非晶/Fe-Si软磁复合材料的电磁特性及微观组织

郭海, 聂敏, 杨依婷, 赵冯香, 何家毅

郭海, 聂敏, 杨依婷, 等. 非晶/Fe-Si软磁复合材料的电磁特性及微观组织[J]. 复合材料学报, 2024, 41(12): 6793-6801. DOI: 10.13801/j.cnki.fhclxb.20240205.001
引用本文: 郭海, 聂敏, 杨依婷, 等. 非晶/Fe-Si软磁复合材料的电磁特性及微观组织[J]. 复合材料学报, 2024, 41(12): 6793-6801. DOI: 10.13801/j.cnki.fhclxb.20240205.001
GUO Hai, NIE Min, YANG Yiting, et al. Electromagnetic performance and microstructure of amorphous/Fe-Si soft magnetic composites[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6793-6801. DOI: 10.13801/j.cnki.fhclxb.20240205.001
Citation: GUO Hai, NIE Min, YANG Yiting, et al. Electromagnetic performance and microstructure of amorphous/Fe-Si soft magnetic composites[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6793-6801. DOI: 10.13801/j.cnki.fhclxb.20240205.001

非晶/Fe-Si软磁复合材料的电磁特性及微观组织

详细信息
    通讯作者:

    聂敏,硕士,高级工程师,研究方向为磁性功能材料 E-mail: min_nie@sunlordinc.com

    何家毅,博士,研究方向为磁性功能材料、材料表面技术 E-mail: jiayi_he@sunlordinc.com

  • 中图分类号: TB333

Electromagnetic performance and microstructure of amorphous/Fe-Si soft magnetic composites

  • 摘要:

    本文采用成分与粒径级配两种手段优化了Fe-Si系软磁复合材料的电磁特性,并探究了软磁性能与微观组织的关系。先采用不同粉末粒径的Fe-Si粉末级配,之后利用Fe-Si-B-C非晶粉部分替代粒径相当的Fe-Si粗粉,可以获得良好的综合电磁性能。所制备的非晶/Fe-Si软磁复合材料在1 MHz内均具备良好的频率稳定性。当非晶粉∶Fe-Si粗粉∶Fe-Si细粉的质量比为25∶25∶50时,在100 kHz下的有效磁导率为47.6,100 Oe下的直流偏置能力为79.5%,100 kHz/100 mT下的功率损耗为1806 mW/cm3。相比于已报道的其他含非晶软磁复合材料,本文所报道的非晶Fe-Si-B-C/Fe-Si软磁复合材料有明显的成本和综合电磁性能上的优势。细小的Fe-Si粉末可以填充粗粉之间的空隙,有利于提高材料密度与磁导率,而非晶粉末的添加则可以明显降低功率损耗。本文制备的非晶/Fe-Si软磁复合材料具备良好的综合电磁特性,可以为工业生产提供潜在的解决方案。

     

    Abstract:

    This work optimizes the electromagnetic properties of Fe-Si based soft magnetic composites by both modifying the composition and particle size distribution. The relationship between soft magnetic properties and microstructure is investigated. Great comprehensive electromagnetic properties can be obtained by firstly composing the Fe-Si powders with different sizes, and then partly replacing the coarse Fe-Si powder by Fe-Si-B-C amorphous powder with similar particle size. The amorphous/Fe-Si soft magnetic composites have good frequency stability within 1 MHz. When the mass ratio among Fe-Si-B-C amorphous powder, Fe-Si coarse powder, Fe-Si fine powder is 25∶25∶50, the effective permeability at 100 kHz is 47.6, the direct current (DC) bias capacity at 100 Oe is 79.5%, and the power loss at 100 kHz/100 mT is 1806 mW/cm3. Compared with other reported amorphous-containing soft magnetic composites, the amorphous Fe-Si-B-C/Fe-Si soft magnetic composites in this work have significant advantages in cost and combined electromagnetic properties. The Fe-Si fine powder can fill the gap between the coarse powder, which is conducive to improving the density and permeability of the soft magnetic composite, while the addition of amorphous powder can significantly reduce the power loss. The amorphous/Fe-Si soft magnetic composites prepared in this work have good comprehensive electromagnetic properties and can provide potential solutions for industrial production.

