留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低烟低热薄壁阻燃聚碳酸酯材料的制备与性能

江惠 刘杰 张璐 李三喜 唐涛 王松

江惠, 刘杰, 张璐, 等. 低烟低热薄壁阻燃聚碳酸酯材料的制备与性能[J]. 复合材料学报, 2024, 41(10): 5423-5433. doi: 10.13801/j.cnki.fhclxb.20240305.001
引用本文: 江惠, 刘杰, 张璐, 等. 低烟低热薄壁阻燃聚碳酸酯材料的制备与性能[J]. 复合材料学报, 2024, 41(10): 5423-5433. doi: 10.13801/j.cnki.fhclxb.20240305.001
JIANG Hui, LIU Jie, ZHANG Lu, et al. Preparation and properties of thin-wall flame-retardant polycarbonate materials with low heat release and smoke[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5423-5433. doi: 10.13801/j.cnki.fhclxb.20240305.001
Citation: JIANG Hui, LIU Jie, ZHANG Lu, et al. Preparation and properties of thin-wall flame-retardant polycarbonate materials with low heat release and smoke[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5423-5433. doi: 10.13801/j.cnki.fhclxb.20240305.001

低烟低热薄壁阻燃聚碳酸酯材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20240305.001
基金项目: 国家自然科学基金(51991353;51991350)
详细信息
    通讯作者:

    刘杰,博士,副研究员,研究方向为高分子阻燃材料、聚合物碳化反应研究 E-mail: liujie@ciac.ac.cn

    王松,博士,教授,硕士生导师,研究方向为高分子材料、吸附材料研究 E-mail: wangsong@sut.edu.cn

  • 中图分类号: TB332

Preparation and properties of thin-wall flame-retardant polycarbonate materials with low heat release and smoke

Funds: National Natural Science Foundation of China (51991353; 51991350)
  • 摘要: 兼具低烟低热和薄壁阻燃的无卤无氟聚碳酸酯(PC)的制备是该领域面临的一个挑战。以八甲基环四硅氧烷和硼酸为原料,通过缩聚反应制备了一种聚硼硅氧烷(PBS)阻燃剂,将其与硼酚醛树脂(LPR)复配制备了PBS-LPR/PC复合材料。结果表明:在PBS和LPR总添加量为10wt%、质量比3∶1时,在PC中表现出最佳的协同阻燃效果,1.6 mm厚的PC样品能够通过UL-94垂直燃烧测试的V-0级别。与PC相比,该样品的峰值放热率(pHRR)、峰值产烟率(pSPR)、总热释放(THR)和总烟生成(TSP)分别降低了76%、64%、49%和65%。阻燃机制研究表明:PBS和PC的交联成炭以及LPR的原位成炭是阻燃性能提高的主要原因。7.5%PBS-2.5%LPR/PC的缺口冲击强度是PC的2.3倍,材料表现出高韧的特性。

     

  • 图  1  聚硼硅氧烷(PBS)的合成路线

    Figure  1.  Synthesis route of polyborosiloxane (PBS)

    图  2  PC及其复合材料在氮气气氛下的TGA (a) 和DTG (b) 曲线

    Figure  2.  TGA (a) and DTG (b) curves of PC and its composites under nitrogen atmosphere

    图  3  锥形量热测试得到的PC及PBS-LPR/PC复合材料的热释放速率(HRR) (a)、总热释放量(THR) (b)、烟释放速率(SPR) (c)、总生烟量(TSP) (d)曲线

    Figure  3.  Heat release rate (HRR)(a), total heat release (THR) (b), smoke production rate (SPR) (c), total smoke production (TSP) (d) curves of PC and PBS-LPR/PC composites obtained by cone calorimeter

    图  4  PC (a)、10%LPR/PC (b)、2.5%PBS-7.5%LPR/PC (c)、5%PBS-5%LPR/PC (d)、7.5%PBS-2.5%LPR/PC (e)、10%PBS/PC (f)复合材料锥形量热测试后残炭的数码照片和SEM图像:(((a)~(f)), ((a1)~(f1)))分别为顶部和侧面残炭外观形貌;((a2)~(f2)) SEM图像

    Figure  4.  Digital photos and SEM images of char residues from PC (a), 10%LPR/PC (b), 2.5%PBS-7.5%LPR/PC (c), 5%PBS-5%LPR/PC (d), 7.5%PBS-2.5%LPR/PC (e), 10%PBS/PC (f) composites after the cone calorimeter: (((a)-(f)), ((a1)-(f1))) Top and side morphologies; ((a2)-(f2)) SEM image

    图  5  PC及其复合材料残炭的EDS图谱(a)和FTIR图谱(b)

    Figure  5.  EDS spectra (a) and FTIR spectra (b) of the char residue for PC and its composites

