Preparation and microwave absorption properties of ultra-fluffy doped graphene aerogel composites
-
摘要: 伴随着智能通信的迅猛发展,信息传输带来的电磁辐射问题愈发严峻,传统吸波材料存在衰减能力差、阻抗匹配难以调节等缺点,已不能满足实际应用。本文基于电磁损耗理论、多组分协同损耗和三维多孔气凝胶构筑的设计策略,应用水热合成法制备石墨烯气凝胶(GA),在溶剂热反应中添加由MnO2包覆的镍锌铁氧体(NiZnFe2O4@MnO2)微球,与石墨烯介电材料复合,制备超蓬松磁掺杂石墨烯基复合气凝胶(NiZnFe2O4@MnO2/GA)粉体。实验测试了复合气凝胶的吸波特性,分析了热处理温度和磁掺杂量对复合气凝胶吸波性能的影响机制及规律。结果可知,热处理温度为300℃、镍锌铁氧体掺杂量为15wt%时,复合气凝胶吸波效果最优。其匹配厚度为2.9 mm时,在频率为8.72 GHz处,最小反射损耗(RLmin)达到了−47.27 dB,有效吸收带宽(EAB)为3.2 GHz,覆盖了X波段的大部分,且填料负载率仅为10wt%。本研究解决了材料阻抗匹配性差的问题,优化了吸波材料的介电损耗和磁损耗能力,满足了对吸波材料“薄、轻、宽、强”的应用要求。Abstract: With the rapid advancement of intelligent communication, the issue of electromagnetic radiation caused by information transmission is becoming increasingly severe. However, traditional microwave absorption materials have limitations such as poor attenuation ability and difficulties in impedance matching, which no longer meet practical applications. In this paper, graphene aerogel (GA) was prepared by hydrothermal synthesis based on the theory of electromagnetic loss, the design strategy of multi-component synergistic loss and the construction of three-dimensional porous aerogel. To enhance its properties, we incorporated MnO2-coated Ni-Zn ferrite (NiZnFe2O4@MnO2) microspheres with graphene dielectric material to prepare ultra-fluffy magnetically doped graphene-based composite aerogel (NiZnFe2O4@MnO2/GA) powders. The impact of heat treatment temperature and magnetic doping on the wave absorption capability of the composite aerogel was analyzed. Our results demonstrate that at a heat treatment temperature of 300℃ and a nickel-zinc ferrite doping amount of 15wt%, the composite aerogel exhibits optimal absorption performance. At a matching thickness of 2.9 mm, it achieves a minimum reflection loss (RLmin) value of −47.27 dB at a frequency of 8.72 GHz, providing an effective absorption bandwidth (EAB) spanning 3.2 GHz covering most X-band frequencies while maintaining only a packing load rate of 10wt%. The problem of poor material impedance matching is solved, the dielectric loss and magnetic loss capacity of the absorbing materials are optimized. The application requirements of the wave absorbing material for "thin, light, wide and strong" are met.
-
Key words:
- composites /
- Ni-Zn ferrite /
- graphene aerogel /
- core-shell structure /
- absorption properties
-
图 5 NiZnFe2O4/GA复合气凝胶SEM图像:((a), (b)) NiZnFe2O4/GA-15wt%; ((c), (d)) NiZnFe2O4/GA-25wt%; (e) NiZnFe2O4/GA-35wt%; (f) NiZnFe2O4/GA-45wt%
Figure 5. SEM images of NiZnFe2O4/GA composite aerogel: ((a), (b)) NiZnFe2O4/GA-15wt%; ((c), (d)) NiZnFe2O4/GA-25wt%; (e) NiZnFe2O4/GA-35wt%; (f) NiZnFe2O4/GA-45wt%
图 6 GA及NiZnFe2O4/GA复合气凝胶的吸波性能:(a)介电损耗因子tanδε;(b)磁损耗因子tanδμ;(c)阻抗匹配系数Zin/Z0 ;(d)反射损耗
Figure 6. Absorption properties of GA and NiZnFe2O4/GA: (a) Dielectric loss factor tanδε; (b) Magnetic loss factor tanδμ; (c) Impedance matching coefficient Zin/Z0; (d) Reflection loss
EAB—Effective absorption bandwidth; RLmin—Minimum reflection loss
图 8 ((a), (b)) NiZnFe2O4@MnO2微球的SEM图像;((c), (d)) NiZnFe2O4@MnO2微球的TEM图像;(e) NiZnFe2O4@MnO2微球的EDS mapping图
Figure 8. ((a), (b)) SEM images of NiZnFe2O4@MnO2 microspheres; ((c), (d)) TEM images of NiZnFe2O4@MnO2 microspheres; (e) EDS mapping analysis of NiZnFe2O4@MnO2 microspheres
d—Interplanar spacing
图 9 NiZnFe2O4@MnO2/GA复合材料电磁参数:(a)介电常数实部;(b)介电常数虚部;(c)介电损耗角正切;(d)磁导率实部;(e)磁导率虚部;(f)磁损耗角正切
Figure 9. NiZnFe2O4@MnO2/GA composite electromagnetic parameters: (a) Real part of the permittivity; (b) Imaginary part of the permittivity; (c) Tangent of the dielectric loss angle; (d) Real part of the permeability; (e) Imaginary part of the permeability; (f) Tangent of the magnetic loss angle