     

  • 图  1   (a) Fe-Si-B-C非晶粉、Fe-Si粗粉和Fe-Si细粉的粒径分布;3种粉末的形貌与表面元素分布:Fe-Si-B-C非晶粉(b)、Fe-Si粗粉(c)、Fe-Si细粉(d)

    Figure  1.   (a) Particle distribution of Fe-Si-B-C amorphous powder, Fe-Si coarse powder and Fe-Si fine powder; Morphology and surface element distribution of the three powders: Fe-Si-B-C amorphous powder (b), Fe-Si coarse powder (c), and Fe-Si fine powder (d)

    D50—The corresponding particle diameter value when the cumulative distribution reaches 50%; ‌SE—Secondary electron

    图  2   本文所用3种软磁粉末的X射线衍射图谱

    Figure  2.   X-ray diffraction patterns of the three soft magnetic powders in this work

    图  3   本文所用3种软磁粉末的DSC曲线

    Figure  3.   DSC curves of the three soft magnetic powders in this work

    Tx—Onset crystallization temperature; Tp—Peak crystallization temperature

    图  4   本文所用3种软磁粉末的磁滞曲线

    Figure  4.   Hysteresis loops of the three soft magnetic powders in this work

    图  5   不同质量分数Fe-Si细粉添加Fe-Si级配磁粉芯的密度(a)、有效磁导率频谱(b)、直流偏置特性(c)与功率损耗(d)(((b)~(d))插图分别为100 kHz时的有效磁导率、100 Oe时的磁导率百分比和100 kHz时的损耗)

    Figure  5.   Density (a), dependence of effective permeability (b), DC bias performance (c) and core loss (d) for the Fe-Si magnetic powder cores mixed with different mass ratios of fine Fe-Si particles (The insets in Fig.((b)-(d)) show the effective permeability at 100 kHz, percent permeability at 100 Oe, and core loss at 100 kHz, respectively)

    图  6   不同质量分数Fe-Si-B-C非晶粉添加的非晶/Fe-Si磁粉芯的密度(a)、有效磁导率频谱(b)、直流偏置特性(c)与功率损耗(d) (((b)-(d))插图分别为100 kHz时的有效磁导率、100 Oe时的磁导率百分比和100 kHz时的损耗

    Figure  6.   Density (a), dependence of effective permeability (b), DC bias performance (c) and core loss (d) for the amorphous/Fe-Si magnetic powder cores mixed with different mass ratios of fine Fe-Si particles (The insets in Fig.((b)-(d)) show the effective permeability at 100 kHz, percent permeability at 100 Oe, and core loss at 100 kHz, respectively)

    图  7   Fe-Si-B-C非晶粉∶Fe-Si粗粉∶Fe-Si细粉的质量比为0∶100∶0、0∶50∶50、25∶25∶50和50∶0∶50磁粉芯样品的X射线衍射图谱

    Figure  7.   X-ray diffraction patterns of the soft magnetic composites with mass ratios among Fe-Si-B-C amorphous powder, Fe-Si coarse powder, Fe-Si fine powder of 0∶100∶0, 0∶50∶50, 25∶25∶50 and 50∶0∶50

    图  8   不同Fe-Si-B-C非晶粉∶Fe-Si粗粉∶Fe-Si细粉质量比磁粉芯的微观组织: 0∶100∶0 (a)、0∶50∶50 (b)、25∶25∶50 (c)与50∶0∶50 (d)

    Figure  8.   Microstructure of the magnetic powder cores with different mass ratio among Fe-Si-B-C amorphous powder, Fe-Si coarse powder, and Fe-Si fine powder: 0∶100∶0 (a), 0∶50∶50 (b), 25∶25∶50 (c) and 50∶0∶50 (d)

