留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度模拟的橡胶/钢帘线复合材料辐射散热行为机制研究

周家智 肖慧萍 谢小林 周志嵩 安林 李文博

周家智, 肖慧萍, 谢小林, 等. 基于多尺度模拟的橡胶/钢帘线复合材料辐射散热行为机制研究[J]. 复合材料学报, 2024, 41(10): 5584-5598. doi: 10.13801/j.cnki.fhclxb.20240223.001
引用本文: 周家智, 肖慧萍, 谢小林, 等. 基于多尺度模拟的橡胶/钢帘线复合材料辐射散热行为机制研究[J]. 复合材料学报, 2024, 41(10): 5584-5598. doi: 10.13801/j.cnki.fhclxb.20240223.001
ZHOU Jiazhi, XIAO Huiping, XIE Xiaolin, et al. Study on the mechanism of radiation heat dissipation behavior of rubber/steel cord composites based on multi-scale simulation[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5584-5598. doi: 10.13801/j.cnki.fhclxb.20240223.001
Citation: ZHOU Jiazhi, XIAO Huiping, XIE Xiaolin, et al. Study on the mechanism of radiation heat dissipation behavior of rubber/steel cord composites based on multi-scale simulation[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5584-5598. doi: 10.13801/j.cnki.fhclxb.20240223.001

基于多尺度模拟的橡胶/钢帘线复合材料辐射散热行为机制研究

doi: 10.13801/j.cnki.fhclxb.20240223.001
基金项目: 国家自然科学基金(52063021);江西省重点研发计划项目(20224BBE51049)
详细信息
    通讯作者:

    李文博,博士,讲师,研究方向为橡胶制品设计与仿真分析 E-mail: 645504616@qq.com

  • 中图分类号: TB333

Study on the mechanism of radiation heat dissipation behavior of rubber/steel cord composites based on multi-scale simulation

Funds: National Natural Science Foundation of China (52063021); Jiangxi Province Key Research and Development Program (20224BBE51049)
  • 摘要: 橡胶/钢帘线复合材料的传热与温度场分析对橡胶制品的硫化成型、热氧老化、热疲劳寿命研究具有重要意义。本文基于多尺度传热模型对不同钢帘线占比、排列角度和温升工况下的橡胶/钢帘线复合材料传热和散热机制进行研究,并通过实验验证。结果表明,橡胶/钢帘线复合材料呈现明显的各向异性传热行为,传热界面的热流聚集效应会加速热量的层间扩散,使温度分布更均匀。模拟计算得到的辐射散热发射率高达0.95,且随着钢帘线占比增大和温度升高,辐射散热行为越明显。对比串并联传热模型,多尺度传热模型预测误差从10.1%减小到2.5%。

     

  • 图  1  橡胶/钢帘线复合材料试样制备流程

    Figure  1.  Specimen preparation process of rubber/steel cord composites

    Φ—Diameter

    图  2  橡胶/钢帘线复合材传热分析的技术路线

    Figure  2.  Technical route for thermal analysis of rubber/steel cord composites

    CFD—Computational fluid dynamics

    图  3  橡胶/钢帘线复合材料传热实验平台示意图

    Figure  3.  Schematic diagram of the experimental platform for heat transfer of rubber/steel cord composites

    图  4  橡胶/钢帘线复合材料热扩散测试结果:(a)测温点;(b)温升历程曲线;(c)顶面和侧面红外热成像云图

    Figure  4.  Thermal diffusion test results of rubber/steel cord composites: (a) Temperature measurement points; (b) Temperature rise history curves;(c) Infrared thermography cloud maps of top and side surfaces

    图  5  (a)橡胶/钢帘线复合材料红外热成像测试结果校正;(b)校正结果与热电偶测试结果对比

    Figure  5.  (a) Calibration of IR thermography test results of rubber/steel cord composites; (b) Comparison of calibration results with thermocouple test results

    图  6  热台温度对橡胶/钢帘线复合材料温升的影响:(a)顶面中心点温度历程图;(b)顶面边缘点温度历程图;(c)侧面中心点温度历程图;(d)顶部中心点与顶面边缘点温度差值图

    Figure  6.  Effect of hot bench temperature on temperature rise of rubber/steel cord composites: (a) Plot of temperature history at the top center point; (b) Plot of temperature history at the top edge point; (c) Plot of temperature history at the side center point; (d) Plot of temperature difference between the top center point and the top edge point

