性分析[J]. 力学学报, 2017, 49(1): 48-54.

    WANG Yingxue, GAO Bo, REN Wenqiang. Aerodynamic load and structure stress analysis on hood of high-speed railway tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 48-54(in Chinese).

    [17]

    HAN S, ZHANG J, XIONG X, et al. Influence of high-speed maglev train speed on tunnel aerodynamic effects[J]. Building and Environment, 2022, 223: 109460. DOI: 10.1016/j.buildenv.2022.109460

    [18] 仇亚萍, 沈真, 陈海军, 等. 高速磁悬浮列车用碳纤维复合材料裙板的设计与分析[J]. 复合材料科学与工程, 2021(2): 95-101.

    QIU Yaping, SHEN Zhen, CHEN Haijun, et al. Design and analysis of carbon fiber composite skirt plate for high-speed maglev train[J]. Composite Science and Engineering, 2021(2): 95-101(in Chinese).

    [19] 徐世南, 张继业, 李田, 等. 高速列车过隧道时底板压力分析[J]. 计算机辅助工程, 2015, 24(4): 28-38.

    XU Shinan, ZHANG Jiye, LI Tian, et al. Analysis of floor pressure of high-speed train passing through tunnel[J]. Computer Aided Engineering, 2015, 24(4): 28-38(in Chinese).

    [20] 梅元贵, 李绵辉, 郭瑞. 高速铁路隧道内列车交会压力波气动载荷分布特性[J]. 中国铁道科学, 2019, 40(6): 60-67.

    MEI Yuangui, LI Mianhui, GUO Rui. Aerodynamic load distribution characteristics of pressure wave when trains passing each other in high-speed railway tunnel[J]. China Railway Science, 2019, 40(6): 60-67(in Chinese).

    [21]

    International Union of Railways. Loadings of coach bodies and their components: UIC 566—1990[S]. Paris: International Union of Railways, 1990.

    [22]

    European Committee for Standardization. Railway applications—Structural requirements of railway vehicle bodies: DIN EN 12663: 2000[S]. Berlin: German Institute for Standardization, 2000.

    [23] 中国国家标准化管理委员会. 夹层结构或芯子平压性能试验方法: GB/T 1453—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for flat compressive properties of sandwich structures or cores: GB/T 1453—2005[S]. Beijing: China Standards Press, 2005(in Chinese).

    [24] 中国国家标准化管理委员会. 夹层结构侧压强度试验方法: GB/T 1454—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for edgewise compressive strength of sandwich structures: GB/T 1454—2005[S]. Beijing: China Standards Press, 2005(in Chinese).

    [25] 中国国家标准化管理委员会. 夹层结构弯曲性能试验方法: GB/T 1456—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for flexural properties of sandwich structures: GB/T 1456—2005[S]. Beijing: China Standards Press, 2005(in Chinese).

    [26] 中国国家标准化管理委员会. 硬质泡沫塑料弯曲性能的测定第2部分: 弯曲强度和表观弯 曲弹性模量的测定: GB/T 8812.2—2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People's Republic of China. Determination of flexural properties of rigid cellular plastics second parts: Determination of flexural strength and apparent flexural modulus of elasticity: GB/T 8812.2—2007[S]. Beijing: China Standards Press, 2007(in Chinese).

    [27]

    QI Z, TAN Y, LI G, et al. Effects of hyperbranched polyamide functionalized graphene oxide on curing behavior and mechanical properties of epoxy composites[J]. Polymer Testing, 2018, 71: 145-155. DOI: 10.1016/j.polymertesting.2018.08.029

    [28]

    SADIGHI M, HOSSEINI S A. Finite element simulation and experimental study on mechanical behavior of 3D woven glass fiber composite sandwich panels[J]. Composites Part B: Engineering, 2013, 55: 158-166. DOI: 10.1016/j.compositesb.2013.06.030

    [29]

    AMOOYI DIZAJI R, YAZDANI M, ALIFHOLIZADEH E, et al. Effect of 3D-woven glass fabric and nanoparticles incorporation on impact energy absorption of GLARE composites[J]. Polymer Composite, 2018, 39(10): 3528-3536. DOI: 10.1002/pc.24373

    [30] 李华冠, 丁颖, 章月, 等. 玻璃纤维立体织物增强环氧树脂泡沫夹层复合材料的制备及力学性能[J]. 复合材料学报, 2023, 40(1): 601-612.

    LI Huaguan, DING Yin, ZHANG Yue, et al. Preparation and mechanical properties of glass fiber stereoscopic fabric reinforced epoxy resin foam sandwich composite[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 601-612(in Chinese).