    表  1   含非晶软磁复合材料的成本与电磁特性对比

    Table  1   Comparison of cost and electromagnetic performance of some amorphous-containing soft magnetic composites

    MaterialMaterial
    cost/
    (¥·kg−1)
    Electromagnetic performanceRef.
    μe at 100 kHz%μe at 100 kHzPcv/(mW·cm−3) at 50 kHz, 100 mTPcm/(mW·g−1) at 50 kHz, 100 mTPcv/(mW·cm−3) at 100 kHz, 100 mTPcm/(mW·g−1) at 100 kHz, 100 mT
    Amorphous Fe-Si-B-C/Fe-Si (Amorphous∶coarse Fe-Si∶fine Fe-Si = 25∶25∶50)35-4047.679.5%8981381806277This work
    Amorphous Fe-Si-B-P-
    Nb/Fe-Si
    57-626078.0%159[15]
    Amorphous Fe-Si-B-P-Nb60-655675.0%1734[22]
    Amorphous Fe-Si-B-P-C45-504854.3% 770[14]
    Amorphous Fe-Si-B-P-
    Nb-Cr/Fe-Co
    72-7842.365.1%1315[23]
    Notes: Pcv—Power loss per unit volume; Pcm—Power loss per unit mass.
    下载: 导出CSV
  • [1]

    SHOKROLLAHI H, JANGHORBAN K. Soft magnetic composite materials (SMCs)[J]. Journal of Materials Processing Technology, 2007, 189(1-3): 1-12. DOI: 10.1016/j.jmatprotec.2007.02.034

    [2]

    PÉRIGO E A, WEIDENFELLER B, KOLLÁR P, et al. Past, present, and future of soft magnetic composites[J]. Applied Physics Reviews, 2018, 5(3): 031301. DOI: 10.1063/1.5027045

    [3]

    SILVEYRA J M, FERRARA E, HUBER D L, et al. Soft magnetic materials for a sustainable and electrified world[J]. Science, 2018, 362(6413): eaao0195. DOI: 10.1126/science.aao0195

    [4] 余红雅, 李开沥, 黎向东, 等. 共混树脂包覆铁基磁粉芯的制备与性能[J]. 复合材料学报, 2024, 41(1): 315-322.

    YU Hongya, LI Kaili, LI Xiangdong, et al. Preparation and properties of iron based soft magnetic composites coated with mixed resin[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 315-322(in Chinese).

    [5] 车声雷. 面向第三代半导体驱动电源的高频低功耗功率软磁材料研发现状[R]. 德清: 中国功率变换器磁元件联合学术年会, 2022.

    CHE Shenglei. Development progress of soft magnetic materials for the third generation semiconductor high frequency power supply[R]. Deqing: Power Converters & Magnetic Components Joint Annual Conference of China, 2022(in Chinese).

    [6]

    HE J Y, YUAN H, NIE M, et al. Soft magnetic materials for power inductors: State of art and future development[J]. Materials Today Electronics, 2023, 6: 100066. DOI: 10.1016/j.mtelec.2023.100066

    [7]

    FAN X A, WU Z Y, LI G Q, et al. High resistivity and low core loss of intergranular insulated Fe-6.5wt%Si/SiO2 composite compacts[J]. Materials & Design, 2016, 89: 1251-1258.

    [8]

    LUO Z G, FAN X A, HU W T, et al. Enhanced magnetic properties and reduced core loss of intergranular insulating Fe-Si soft magnetic composites with three-shell SiO2-Fe2SiO4-SiO2 insulating layer[J]. Journal of Solid State Chemistry, 2019, 270: 311-316. DOI: 10.1016/j.jssc.2018.11.034

    [9]

    LU S H, WANG M G, ZHAO Z K. Recent advances and future developments in Fe-based amorphous soft magnetic composites[J]. Journal of Non-Crystalline Solids, 2023, 616: 122440. DOI: 10.1016/j.jnoncrysol.2023.122440

    [10]