    图  7  140℃条件下不同钢帘线占比橡胶/钢帘线复合材料温升影响研究:(a)顶面中心点温度历程图;(b)顶面边缘点温度历程图;(c)侧面中心点温度历程图;(d)顶面中心点与顶面边缘点温度差值图

    Figure  7.  Study on the effect of temperature rise of rubber/steel cord composites with different steel cord ratios at 140℃: (a) Temperature history of top center point; (b) Temperature history of top edge point; (c) Temperature history of side center point; (d) Temperature difference between top center point and top edge point

    图  8  不同接触热阻下的橡胶/钢帘线复合材料热导率

    Figure  8.  Thermal conductivity of rubber/steel cord composites with different contact thermal resistance

    图  9  橡胶/钢帘线复合材料对流换热CFD模型示意图

    Figure  9.  Schematic diagram of CFD model for convective heat transfer of rubber/steel cord composites

    图  10  (a)橡胶/钢帘线复合材料流体动力学(CFD)传热模型与等效热边界传热模型温度历程对比;(b)橡胶/钢帘线复合材料实验与仿真结果温度历程对比

    Figure  10.  (a) Comparison of CFD heat transfer model and equivalent thermal boundary heat transfer model temperature history for rubber/steel cord composites; (b) Comparison of temperature history between experimental and simulation results for rubber/steel cord composites

    图  11  橡胶/钢帘线复合材料不同发射率温升历程仿真结果与实验对比:(a)顶面中心点;(b)顶面边缘点;(c)侧面中心点;(d)拟合曲线

    Figure  11.  Simulation results and experimental comparison of temperature rise history of rubber/steel cord composites with different emissivity: (a) Top center point; (b) Top edge point; (c) Side center point; (d) Fitted curve

    图  12  0.95发射率时不同钢帘线占比的复合材料温升历程仿真与实验对比:(a)顶面中心点;(b)顶面边缘点;(c)侧面中心

    Figure  12.  Simulation and experimental comparison of temperature rise histories of composites with different steel cord percentages at 0.95 emissivity: (a) Top center point; (b) Top edge point; (c) Side center

    图  13  橡胶/钢帘线复合材料顶面中心点稳态温度值:(a)不同加热温度;(b)不同钢帘线排布

    Figure  13.  Steady state temperature values at the center point of the top surface of rubber/steel cord composites: (a) Different heating temperatures; (b) Different steel cord arrangements

    图  14  橡胶/钢帘线复合材料多尺度模型与串并联模型对比

    Figure  14.  Comparison of multiscale model and series-parallel model of rubber/steel cord composites

    NT11—Temperature (℃)

    图  15  橡胶/钢帘线复合材料纵向切面温度云图和热流密度云图

    Figure  15.  Longitudinal section temperature contour plot and heat flow density contour plot of rubber/steel cord composites

    HFL—Heat flow density (mW/mm2)

    图  16  橡胶/钢帘线复合材料横向切面温度云图和热流密度云图

    Figure  16.  Temperature contour plot and heat flow density contour plot of rubber/steel cord composites in transverse sections

    图  17  不同因素对橡胶/钢帘线复合材料辐射散热的影响:(a)发射率的影响;(b)传热时间的影响;(c)传热温度的影响;(d)钢帘线占比的影响

    Figure  17.  Effect of different factors on radiative heat dissipation of rubber/steel cord composites: (a) Effect of emissivity; (b) Effect of heat transfer time; (c) Effect of heat transfer temperature; (d) Effect of steel cord percentage

    表  1  橡胶配方

    Table  1.   Rubber formulations

    Raw material Parts per hundreds of rubber
    EPDM4045 100
    NR 30
    ZnO 10
    C18H36O2 1
    N220 40
    Paraffin oil 14
    Coumarone-indene resin 5
    DCP 4
    C6H12N2S4 0.5
    S 0.5
    Tackifier 5
    Antioxidant RD 1
    Notes: EPDM4045—Ethylene propylene diene monomer rubber; NR—Nature rubber; N220—Carbon black; DCP—Dicumyl peroxide crosslinking; RD—Poly 1, 2-dihydro-2, 2, 4-trimethyl-quinoline.
    下载: 导出CSV

    表  2  橡胶/钢帘线复合材料结构参数

    Table  2.   Structural parameters of rubber/steel cord composites

    Steel cord spacing/mm Percentage of
    steel cord/vol%
    Laminate
    angle/(°)
    Pure rubber
    5 1.9
    0/30/45/90
    4 2.4
    3.6 2.9
    110.9
    下载: 导出CSV

