Design and processing of wear-resistant and ice-resistant PTFE surface
-
摘要: 冰射流清洗设备料仓表面的覆冰常造成设备停机维修,但如何降低料仓表面的覆冰粘附力是目前研究的难点。本文采用CO2激光刻蚀聚四氟乙烯(PTFE)获得超疏水表面,并设计了一种菱形支撑肋阵列结构提高超疏水PTFE表面的耐磨性。CO2激光刻蚀能在PTFE表面形成多层次交错堆叠纤维结构,且激光刻蚀后的表面化学成分无明显变化。在50 μm激光扫描线间距、300 mm/s扫描速度和9 W激光功率下,可获得164°接触角、4°滚动角的超疏水PTFE表面。设计的30°顶角角度、3 mm菱形边长和0.05 mm肋边宽度的菱形支撑肋阵列结构可有效提高超疏水PTFE表面的耐磨性。即使被砂纸摩擦6 m后,具有菱形支撑肋阵列结构的超疏水PTFE表面仍能保持良好的超疏水性,且覆冰粘附力仅为普通PTFE表面的50%。本耐磨防覆冰PTFE表面有望应用于冰射流清洗设备。Abstract: The icing on the surface of the silo of the ice jet cleaning equipment often causes the equipment to shutdown for maintenance, but how to reduce the icing adhesion on the silo surface is a difficulty of current research. In this work, CO2 laser was used to etch polytetrafluoroethylene (PTFE) to obtain a superhydrophobic surface, and a rhombus support rib array structure was designed to improve the wear resistance of the superhydrophobic PTFE surface. CO2 laser etching could form a multi-layer staggered stacked fiber structure on the PTFE surface, and there was no obvious change in the chemical composition of the surface after laser etching. The superhydrophobic PTFE surface with contact angle of 164° and rolling angle of 4° can be obtained at laser scanning line spacing of 50 μm, scanning speed of 300 mm/s, and laser power of 9 W. The designed rhombus support rib array structure with crest angle of 30°, length of side of 3 mm and rib width of 0.05 mm can effectively improve the wear resistance of superhydrophobic PTFE surface. Even after being rubbed by sandpaper for 6 m, the superhydrophobic PTFE surface with rhombus support rib array structure can still maintain excellent superhydrophobicity, and the icing adhesion of it is only 50% of that of ordinary PTFE surface. The wear-resistant and ice-resistant PTFE surface is expected to be used in ice jet cleaning equipment.
-
Key words:
- polytetrafluoroethylene /
- CO2 laser /
- superhydrophobic /
- wear-resistant /
- ice-resistant
-
图 1 CO2激光刻蚀聚四氟乙烯(PTFE)获得超疏水表面:(a) CO2激光刻蚀PTFE表面示意图;(b) CO2激光刻蚀区域和未刻蚀区域的宏观形貌;(c) CO2激光未刻蚀区域的微观形貌;(d) CO2激光刻蚀区域的微观形貌(激光加工参数:9 W激光功率、300 mm/s扫描速度、50 μm扫描线间距)
Figure 1. CO2 laser processing polytetrafluoroethylene (PTFE) to obtain superhydrophobic surface: (a) Schematic diagram of CO2 laser processing PTFE surface; (b) Macroscopic morphology of CO2 laser processed area and unprocessed area; (c) Microscopic morphology of CO2 laser processed area; (d) Microscopic morphology of CO2 laser processed area (Laser processing parameters: Laser power of 9 W, scanning speed of 300 mm/s, scanning line spacing of 50 μm)
CA—Contact angle
图 2 扫描线间距对PTFE表面润湿性的影响:((a), (b))不同激光功率P下,PTFE的接触角(CA)和滚动角(RA)随扫描线间距的变化(扫描速度为300 mm/s);((c), (d))不同扫描速度v下,PTFE的CA和RA随扫描线间距的变化(激光功率为9 W)
Figure 2. Influence of scanning line spacing on the wettability of the PTFE surface: ((a), (b)) Variation of CA and rolling angle (RA) of the PTFE surface with the scanning line spacing at different laser powers P (Scanning speed of 300 mm/s); ((c), (d)) Variation of CA and RA of the PTFE surface with the scanning line spacing at different scanning speeds v (Laser power of 9 W)
图 8 超疏水PTFE砂纸摩擦试验:(a) PTFE在砂纸(粒度为12 μm)上摩擦的照片;(b)接触角和滚动角随摩擦距离的变化;(c)砂纸摩擦6 m后的PTFE的SEM图像