    OTSUKA I, WADA K, MAETA Y, et al. Magnetic properties of Fe-based amorphous powders with high-saturation induction produced by spinning water atomization process (SWAP)[J]. IEEE Transactions on Magnetics, 2008, 44(11): 3891-3894. DOI: 10.1109/TMAG.2008.2002249

    [11]

    ZHOU B, DONG Y, LIU L, et al. Enhanced soft magnetic properties of the Fe-based amorphous powder cores with novel TiO2 insulation coating layer[J]. Journal of Magnetism and Magnetic Materials, 2019, 474: 1-8. DOI: 10.1016/j.jmmm.2018.11.014

    [12] 姚可夫, 施凌翔, 陈双琴, 等. 铁基软磁非晶/纳米晶合金研究进展及应用前景[J]. 物理学报, 2018, 67(1): 8-15.

    YAO Kefu, SHI Lingxiang, CHEN Shuangqin, et al. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys[J]. Acta Physica Sinica, 2018, 67(1): 8-15(in Chinese).

    [13]

    FIORILLO F, BERTOTTI G, APPINO C, et al. Wiley encyclopedia of electrical and electronics engineering: Soft magnetic materials[M]. New York: John Wiley, 1999: 1-42.

    [14]

    ZHANG Y Q, DONG Y Q, ZHOU B, et al. Polyparaxylylene enhanced Fe-based amorphous powder cores with improved soft magnetic properties via chemical vapor deposition[J]. Materials & Design, 2020, 191: 108650.

    [15]

    CHANG C T, GUO J J, LI Q, et al. Improvement of soft magnetic properties of FeSiBPNb amorphous powder cores by addition of FeSi powder[J]. Journal of Alloys and Compounds, 2019, 788: 1177-1181. DOI: 10.1016/j.jallcom.2019.02.301

    [16]

    CHUJO N, KINO F, KUME K, et al. Effect of packing fraction on magnetic properties of the Fe-Si-Al powder cores by coarse powder and fine powder mixing[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63(7): 624-629. DOI: 10.2497/jjspm.63.624

    [17]

    LI S G, PENG K, ZOU L. The improved magnetic properties of FeSi powders cores composed with different size particles[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(2): 607-616. DOI: 10.1007/s10854-021-07330-2

    [18]

    CHEN D N, LI K L, YU H Y, et al. Effects of secondary particle size distribution on the magnetic properties of carbonyl iron powder cores[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 166062. DOI: 10.1016/j.jmmm.2019.166062

    [19]

    LUO P, YU H Y, WANG C, et al. Properties optimization of soft magnetic composites based on the amorphous powders with double layer inorganic coating by phosphating and sodium silicate treatment[J]. Metals, 2023, 13(3): 560. DOI: 10.3390/met13030560

    [20] 聂敏, 谈敏, 黄静, 等. FeSiCr 合金粉与羰基铁粉及其在一体成型电感中的应用对比分析[J]. 磁性材料及器件, 2020, 51(2): 47-50.

    NIE Min, TAN Min, HUANG Jing, et al. Comparative analysis on FeSiCr alloy powder and carbonyl iron powder and their application in molding inductors[J]. Journal of Magnetic Materials and Devices, 2020, 51(2): 47-50(in Chinese).

    [21]

    WANG Y F, XU J, LIU Y J, et al. Microstructure evolution, magnetic properties and frequency characteristics of Si-rich FeSiBCuNb soft magnetic alloy induced by annealing treatment[J]. Materials Characterization, 2022, 187: 111830. DOI: 10.1016/j.matchar.2022.111830

    [22]

    GUO J J, DONG Y Q, MAN Q K, et al. Fabrication of FeSiBPNb amorphous powder cores with high DC-bias and excellent soft magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2016, 401: 432-435. DOI: 10.1016/j.jmmm.2015.10.069

    [23]

    ZHANG Y Q, CHI Q, CHANG L, et al. Novel Fe-based amorphous compound powder cores with enhanced DC bias performance by adding FeCo alloy powder[J]. Journal of Magnetism and Magnetic Materials, 2020, 507: 166840. DOI: 10.1016/j.jmmm.2020.166840