图 10 NiZnFe2O4@MnO2/GA复合气凝胶的反射损耗曲线、三维反射损耗图和相应的等高线图:((a)~(c)) NiZnFe2O4@MnO2/GA-200℃;((d)~(f)) NiZnFe2O4@MnO2/GA-300℃;((g)~(i)) NiZnFe2O4@MnO2/GA-400℃;((j)~(l)) NiZnFe2O4@MnO2/GA-500℃
Figure 10. Reflection loss curves, 3D reflection loss plot and corresponding contour plot of NiZnFe2O4@MnO2/GA: ((a)-(c)) NiZnFe2O4@MnO2/GA-200℃; ((d)-(f)) NiZnFe2O4@MnO2/GA-300℃; ((g)-(i)) NiZnFe2O4@MnO2/GA-400℃; ((j)-(l)) NiZnFe2O4@MnO2/GA-500℃
表 1 NiZnFe2O4@MnO2/GA复合气凝胶的吸波性能对比
Table 1. Comparison of wave absorption properties of NiZnFe2O4@MnO2/GA composite aerogel
Sample Thickness/mm Frequency/GHz RLmin/dB EAB/GHz NiZnFe2O4@MnO2/GA-200℃ 4.3 5.68 −18.53 1.2 NiZnFe2O4@MnO2/GA-300℃ 2.9 8.72 −47.27 3.2 NiZnFe2O4@MnO2/GA-400℃ 2.4 10.24 −36.70 3.44 NiZnFe2O4@MnO2/GA-500℃ 1.3 18.00 −17.48 2.56 -
[1] LIU L, DENG H, TANG X, et al. Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice[J]. Proceedings of the National Academy of Sciences, 2021, 118(31): 2105838118. doi: 10.1073/pnas.2105838118 [2] 苏婧, 兰春桃, 王静, 等. 纺织基电磁屏蔽材料的发展与应用[J]. 现代纺织技术, 2022, 30(6): 219-230.SU Jing, LAN Chuntao, WANG Jing, et al. Development and application of textile-based electromagnetic shielding materials[J]. Modern Textile Technology, 2022, 30(6): 219-230(in Chinese). [3] 王玉. 织物基电磁屏蔽复合材料的设计及构效关系研究[D]. 上海: 东华大学, 2022.WANG Yu. Research on design and structure-activity rationship of fabric-based electromagnetic interference shielding composites[D]. Shanghai: Donghua University, 2022(in Chinese). [4] 马家鑫. 基于铁系元素制备复合吸波材料及性能研究[D]. 上海: 东华大学, 2022.MA Jiaxin. Preparation and performance characterization of composite microwave absorption materials based on iron group elements[D]. Shanghai: Donghua University, 2022(in Chinese). [5] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. doi: 10.1002/adma.201001068 [6] 许红. 空心碳微球基复合材料的制备及其吸波性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.XU Hong. Preparation of hollow carbon microsphere-based composites and research on its microwave absorbing properties[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese). [7] 纪涵昱. 介电/磁损耗介质掺杂石墨烯复合气凝胶的制备及其吸波性能研究[D]. 郑州: 郑州航空工业管理学院, 2022.JI Hanyu. Preparation and absorption properties of graphene composite aerogel doped with dielectric/magnetic loss media[D]. Zhengzhou: Zhengzhou Aeronautical Industry Management Institute, 2022(in Chinese). [8] 杜宗波, 时双强, 陈宇滨, 等. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.DU Zongbo, SHI Shuangqiang, CHEN Yubin, et al. Research progress in dielectric graphene microwave absorbing composites[J]. Journal of Materials Engineering, 2022, 50(4): 74-84(in Chinese). [9] 乔明涛, 齐靖泊, 王佳妮, 等. 3D石墨烯气凝胶复合吸波材料的研究现状[J]. 复合材料学报, 2024, 41(2): 550-562.QIAO Mingtao, QI Jingbo, WANG Jiani, et al. Recent progress on 3D graphene aerogel based microwave absorbing materials[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 550-562(in Chinese). [10] 叶喜葱, 杨超, 欧阳宾, 等. 石墨烯增强FeSiAl-MoS2/PLA复合材料吸波性能[J]. 复合材料学报, 2023, 40(2): 911-928.YE Xicong, YANG Chao, OUYANG Bin, et al. Graphene-enhanced electromagnetic wave absorbing properties of FeSiAl-MoS2/PLA composites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 911-928(in Chinese). [11] 赵蓓鸳, 王帆, 朱亚平, 等. 石墨烯/酞菁铁复合材料的制备与吸波性能[J]. 复合材料学报, 2019, 36(1): 39-50.ZHAO Beiyuan, WANG Fan, ZHU Yaping, et al. Preparation and wave absorption properties of graphene/iron phthalocyanine composites[J]. Acta Materiae Compositae Sinica, 2019, 36(1): 39-50(in Chinese). [12] LI Y, MENG F, MEI Y, et al. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption[J]. Chemical Engineering Journal. 