    [31]

    CAO Y, QING Y, LI Y, et al. 3D integrated hollow lightweight E-glass fiber reinforced epoxy composites with excellent electromagnetic wave absorption and thermal insulation[J]. Composites Science and Technology, 2023, 235: 109967. DOI: 10.1016/j.compscitech.2023.109967

    [32] 王狄辉, 周光明, 刘畅, 等. 整体中空夹层复合材料平压性能的实验[J]. 工程塑料应用, 2016, 44(10): 90-93.

    WANG Dihui, ZHOU Guangming, LIU Chang, et al. Experimental study on flat compression properties of monolithic hollow sandwich composites[J]. Application of Engineering Plastics, 2016, 44(10): 90-93(in Chinese).

    [33]

    ZHANG J, JIANG G. Parametric modeling of three-dimensional geometry of warp-knitted loop based on variation of process parameters[J]. The Journal of the Textile Institute, 2018, 1: 2-5.

    [34] 钟志珊. 整体中空夹层复合材料力学性能研究[D]. 南京: 南京航空航天大学, 2007.

    ZHONG Zhishan. Investigation on mechanical property of hollow integrated sandwich composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).

    [35]

    WU T, ZHANG C, GUO X. Dynamic responses of monopile offshore wind turbines in cold sea regions: Ice and aerodynamic loads with soil-structure interaction[J]. Ocean Engineering, 2024, 292: 116536. DOI: 10.1016/j.oceaneng.2023.116536

    [36]

    TANG J, ZHOU Z, CHEN H, et al. Research on the lightweight design of GFRP fabric pultrusion panels for railway vehicle[J]. Composite Structures, 2022, 286: 115221. DOI: 10.1016/j.compstruct.2022.115221

    [37]

    LIU C, ZHANG Y, HESLEHURST R. Impact resistance and bonding capability of sandwich panels with fibre-metal laminate skins and aluminium foam core[J]. Journal of Adhesion Science and Technology, 2014, 28(24): 2378-2392. DOI: 10.1080/01694243.2014.967744

    [38]

    LIN Y Y, LI H G, WANG Q L T, et al. Effect of plasma surface treatment of aluminum alloy sheet on the properties of Al/GF/PP laminates[J]. Applied Surface Science, 2020, 507: 145062. DOI: 10.1016/j.apsusc.2019.145062

  • 期刊类型引用(3)

    1. 崔永静, 郝晶莹, 王长亮, 宇波, 汤智慧. 树脂基复合材料表面爆炸喷涂铝涂层性能研究. 材料工程. 2018(06): 120-124 . 百度学术
    2. 杨国清, 寇长珍, 王德意, 冯媛媛, 李平. 玻璃纤维-碳纳米管共掺杂环氧树脂复合材料绝缘性能的研究. 大电机技术. 2018(02): 6-11 . 百度学术
    3. 赵一兰, 胡程耀, 魏春, 霍冀川. 聚酰亚胺表面处理玻璃纤维/环氧树脂复合材料力学性能. 复合材料学报. 2018(07): 1850-1856 . 本站查看

    其他类型引用(1)

  • 目的 

    随着高速列车的不断提速,特别是在通过隧道或会车时,气动载荷对蒙皮结构的强度特性提出了更高的要求。根据UIC-566《客车车体及其零部件的载荷》和EN12663《铁路应用铁道车辆车体结构要求》标准中规定的6 kPa载荷值,结合有限元模拟分析与实验验证的方法,评价Al/GF/PP面板-三维中空夹层复合材料在气动载荷下的强度特性。

    方法 

    首先,采用真空导流工艺制备三维中空复合材料,并探究不同的固化工艺对三维中空复合材料力学性能的影响。通过平压实验、弯曲实验了侧压实验分析不同厚度的三维中空复合材料力学性能的变化趋势及主要失效形式。随后,基于Grosberg提出的弹性细杆模型,通过Pro-E和ABAQUS/Explicit建立三维中空复合材料的有限元法模型。依据三维中空复合材料的实际测量形状,假设单个“8”形纤维为两条空间正弦曲线构成。分析“8”形纤维在不同气动载荷作用下的应力分布及位移情况。最后,以热塑性铝合金/玻纤/聚丙烯(Aluminum/ Glass fiber/ Polypropylene, Al/GF/PP)层板为面板、三维中空复合复合材料为芯材,通过热模压工艺制备Al/GF/PP面板-三维中空夹层复合材料。将300 mm×300 mm的试样安装在密封工装上,利用工装对试样进行加压,用位移传感器测量结构的变形情况,并采用超声C扫表征试样。