Figure 8. Sandpaper rubbing test of the superhydrophobic PTFE: (a) Photo of the PTFE rubbed by the sandpaper (12 μm grit); (b) Variation of the CA and RA with the rubbing distance; (c) SEM image of the PTFE rubbed by the sandpaper for 6 m
表 1 不同激光加工参数
Table 1. Different laser processing parameters
No. Laser power/W Scanning speed/(mm·s−1) Scanning line spacing/μm 1 5.4, 6.0, 6.6, 7.2, 7.8, 8.4, 9.0, 9.6 200, 300, 400 50 2 6.0, 7.8, 9.0 300 40, 50, 60, 70, 80, 90, 100, 110 3 9.0 200, 300, 400 40, 50, 60, 70, 80, 90, 100, 110 表 2 菱形支撑肋阵列结构的参数
Table 2. Structure parameters of the rhombus support rib array structure
Length of side/mm Crest angle/(°) Rib width/mm 1, 2, 3 30, 60, 90 0.05, 0.1 表 3 不同流量水流冲击3 min后CA变化
Table 3. Variation of the CA of the coating after 3 min scouring with different water flow rates
Flow rate/(L·min−1) Original CA CA after 3 min scouring 0.18 159° 157° 0.36 161° 160° 0.54 158° 155° -
[1] MCGEOUGH J A. Cutting of food products by ice-particles in a water-jet[J]. Procedia CIRP, 2016, 42: 863-865. doi: 10.1016/j.procir.2016.03.009 [2] DEO A, BAGAL D K, PATTANAIK A K, et al. Recent advancements in ice jet machining process as an alternative of AWJM[J]. Materials Today: Proceedings, 2022, 50: 981-985. doi: 10.1016/j.matpr.2021.07.157 [3] SHISHKIN D V, GESKIN E S, GOLDENBERG B. Application of ice particles for precision cleaning of sensitive surfaces[J]. Journal of Electronic Packaging, 2002, 124(4): 355-361. doi: 10.1115/1.1511735 [4] COURTS E J. Means and methods for cleaning and polishing automobiles: US Patent, 2699403[P]. 1955-01-11. [5] JERMAN M, ZELEŇÁK M, LEBAR A, et al. Observation of cryogenically cooled ice particles inside the high-speed water jet[J]. Journal of Materials Processing Technology, 2021, 289: 116947. doi: 10.1016/j.jmatprotec.2020.116947 [6] KOHLI R. Developments in surface contamination and cleaning: Applications of cleaning techniques[M]. Amsterdam: Elsevier, 2019: 729-764. [7] CHU D, SINGH S C, YONG J, et al. Superamphiphobic surfaces with controllable adhesion fabricated by femtosecond laser bessel beam on PTFE[J]. Advanced Materials Interfaces, 2019, 6(14): 1900550. [8] FANG Y, YONG J, CHEN F, et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications[J]. Applied Physics A, 2016, 122(9): 827. doi: 10.1007/s00339-016-0325-z [9] 闫德峰, 刘子艾, 潘维浩, 等. 多功能超疏水表面的制造和应用研究现状[J]. 表面技术, 2021, 50(5): 1-19.YAN Defeng, LIU Zi'ai, PAN Weihao, et al. Research status on the fabrication and application of multi-functional superhydrophobic surfaces[J]. Surface Technology, 2021, 50(5): 1-19(in Chinese). [10] 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38.LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38(in Chinese). [11] 占彦龙, 李文, 李宏, 等. 激光微加工技术制备浸润性可控聚四氟乙烯超疏水表面[J]. 高分子材料科学与工程, 2018, 34(4): 147-151,158.ZHAN Yanlong, LI Wen, LI Hong, et al. Fabrication of polytetrafluoroethylene superhydrophobic surface with controllable wettability by laser micromaching technology[J]. Polymer Materials Science and Engineering, 2018, 34(4): 147-151,158(in Chinese). [12] LIANG F, LEHR J, DANIELCZAK L, et al. Robust non-wetting PTFE surfaces by femtosecond laser machining[J]. International Journal of Molecular Sciences, 2014, 15: 13681-13696. doi: 10.3390/ijms150813681 [13] ŽEMAITIS A, MIKŠYS J, GAIDYS M, et