2020, 391: 123512. [13] ZHU E H, PANG K, CHEN Y R, et al. Ultra-stable graphene aerogels for electromagnetic interference shielding[J]. Science China Materials, 2022, 66(3): 1106-1113. [14] MENG F, WANG H, CHEN Z J, et al. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process[J]. Nano Research, 2018, 11(5): 2847-2861. [15] 李颖. 基于冰模板结晶行为调控制备石墨烯气凝胶及其功能机制研究[D]. 成都: 西南交通大学, 2020.LI Ying. Structural regulation of graphene aerogel by regulating the crystallization behavior of ice template and exploration of its functional performance[D]. Chengdu: Southwest Jiaotong University, 2020(in Chinese). [16] TORRISI L, SILIPIGNI L, CUTRONEO M, et al. Graphene oxide as a radiation sensitive material for XPS dosimetry[J]. Vacuum, 2020, 173: 109175. [17] FILIPPO D G, LISCIO A, RUOCCO A. The evolution of hydrogen induced defects and the restoration of π-plasmon as a monitor of the thermal reduction of graphene oxide[J]. Applied Surface Science, 2020, 512: 145605. [18] GONÇALVES P A D, PERES N M R. An introduction to graphene plasmonics[J]. Contemporary Physics, 2017, 58(2): 199-200. [19] 何阳, 李思盈, 李传强, 等. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994.HE Yang, LI Siying, LI Chuanqiang, et al. Anticorrosion performance of thermal reduction graphene oxide/epoxy resin composite coating[J]. Chemical Industry Progress, 2023, 42(4): 1983-1994(in Chinese). [20] 龚水水, 光善仪, 柯福佑, 等. 红外光谱法氧化石墨烯羧基官能团含量的测定[J]. 中国测试, 2016, 42(4): 38-44.GONG Shuishui, GUANG Shanyi, KE Fuyou, et al. Determination of the content of carboxyl functional groups of graphene oxide by infrared spectroscopy[J]. China Testing, 2016, 42(4): 38-44(in Chinese). [21] 吴娟霞, 徐华, 张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72(3): 301-318. doi: 10.6023/A13090936WU Juanxia, XU Hua, ZHANG Jin. Application of Raman spectroscopy of graphene[J]. Acta Chemica Sinica, 2014, 72(3): 301-318(in Chinese). doi: 10.6023/A13090936 [22] PIMENTA M A, DRESSELHAUS D, DRESSELHAUS M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1290. [23] AMMAR M R, GALY N, ROUZAUD J N, et al. Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing[J]. Carbon, 2015, 95: 364-373. [24] SHIJIE Z, YAXING P, ZHIWEI Z, et al. Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2022, 630: 453-464. [25] ZHOU Y K, HE P, MA W J, et al. The developed wave cancellation theory contributing to understand wave absorption mechanism of ZIF derivatives with controllable electromagnetic parameters[J]. Small, 2024, 20(2): 2305277. [26] WU N N, ZHAO B B, LIU J Y, et al. MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials[J]. Advanced Composites and Hybrid Materials, 2021, 4(3): 1-9. [27] YAN S J, XU C Y, JIANG J T, et al. Strong dual-frequency electromagnetic absorption in Ku-band of C@FeNi3 core/shell structured microchains with negative permeability[J]. Journal of Magnetism and Magnetic Materials, 2014, 349: 159-164. doi: 10.1016/j.jmmm.2013.08.027 [28] 徐攀. 碳基电磁波吸收材料的设计与性能研究[D]. 长春: 吉林大学, 2023.XU Pan. The design and performance investigation of carbon-based electromagnetic wave absorbers[D]. Changchun: Jilin University, 2023(in Chinese). [29] 乔明涛. 核壳式电磁复合纳米材料的构筑与吸波性能研究[D]. 西安: 西北工业大学, 2019.QIAO Mingtao. Core-shell electromagnetic nanocomposites: Synthesis and microwave absorbing properties[D]. Xi'an: Northwestern Polytechnical University, 2019(in Chinese). [30] 代竟雄. 磁性介质/碳复合材料微波损耗机制的调控与吸波性能研究[D]. 绵阳: 西南科技大学, 2023.DAI Jingxiong. A dissertation submitted to southwest university of science and technology for the degree of master[D]. Mianyang: Southwest University of Science and Technology, 2023(in Chinese). [31] SUN H, CHE R H, YOU X, et al. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities[J]. Advanced Materials, 2014, 26(48): 8120-8125.