  • 目的 

    在新能源汽车和光伏发电等新能源领域蓬勃发展的趋势下,制备与生产高磁导率、低损耗、高频率稳定性和高直流偏置特性的软磁复合材料已成为目前有待解决的关键问题。Fe-Si合金粉末是当前功率器件常用的原材料,其饱和磁化强度高,直流偏置能力良好,极具成本优势。但是,其功率损耗较高。Fe基非晶合金粉末具有低矫顽力和高电阻等良好的综合电磁特性,但其压制性较差,难以获得具有优异的电磁性能的软磁复合材料。结合这两种合金粉末的优势,有望获得高性能、高性价比的软磁复合材料。

    方法 

    利用成分与粒径级配两种手段优化了Fe-Si系软磁复合材料的电磁特性,并探究了软磁性能与微观组织的关系。先采用不同粉末粒径的Fe-Si粉末级配,之后利用Fe-Si-B-C非晶粉部分替代粒径相当的Fe-Si粗粉。级配后的粉末经过磷化绝缘包覆、有机硅树脂造粒之后进行冷压压制和退火热处理。测试磁环的电感、直流偏置能力、功率损耗等电磁特性。利用X射线衍射仪、扫描电镜等表征手段厘清电磁特性与微观组织之间的关系。

    结果 

    两种Fe-Si粉末的成分相同与结晶状态均相当,其Ms值基本一致,Fe-Si粗粉与Fe-Si细粉的饱和磁化强度值分别为204、205 emu/g。因为Fe-Si-B-C非晶粉末中添加了大量的B和C此类促进非晶形成的元素,其Fe含量较低,所以其饱和磁化强度值亦较低,为176 emu/g。Fe-Si-B-C非晶粉的矫顽力和剩磁在三种粉末中最低,这意味着Fe-Si-B-C非晶粉在三种粉末中拥有最低的磁滞损耗。Fe-Si粗粉拥有比Fe-Si细粉更低的矫顽力与剩磁,这是因为Fe-Si粗粉的比表面积小,面缺陷对磁畴的钉扎效应小。所以Fe-Si粗粉的添加有利于提高磁粉芯的磁导率,降低磁粉芯的磁滞损耗。所制备的非晶/Fe-Si软磁复合材料在1 MHz内均具备良好的频率稳定性。Fe-Si粗粉: Fe-Si细粉为50:50(wt.%)的样品同时拥有高的磁导率的较低的功率损耗,综合电磁特性良好。基于Fe-Si粗粉: Fe-Si细粉为50:50(wt.%)的样品良好的电磁特性,选取这个样品进行Fe-Si-B-C非晶粉末的添加,部分代替Fe-Si粗粉,进行进一步的性能优化。当非晶粉:Fe-Si粗粉:Fe-Si细粉的质量比为25:25:50时,在100 kHz下的有效磁导率为47.6,100 Oe下的直流偏置能力为79.5%,100 kHz/100 mT下的功率损耗为1806 mW/cm。全部采用Fe-Si粗粉制备的磁粉芯样品颗粒之间存在较大的间隙,这是导致磁粉芯密度偏低的主要原因。当Fe-Si细粉加入之后,其可以填充在粗粉之间的空隙中,提高磁粉芯的致密度与有效磁导率。低矫顽力和高电阻率使得非晶粉末的添加可以明显降低功率损耗。

    结论 

    相比于已报道的其他含非晶软磁复合材料,非晶Fe-Si-B-C/Fe-Si软磁复合材料有明显的成本和综合电磁性能上的优势。制备的非晶/Fe-Si软磁复合材料可以为工业生产提供潜在的解决方案。

图(8)  /  表(1)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  214
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-01
  • 修回日期:  2024-01-22
  • 录用日期:  2024-01-24
  • 网络出版日期:  2024-02-05
  • 发布日期:  2024-02-05
  • 刊出日期:  2024-12-14

目录

    /

    返回文章
    返回