    结果 

    首先,阶梯固化试样的压缩强度和弯曲强度分别比195 ℃固化试样提高了17.8 %和21.3 %。这是由于阶梯固化让树脂有预凝胶过程进行,有利于树脂充分反应;若直接195 ℃固化会造成树脂在一定时间内急剧固化,可能引起树脂收缩甚至剧烈反应,导致树脂内气泡不能及时排除等因素,造成力学性能下降。三维中空复合材料平压失效最终表现为“8”形纤维芯材完全压溃失效。卸载后具有回弹现象,回弹后试样中的“8”形纤维与面板的夹角减小,其根部出现泛白现象。弯曲和侧压失效分别表现为整体结构不对称变形和宏观屈曲。随着厚度增加,三维中空复合材料的力学性能呈下降的趋势,当厚度为10 mm时,最大平压强度、弯曲强度和侧压强度分别为0.84 MPa、11.20 MPa和3.40 MPa。较厚的三维中空复合材料芯材弯矩较大,结构稳定性低。随后,对Al/GF/PP面板-三维中空夹层复合材料进行了4 kPa、5 kPa、6 kPa、7 kPa的气动载荷测试。可见,当“8”字形纤维受到垂直于纤维方向的作用力时,纬向纤维承担了主要载荷,这有助于减小纤维在加载方向上的位移量。若压力持续增大,达到“8”形纤维的失效载荷,其在纬向将发生变形。“8”形纤维将以根部为支点,发生纬向的塑性转动。芯材与上面板连接处承受的载荷应力最大,位移主要出现于结构的受载侧,最大位移值分别为1.80 μm、2.26 μm、2.72 μm和3.19 μm。对于结构的整体变形而言,该数量级的压力不会引起试样宏观的变形失效。最后,实验结果表明,位移传感器的值在分别施加4 kPa和6 kPa后未出现变化,超声C扫结果中信号没有明显的减弱。

    结论 

    随着厚度(10 mm~25 mm)增加,三维中空复合材料的平压、侧压和弯曲性能均呈下降趋势。较厚的三维中空复合材料芯材弯矩较大,结构稳定性低。当Al/GF/PP面板-三维中空夹层复合材料的“8”形纤维在承受垂直于面板方向的作用力时,纬向承担了主要载荷,这有助于减小其在加载方向的位移量。芯材与上面板连接处的载荷应力最大,位移主要出现于结构的受载侧,最大位移值分别为1.80 μm、2.26 μm、2.72 μm和3.19 μm,该数量级的气动载荷不会导致试样出现宏观的变形失效。

  • 热塑性纤维金属层板具有优异的热变形性能,加工效率高且绿色可回收,在轨道交通领域吸引了越来越多的研究。高速列车在会车或穿过隧道时,空气动力效应作用于车体表面将影响车体结构,严重时将危及列车的安全运行。

    本文以热塑性铝合金-玻纤/聚丙烯(Aluminum/Glass fiber/Polypropylene, Al-GF/PP)层板为面板,三维中空复合材料为芯材,制备了一种三明治夹层复合材料。通过比较不同高度(10 ~25 mm)的三维中空复合材料在平压、侧压及弯曲性能上的表现发现,随着厚度增加,其力学性能呈下降趋势,较厚的三维中空复合材料芯材弯矩较大,结构稳定性低。根据UIC-566《客车车体及其零部件的载荷》和EN12663《铁路应用铁道车辆车体结构要求》,对Al-GF/PP面板-三维中空夹层复合材料进行了4 kPa、5 kPa、6 kPa、7 kPa的气动载荷测试。结果表明,当“8”形纤维受到垂直于面板方向的作用力时,纬向承担了主要载荷,这有助于减小纤维在加载方向上的位移量。芯材与上面板连接处承受的载荷应力最大,位移主要出现于结构的受载侧,最大位移值分别为1.80 μm、2.26 μm、2.72 μm和3.19 μm,该数量级的气动载荷不会导致试样出现宏观的变形失效。因此,对于高速列车车门、设备舱底板及裙板等结构,本研究设计的Al-GF/PP面板-三维中空夹层复合材料满足气动载荷的强度特性要求,具有重要的工程意义。

    “8”形纤维在压向的位移情况(a) “8”形纤维代表点示意图; (b) 4 kPa各点压向位移; (c) 5 kPa各点压向位移;(d) 6 kPa各点压向位移; (e) 7 kPa各点压向位移

图(17)  /  表(3)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  140
  • PDF下载量:  32
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-11-09
  • 修回日期:  2024-02-19
  • 录用日期:  2024-02-23
  • 网络出版日期:  2024-03-19
  • 刊出日期:  2024-10-14

目录

    /

    返回文章
    返回