al. High-efficiency laser fabrication of drag reducing riblet surfaces on pre-heated Teflon[J]. Materials Research Express, 2019, 6: 065309. doi: 10.1088/2053-1591/ab0b12 [14] WAUGH D G, LAWRENCE J, SHUKLA P. Modulating the wettability characteristics and bioactivity of polymeric materials using laser surface treatment[J]. Journal of Laser Applications, 2016, 28: 022502. doi: 10.2351/1.4944441 [15] SONG J, GAO M, ZHAO C, et al. Large-area fabrication of droplet pancake bouncing surface and control of bouncing state[J]. ACS Nano, 2017, 11(9): 9259-9267. doi: 10.1021/acsnano.7b04494 [16] FALAH TOOSI S, MORADI S, KAMAL S, et al. Superhydrophobic laser ablated PTFE substrates[J]. Applied Surface Science, 2015, 349: 715-723. doi: 10.1016/j.apsusc.2015.05.026 [17] YONG J, FANG Y, CHEN F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: Separating oil from water and corrosive solutions[J]. Applied Surface Science, 2016, 389: 1148-1155. doi: 10.1016/j.apsusc.2016.07.075 [18] RIVEIRO A, MAÇON A L B, DEL VAL J, et al. Laser surface texturing of polymers for biomedical applications[J]. Frontiers in Physics, 2018, 6: 00016. [19] YANG X, LI Y, ZHENG H, et al. Saturated surface charging on micro/nanoporous polytetrafluoroethylene for droplet manipulation[J]. ACS Applied Nano Materials, 2022, 5(3): 3342-3351. doi: 10.1021/acsanm.1c03869 [20] GOLOVIN K B, GOSE J W, PERLIN M, et al. Bioinspired surfaces for turbulent drag reduction[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2016, 374(2073): 1-20. [21] GRAKOVICH P N, IVANOV L F, KALININ L A, et al. Laser ablation of polytetrafluoroethylene[J]. Russian Journal of General Chemistry, 2009, 79(3): 626-634. [22] ZHANG Z, ZHANG T, ZHANG X, et al. Fabrication of a thin-layer PTFE coating exhibiting superhydrophobicity by supercritical CO2[J]. Progress in Organic Coatings, 2017, 111: 322-326. doi: 10.1016/j.porgcoat.2017.06.019 [23] OL'KHOV Y A, ALLAYAROV S R, TOLSTOPYATOV E M, et al. The effect of continuous CO2 laser radiation on the thermal and molecular—Topological properties of polytetrafluoroethylene[J]. High Energy Chemistry, 2010, 44(1): 63-74. doi: 10.1134/S0018143910010108 [24] TOLSTOPYATOVA E M, GRAKOVICH P N, IVANOV L F, et al. Thermophysical and spectral features of laser ablation of polymers[J]. High Energy Chemistry, 2015, 49(6): 433-437. doi: 10.1134/S001814391505015X [25] TOLSTOPYATOV E M. Ablation of polytetrafluoroethylene using a continuous CO2 laser beam[J]. Journal of Physics D: Applied Physics, 2005, 38(12): 1993-1999. doi: 10.1088/0022-3727/38/12/021 [26] CASSIE A B D, BAXTER S . Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 50: 546-551. [27] 金浩正, 矫维成, 李君, 等. 低冰粘附防/除冰涂层的技术现状及研究趋势[J]. 复合材料学报, 2024, 41(5): 2181-2200.JIN Haozheng, JIAO Weicheng, LI Jun, et al. Technology status and research trend of low-ice-adhesion anti-icing and de-icing coatings[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2181-2200(in Chinese). [28] 徐达, 肖振, 余新泉, 等. 多功能疏水/超疏水复合涂层的制备及其防覆冰性[J]. 复合材料学报, 2022, 39(3): 1102-1109.XU Da, XIAO Zhen, YU Xinquan, et al. Preparation and anti-icing characteristics of multifunctional hydrophobic/superhydrophobic composite coating[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1102-1109(in Chinese).