    表  3  橡胶/钢帘线复合材料传热测试实验方案

    Table  3.   Experimental program for heat transfer testing of rubber/steel cord composites

    Steel cord
    spacing/mm
    Percentage of steel
    cord/vol%
    Laminate
    angle/(°)
    Heating pad
    temperature/℃
    Environmental
    temperature/℃
    3.6 2.9 90 100 30
    3.6 2.9 90 120 30
    3.6 2.9 90 140 30
    3.6 2.9 90 160 30
    3.6 2.9 90 180 30
    Pure rubber 0 140 30
    4 2.4 90 140 30
    5 1.9 90 140 30
    1 10.9 90 140 30
    3.6 2.9 0 140 30
    3.6 2.9 30 140 30
    3.6 2.9 45 140 30
    下载: 导出CSV

    表  4  多尺度模型材料热物性参数

    Table  4.   Thermo-physical property parameters of materials for multi-scale modeling

    Material
    type
    Thermal conductivity/
    (mW·(mm·℃)−1)
    Density/
    (kg·m−3)
    Specific heat/
    (J·(kg·℃)−1)
    Rubber
    0.21 1200 1503
    Steel cord 70 7810 540
    下载: 导出CSV
  • [1] 贺婷, 杨长浩, 许宗超, 等. 不同工况下纤维/天然橡胶复合材料界面疲劳失效机制[J]. 弹性体, 2022, 32(5): 13-19.

    HE Ting, YANG Changhao, XU Zongchao, et al. Fatigue failure mechanism of fiber/natural rubber composite interface under different working conditions[J]. China Elastomerics, 2022, 32(5): 13-19(in Chinese).
    [2] 张嘉琦. 高温往复工况下橡胶密封件的密封性能研究[D]. 洛阳: 河南科技大学, 2022.

    ZHANG Jiaqi. Research on the sealing performance of rubber seals under high temperature reciprocating conditions[D]. Luoyang: Henan University of Science and Technology, 2022(in Chinese).
    [3] LI Z X, KONG Y R, CHEN X F, et al. High-temperature thermo-oxidative aging of vulcanized natural rubber nanocomposites: Evolution of microstructure and mechanical properties[J]. Chinese Journal of Polymer Science, 2023, 41(8): 1287-1297. doi: 10.1007/s10118-023-2948-9
    [4] ADAM Q, BEHNKE R, KALISKE M. A thermo-mechanical finite element material model for the rubber forming and vulcanization process: From unvulcanized to vulcanized rubber[J]. International Journal of Solids and Structures, 2020, 185-186: 365-379. doi: 10.1016/j.ijsolstr.2019.08.037
    [5] SALVI W D, DE SANTO C E, MATSUMOTO A, et al. Characterization of thermal-oxidative aging mechanism of commercial tires[J]. Engineering Failure Analysis, 2023, 154: 107631. doi: 10.1016/j.engfailanal.2023.107631
    [6] NYAABA W, FRIMPONG S, ANANI A. Fatigue damage investigation of ultra-large tire components[J]. International Journal of Fatigue, 2019, 119: 247-260. doi: 10.1016/j.ijfatigue.2018.07.009
    [7] 姜碧羽, 齐俊伟, 刘小林. 预浸料先进拉挤成型的固化传热过程数值模拟[J]. 复合材料学报, 2020, 37(6): 1496-1504.

    JIANG Biyu, QI Junwei, LIU Xiaolin. Numerical simulation of curing heat transfer process in advanced pultrusion molding of prepreg[J]. Acta Materiae Compositae Sinicia, 2020, 37(6): 1496-1504(in Chinese).
    [8] NAZARI N, ALLAHBAKHSH A, BAHRAMIAN A R. Analytical effective thermal conductivity model for colloidal porous composites and nanocomposites based on novolac/graphene oxide aerogels[J]. International Journal of Energy Research, 2022, 46(12): 16608-16628. doi: 10.1002/er.8323
    [9] HUI X, XU Y, ZHANG W, et al. Multiscale collaborative optimization for the thermochemical and thermomechanical cure process during composite manufacture[J]. Composites Science and Technology, 2022, 224: 109455. doi: 10.1016/j.compscitech.2022.109455
    [10] SU B, WU J, CUI Z, et al. Modeling of truck tire curing process by an experimental and numerical method[J]. Iranian Polymer Journal, 2015, 24(7): 583-593. doi: 10.1007/s13726-015-0349-9
    [11] LI W, ZHANG X, SHANG Y, et al. Investigation of dynamic heat generation and transfer behavior and energy dissipation for nonlinear synchronous belt transmission[J]. Applied Thermal Engineering, 2018, 144: 457-468. doi: 10.1016/j.applthermaleng.2018.08.080
    [12] ZHOU K, ENOS R, ZHANG D, et al. Uncertainty analysis of curing-induced dimensional variability of composite structures utilizing physics-guided Gaussian process meta-modeling[J]. Composite Structures, 2022, 280: 114816. doi: 10.1016/j.compstruct.2021.114816
    [13] ZHOU L, SUN X, CHEN M, et al. Multiscale modeling and theoretical prediction for the thermal conductivity of porous plain-woven carbonized silica/phenolic composites[J]. Composite Structures, 2019, 215: 278-288. doi: 10.1016/j.compstruct.2019.02.053
    [14] 杨方沁. 金属/聚合物复合结构对材料导热性能的影响研究[D]. 杭州: 浙江工业大学, 2013.