    图  6  温度扫描流变法测定的 PC及其复合材料的复合黏度曲线(a)和360~400℃的局部放大图(b)

    Figure  6.  Complex viscosity curves (a) and local magnification (b) at 360-400℃ for PC and its composites by temperature-scanning rheology

    图  7  PC及其复合材料主要降解产物的GC图谱

    Figure  7.  GC spectrogram of PC and its composites mainly degraded products

    图  8  PBS-LPR/PC复合材料的阻燃机制示意图

    Figure  8.  Schematic illustration for the flame-retardant mechanism of PBS-LPR/PC composites

    图  9  PC和PBS-LPR/PC复合材料的缺口冲击强度

    Figure  9.  Notched impact strength of PC and PBS-LPR/PC composites

    图  10  PC (a)、10%LPR/PC (b)、2.5%PBS-7.5%LPR/PC (c)、5%PBS-5%LPR/PC (d)、7.5%PBS-2.5%LPR/PC (e)、10%PBS/PC (f)的缺口冲击淬断面的SEM图像

    Figure  10.  SEM images of notched impact cross section of PC (a), 10%LPR/PC (b), 2.5%PBS-7.5%LPR/PC (c), 5%PBS-5%LPR/PC (d), 7.5%PBS-2.5%LPR/PC (e), 10%PBS/PC (f)

    表  1  PBS-硼酚醛树脂(LPR)/聚碳酸酯(PC)复合材料的组成

    Table  1.   Composition of PBS-boron-phenolic resin (LPR)/polycarbonate (PC) composites

    Sample PC/wt% PBS/wt% LPR/wt%
    PC 100.0 0.0 0.0
    10%LPR/PC 90.0 0.0 10.0
    2.5%PBS-7.5%LPR/PC 90.0 2.5 7.5
    5%PBS-5%LPR/PC 90.0 5.0 5.0
    7.5%PBS-2.5%LPR/PC 90.0 7.5 2.5
    10%PBS/PC 90.0 10.0 0.0
    下载: 导出CSV

    表  2  PC和PBS-LPR/PC复合材料在氮气气氛下的热稳定性数据

    Table  2.   Thermal stability data of PC and PBS-LPR/PC composites in nitrogen atmosphere

    Sample T5%/℃ Tmax/℃ Residue/wt%
    PC 476 521 24.0
    PBS 219 407 2.8
    LPR 148 573 69.7
    10%LPR/PC 452 517 28.3
    2.5%PBS-7.5%LPR/PC 445 515 27.5
    5%PBS-5%LPR/PC 408 516 26.4
    7.5%PBS-2.5%LPR/PC 378 512 24.3
    10%PBS/PC 394 512 24.4
    Notes: T5%—5wt% decomposition temperature in the first; Tmax—Maximum decomposition temperature.
    下载: 导出CSV

    表  3  PC和PBS-LPR/PC复合材料的极限氧指数(LOI)和UL-94数据

    Table  3.   Limiting oxygen index (LOI) and UL-94 data of PC and PBS-LPR/PC composites

    Sample LOI/% UL-94 (1.6 mm)
    t1/s t2/s Dripping Rating
    PC 27.2 19.5±2.2 4.6±1.7 Yes V-2
    10%LPR/PC 28.8 18.6±16.5 0.9±0.2 Yes V-2
    2.5%PBS-7.5%LPR/PC 35.8 27.2±22.1 24.8±21.0 Yes NR
    5%PBS-5%LPR/PC 32.1 6.2±4.2 2.6±1.9 No V-0
    7.5%PBS-2.5%LPR/PC 36.1 4.9±2.7 1.7±1.1 No V-0
    10%PBS/PC 32.9 3.1±1.1 5.6±5.6 Yes V-2
    Notes: t1—Self-extinguishing time after the first ignition;t2—Self-extinguishing time after the second ignition.
    下载: 导出CSV

    表  4  PC及PBS-LPR/PC复合材料的锥形量热测试数据

    Table  4.   Data of cone calorimeter for PC and PBS-LPR/PC composites

    Sample TTI/s pHRR/(kW·m−2) THR/(MJ·m−2) pSPR/(m2·s−1) TSP/m2 MARHE/(kW·m−2) FPI/(m2·s·kW−1) CHR/wt%
    PC 138 590 65.9 0.22 16.8 172 0.223 19.1
    10%LPR/PC 115 218 49.2 0.10 18.2 109 0.528 21.6
    2.5%PBS-7.5%LPR/PC 129 153 43.1 0.07 10.7 65 0.843 38.1
    5%PBS-5%LPR/PC 107 149 40.7 0.08 8.4 67 0.718 32.8
    7.5%PBS-2.5%LPR/PC 135 139 33.4 0.08 5.9 54 0.969 30.0
    10%PBS/PC 114 212 51.8 0.07 9.7 93 0.538 18.4
    Notes: TTI—Time to ignition; pHRR—Peak heat release rate; THR—Total heat release at 600 s; pSPR—Peak smoke production rate; TSP—Total smoke production at 600 s; MARHE—Maximum average heat release rate; FPI—Fire performance index; CHR—Char residue.
    下载: 导出CSV

