留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玄武岩纤维网格增强磷酸镁水泥砂浆复合材料力学性能

谢剑 刘家旺 李伟 金凌翼

谢剑, 刘家旺, 李伟, 等. 玄武岩纤维网格增强磷酸镁水泥砂浆复合材料力学性能[J]. 复合材料学报, 2024, 41(10): 5492-5503. doi: 10.13801/j.cnki.fhclxb.20240023.003
引用本文: 谢剑, 刘家旺, 李伟, 等. 玄武岩纤维网格增强磷酸镁水泥砂浆复合材料力学性能[J]. 复合材料学报, 2024, 41(10): 5492-5503. doi: 10.13801/j.cnki.fhclxb.20240023.003
XIE Jian, LIU Jiawang, LI Wei, et al. Mechanical properties of basalt fiber reinforced polymer grids reinforced magnesium phosphate cement mortar composite[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5492-5503. doi: 10.13801/j.cnki.fhclxb.20240023.003
Citation: XIE Jian, LIU Jiawang, LI Wei, et al. Mechanical properties of basalt fiber reinforced polymer grids reinforced magnesium phosphate cement mortar composite[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5492-5503. doi: 10.13801/j.cnki.fhclxb.20240023.003

玄武岩纤维网格增强磷酸镁水泥砂浆复合材料力学性能

doi: 10.13801/j.cnki.fhclxb.20240023.003
基金项目: 国家自然科学基金(52068043)
详细信息
    通讯作者:

    谢剑,博士,教授,博士生导师,研究方向为混凝土结构基本理论和加固技术研究与应用 E-mail: xiejian@tju.edu.cn

  • 中图分类号: TB332

Mechanical properties of basalt fiber reinforced polymer grids reinforced magnesium phosphate cement mortar composite

Funds: National Natural Science Foundation of China (52068043)
  • 摘要: 为了研究钢纤维与玄武岩纤维(BFRP)网格对磷酸镁水泥砂浆(MPCM)力学性能的增强效果,制备了BFRP网格MPCM复合材料(GRMM)。通过轴向拉伸试验和四点弯曲试验,研究材料复合方式(钢纤维增强、BFRP网格增强、复合增强)、BFRP网格厚度(1 mm、2 mm、3 mm)和BFRP网格表面形式(未处理、粘砂)对复合材料拉伸应力-应变曲线、弯曲应力-挠度曲线与关键力学参数的影响规律,以及钢纤维、BFRP网格在GRMM中的作用机制。结果表明:钢纤维主要在GRMM受力前期发挥作用,可以有效地抑制裂缝的产生,起到了增强、增韧的作用,钢纤维的掺入使拉伸试件与弯曲试件承载力分别提高了24.23%与215.33%,并提高了两类试件的抗裂性能、变形与耗能能力;BFRP网格作为拉应力的主要承担者,作用于GRMM整个受力过程,使两类试件的峰值变形提升了70倍以上,但试件中BFRP网格与MPCM受力并不协调;两种材料复合增强下,GRMM综合了钢纤维对基体的增强效果与BFRP网格的良好变形性能,其抗裂性能、强度、变形性能及耗能能力均得到提升;随着BFRP网格厚度的增加,GRMM试件强度与耗能能力得到进一步提升;BFRP网格表面进行粘砂处理对GRMM各项性能影响并不明显。

     

  • 图  1  试件尺寸示意图

    Figure  1.  Schematic diagram of specimen size

    R—Radius

    图  2  试验加载示意图

    Figure  2.  Schematic diagram of loading

    图  3  玄武岩纤维网格增强磷酸镁水泥砂浆(GRMM)拉伸试件典型破坏图

    Figure  3.  Typical failure diagram of grid reinforced magnesium phosphate cement mortar (GRMM) tensile specimen

    图  4  材料复合方式对GRMM拉伸应力-应变曲线的影响

    Figure  4.  Effect of material composite forms on GRMM tensile stress-strain curves

    图  5  网格厚度对GRMM拉伸应力-应变曲线的影响

    Figure  5.  Effect of grid thickness on GRMM tensile stress-strain curves

    图  6  配网率对GRMM拉伸应力损失及σcr/σsec的影响

    Figure  6.  Effect of grid quantity on GRMM tensile stress loss and σcr/σsec

    图  7  网格表面形式对GRMM拉伸应力-应变曲线的影响

    Figure  7.  Effect of grid surface form on GRMM tensile stress-strain curves

    图  8  GRMM弯曲试件典型破坏图

    Figure  8.  Typical failure diagram of GRMM bending specimen

    图  9  材料复合方式对GRMM弯曲应力-挠度曲线的影响

    Figure  9.  Effect of material composite forms on GRMM bending stress-deflection curves