    YANG Fangqin. Effects of metal/polymer composite structure on thermal conductivity of materials[D]. Hangzhou: Zhejiang University of Technology, 2013(in Chinese).
    [15] FANG Y, LI L Y, MAWULÉ DASSEKPO J B, et al. Heat transfer modelling of carbon nanotube reinforced composites[J]. Composites Part B: Engineering, 2021, 225: 109280. doi: 10.1016/j.compositesb.2021.109280
    [16] ZHOU L, YUAN T B, YANG X S, et al. Micro-scale prediction of effective thermal conductivity of CNT/Al composites by finite element method[J]. International Journal of Thermal Sciences, 2022, 171: 107206. doi: 10.1016/j.ijthermalsci.2021.107206
    [17] XU S, LIU J, ZENG Q. Towards better characterizing thermal conductivity of cement-based materials: The effects of interfacial thermal resistance and inclusion size[J]. Materials & Design, 2018, 157: 105-118.
    [18] 贺元骅, 赵逸明, 张俐恒, 等. 辐射对流散热下大尺寸三元锂电池热模型[J]. 中国安全科学学报, 2023, 33(6): 49-55.

    HE Yuanhua, ZHAO Yiming, ZHANG Liheng, et al. Thermal modeling of large-size lithium ternary batteries under radiative convection heat dissipation[J]. China Safety Science Journal, 2023, 33(6): 49-55(in Chinese).
    [19] YANG Z, WANG Z, YANG Z, et al. Multiscale analysis and computation for coupled conduction, convection and radiation heat transfer problem in porous materials[J]. Applied Mathematics and Computation, 2018, 326: 56-74. doi: 10.1016/j.amc.2017.12.039
    [20] YANG Z, CUI J, SUN Y, et al. Multiscale computation for transient heat conduction problem with radiation boundary condition in porous materials[J]. Finite Elements in Analysis and Design, 2015, 102-103: 7-18. doi: 10.1016/j.finel.2015.04.005
    [21] YANG Z, CUI J, MA Q. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials[J]. Discrete and Continuous Dynamical Systems: B, 2014, 19(3): 827-848. doi: 10.3934/dcdsb.2014.19.827
    [22] 童自翔, 李明佳, 李冬. 导热-辐射耦合传热的多尺度分析和数值模型[J]. 航空学报, 2021, 42(9): 205-214.

    TONG Zixiang, LI Mingjia, LI Dong. Multi-scale analysis and numerical modeling of coupled thermal-radiative heat transfer[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 205-214(in Chinese).
    [23] 陈则韶, 钱军, 叶一火. 复合材料等效导热系数的理论推算[J]. 中国科学技术大学学报, 1992(4): 416-424.

    CHEN Zeshao, QIAN Jun, YE Yihuo. Theoretical derivation of equivalent thermal conductivity of composite materials[J]. Journal of China University of Science and Technology, 1992(4): 416-424(in Chinese).
    [24] 石鹏. 活络轮胎模具传热过程仿真建模与分析[D]. 武汉: 华中科技大学, 2021.

    SHI Peng. Simulation modeling and analysis of heat transfer process in live tire mold[D]. Wuhan: Huazhong University of Science and Technology, 2021(in Chinese).
    [25] 张建. 轮胎硫化特性及影响规律研究[D]. 镇江: 江苏大学, 2014.

    ZHANG Jian. Research on tire curing characteristics and influence law[D]. Zhenjiang: Jiangsu University, 2014(in Chinese).
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  161
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2024-01-15
  • 录用日期:  2024-01-28
  • 网络出版日期:  2024-02-26
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回