    表  5  GC/MS测定PC及其复合材料主要降解产物组成

    Table  5.   Composition of the main degradation products from PC and its composites obtained by GC/MS measurements

    Number Structure PC/% 10%LPR/PC/% 7.5%PBS-2.5%LPR/PC/% 10%PBS/PC/%
    1 CO2, H2O 0.7 0.6 1.04 0.5
    2 5.8 3.1 1.26 2.3
    3 5.6 13.6 11.6 24.6
    4 2.6 5.2 4.1 6.2
    5 3.6 0 2.6 0.9
    7 4.1 10.7 1.3 3.7
    8 17.9 2.0 0 9.3
    Monophenolics 40.3 35.2 21.9 47.5
    11 56.1 61.1 72.3 31.9
    6 0.5 3.2 4.8 6.3
    9 2.8 0.3 0.4 0.7
    10 0.1 0.2 0.2 0.4
    12 0 0 0.4 5.2
    下载: 导出CSV
  • [1] LIU Z, MA M, GE B, et al. Toward flame-retardant, transparency, and high mechanical property of polycarbonate based on low addition of linear polyborosiloxane[J]. Chemical Engineering Journal, 2023, 474: 145799. doi: 10.1016/j.cej.2023.145799
    [2] YU R H, LIU J, GAO D D, et al. Striking effect of nanosized carbon black modified by grafting sodium sulfonate on improving the flame retardancy of polycarbonate[J]. Composites Communications, 2020, 20: 100359. doi: 10.1016/j.coco.2020.100359
    [3] LIU S M, YANG Y, JIANG Z J. Synergistic flame retardant effect of poly(ethersulfones) and polysiloxane on polycarbonate[J]. Journal of Applied Polymer Science, 2012, 124(6): 4502-4511.
    [4] DING Z, WANG S, GE J, et al. Flame-retardant epoxy resin: Synergistic effect between aluminum diethylphosphinate and piperazine pyrophosphate[J]. Iranian Polymer Journal, 2024, 33(2):119-129.
    [5] NI P, FANG Y, QIAN L, et al. Flame-retardant behavior of a phosphorus/silicon compound on polycarbonate[J]. Journal of Applied Polymer Science, 2017, 135: 45815-45822.
    [6] WANG S, YANG X, LI Z, et al. Novel eco-friendly maleopimaric acid based polysiloxane flame retardant and application in rigid polyurethanefoam[J]. Composites Science and Technology, 2020, 198: 108272. doi: 10.1016/j.compscitech.2020.108272
    [7] WANG Z, QIU Y, LIU A, et al. Micro-crosslinking of phosphaphenanthrene/siloxane molecule initiate aggregation flame retardant and toughening enhancement effects on its polycarbonate composite[J]. Chemical Engineering Journal, 2023, 466: 143169. doi: 10.1016/j.cej.2023.143169
    [8] 刘春雷, 刘颖, 吴大鸣. 无卤阻燃聚碳酸酯薄壁材料[J]. 塑料, 2010, 39(6): 63-65.

    LIU Chunlei, LIU Ying, WU Daming. Halogen-free flame retardant polycarbonate thin-walled material[J]. Plastic, 2010, 39(6): 63-65(in Chinese).
    [9] HUANG H, SHI Y, LYU G, et al. Flame resistance and aging mechanism of flame retardant polycarbonate sheet containing linear phenolic resin charring agent[J]. Polymer Degradation and Stability, 2015, 122: 139-145.
    [10] 岑茵, 吴俊, 王培涛, 等. 薄壁阻燃聚碳酸酯的研究[J]. 塑料工业, 2018, 46(4): 142-146.

    CEN Yin, WU Jun, WANG Peitao, et al. The study of thin wall flame retardant polycarbonate[J]. Plastic Industry, 2018, 46(4): 142-146(in Chinese).
    [11] ZHU Y, YU R H, WANG S D, et al. Unexpected core-shell char from polycarbonate/polyborosiloxane composites and its application in improving flame retardancy[J]. Chemical Engineering Journal, 2022, 446: 136742. doi: 10.1016/j.cej.2022.136742
    [12] WAN Y, YU S, JIANG S, et al. Microscopic pyrolysis mechanism on the octyphenylsiloxane flame retarded polycarbonate by reactive molecular dynamics[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105274. doi: 10.1016/j.jaap.2021.105274
    [13] TANG T, CHEN X, CHEN H, et al. Catalyzing carbonization of polypropylene itself by supported nickel catalyst during combustion of polypropylene/clay nanocomposite for improving fire retardancy[J]. Chemistry of Materials, 2005, 17(11): 2799-2802. doi: 10.1021/cm047771c
    [14] TANG T, CHEN X, MENG X, et al. Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene[J]. Angewandte Chemie, 2005, 117(10): 1541-1544. doi: 10.1002/ange.200461506
    [15] 王旭, 梁西良. 耐高温酚醛树脂研究进展[J]. 化学与粘合, 2022, 44(2): 162-164.

    WANG Xu, LIANG Xiliang. The research progress of high temperature-resistant phenolic resin[J]. Chemistry and Adhesion, 2022, 44(2): 162-164(in Chinese).
    [16] ASTM International. Test method for measuring the comparative burning characteristics of solid plastics in a vertical position: ASTM D3801—20[S]. West Conshohocken: ASTM International, 2020.
    [17] ASTM International. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D2863—09[S]. West Conshohocken: ASTM International, 2009.
    [18] International Organization for Standardization. Reaction to-fire tests: Heat release, smoke production and mass loss rate: Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660—1[S]. Geneva: International Organization for Standardization, 2015.
    [19] 王许云, 张军, 张峰, 等. 应用锥形量热法评价聚合物复合材料热释放速率[J]. 复合材料学报, 2004(3): 162-166.

    WANG Xuyun, ZHANG Jun, ZHANG Feng, et al. The use of cone-shaped heat method evaluation polymer composite material thermal release rate[J]. Acta Materiae Compositae Sinica, 2004(3): 162-166(in Chinese).
    [20] 中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定试验方案: GB/T 1843—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastic—Determination of izod impact strength: GB/T 1843—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [21] ZHANG L, ZHANG Y, WANG L, et al. Phenolic resin modified by boron-silicon with high char yield[J]. Polymer Testing, 2019, 73: 208-213. doi: 10.1016/j.polymertesting.2018.11.033
    [22] 李文洋. 硼酚醛树脂基复合材料用胶黏剂制备及性能研究[D]. 济南: 山东建筑大学, 2023.

    LI Wenyang. Bonoline-based resin base composite materials are prepared and performance research for adhesives[D]. Jinan: Shandong University of Architecture, 2023(in Chinese).
    [23] YANG R, CHEN L, ZHANG W Q, et al. In situ reinforced and flame-retarded polycarbonate by a novel phosphorus-containing thermotropic liquid crystalline copolyester[J]. Polymer, 2011, 52(18): 4150-4157. doi: 10.1016/j.polymer.2011.06.047
    [24] 高纳川, 高雪雨, 闫莉, 等. 多功能阻燃增韧剂对聚碳酸酯阻燃和力学性能的影响[J]. 复合材料学报, 2024, 41(5): 2395-2403.

    GAO Nachuan, GAO Xueyu, YAN Li, et al. Effect of multifunctional flame retardant toughenerson the flame retardant and mechanical properties of polycarbonates[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2395-2403(in Chinese).
    [25] CHEN D, ZHANG Y, HE J, et al. Making polycarbonate flame retardant: Flame retardant selection and calorimetric analyses[J]. Polymer Testing, 2023, 117: 107876. doi: 10.1016/j.polymertesting.2022.107876
    [26] 何吉来, 金小涵, 宁淑慧, 等. 氮硫硅协效阻燃剂的合成及在聚碳酸酯中的应用[J]. 高分子材料科学与工程, 2021, 37(7): 87-94.

    HE Jilai, JIN Xiaohan, NING Shuhui, et al. The synthesis of nitrogen-sulfur-silicon synergistic flame retardant and the application in polycarbonate[J]. Polymer Materials Science & Engineering, 2021, 37(7): 87-94(in Chinese).
    [27] JANG B N, WILKIE C A. A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol A polycarbonate[J]. Polymer Degradationand Stability, 2004, 86(3): 419-430. doi: 10.1016/j.polymdegradstab.2004.05.009
    [28] YANG S, LYU G, LIU Y, et al. Synergism of polysiloxane and zinc borate flame retardant polycarbonate[J]. Polymer Degradation and Stability, 2013, 98(12): 2795-2800. doi: 10.1016/j.polymdegradstab.2013.10.017
    [29] CHEN W, LIU P, CHENG Y, et al. Flame retardancy mechanisms of melamine cyanurate in combination with aluminum diethylphosphinate in epoxy resin[J]. Journal of Applied Polymer Science, 2019, 136(12): 47223. doi: 10.1002/app.47223
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  92
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2024-02-13
  • 录用日期:  2024-02-19
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回