    图  10  网格厚度对GRMM弯曲应力-挠度曲线的影响

    Figure  10.  Effect of grid thickness on GRMM bending stress-deflection curves

    图  11  网格表面形式对GRMM弯曲应力-挠度曲线的影响

    Figure  11.  Effect of grid surface form on GRMM bending stress-deflection curves

    表  1  磷酸镁水泥砂浆(MPCM)配合比及性能

    Table  1.   Mix proportion and material performance of magnesium phosphate cement mortar (MPCM)

    Material Cement-A/
    (kg·m−3)
    Cement-B/
    (kg·m−3)
    Sand/
    (kg·m−3)
    Water/
    (kg·m−3)
    Borax/
    (kg·m−3)
    Rf-3 h/
    MPa
    Rf-3 d/
    MPa
    Rc-3 h/
    MPa
    Rc-3 d/
    MPa
    MPCM 660 660 800 200 26.4 10.3 11.5 49.2 55.7
    Notes: Rf and Rc—Flexural strength and the compressive strength; 3 h and 3 d—Ages of MPCM.
    下载: 导出CSV

    表  2  玄武岩纤维(BFRP)网格材料性能

    Table  2.   Basalt fiber reinforced polymer (BFRP) grids material performance

    Tensile strength/MPa Modulus of elasticity/GPa Elongation/%
    493 25.37 1.9
    下载: 导出CSV

    表  3  试件参数

    Table  3.   Specimen parameters

    Specimen
    number
    Fiber admix-
    ture/%
    Grid thick-
    ness/mm
    Grid surface forms
    T/BM0S0N-1/2/3 0 0 No treatment
    T/BM0S2N-1/2/3 2 0
    T/BM2S0N-1/2/3 0 2
    T/BM2S2N-1/2/3 2 2
    T/BM1S2N-1/2/3 2 1
    T/BM3S2N-1/2/3 2 3
    T/BM3S2G-1/2/3 2 3 Sand-sticked
    Notes: In the specimen number, T/B is tensile/bending specimen, M is grid thickness, S is fiber admixture, N/G is grid with no treatment/sand-sticked, and 1/2/3 is parallel specimen numbers.
    下载: 导出CSV

    表  4  GRMM拉伸试验结果

    Table  4.   GRMM tensile test results

    Specimen grouping Specimen number σcr/MPa εcr/‰ Es/GPa σsec/MPa εu/‰
    TM0S0N TM0S0N-1 4.15 0.17 22.6 0.17
    TM0S0N-2 4.20 0.19 22.2 0.19
    TM0S0N-3 3.81 0.16 24.6 0.16
    Mean 4.05 0.17 23.1 0.17
    Cov 0.04 0.08 0.05 0.08
    TM0S2N TM0S2N-1 5.25 0.25 35.8 1.15
    TM0S2N-3 5.53 0.18 31.1 1.67
    Mean 5.39 0.22 33.4 1.41
    Cov 0.03 0.15 0.07 0.18
    TM2S0N TM2S0N-1 3.74 0.17 29.6 3.68 83.80
    TM2S0N-3 3.94 0.18 26.6 3.63 88.93
    Mean 3.84 0.18 28.1 3.66 86.37
    Cov 0.11 0.03 0.05 0.01 0.07
    TM1S2N TM1S2N-1 4.22 0.16 27.6 3.76 57.00
    TM1S2N-2 4.48 0.19 26.7 3.67 40.49
    TM1S2N-3 4.35 0.18 26.5 3.14 37.77
    Mean 4.35 0.18 26.9 3.52 45.09
    Cov 0.02 0.07 0.02 0.08 0.19
    TM2S2N TM2S2N-2 4.09 0.16 27.3 3.55 43.45
    TM2S2N-3 4.02 0.15 27.7 4.35 75.15
    Mean 4.05 0.16 27.5 3.95 59.30
    Cov 0.01 0.02 0.01 0.10 0.27
    TM3S2N TM3S2N-1 4.55 0.21 24.1 5.7 45.36
    TM3S2N-3 4.71 0.21 24.9 5.7 62.43
    Mean 4.63 0.21 24.5 5.7 53.90
    Cov 0.02 0 0.02 0 0.16
    TM3S2G TM3S2G-1 4.02 0.16 28.7 4.23 43.08
    TM3S2G-2 4.06 0.15 28.1 4.51 47.24
    TM3S2G-3 4.37 0.18 27.0 5.11 60.20
    Mean 4.15 0.16 27.9 4.62 50.17
    Cov 0.04 0.06 0.03 0.08 0.15
    Notes: σcr—Cracking stress; εcr—Cracking strain; Es—Elastic modulus; σsec—Peak stress at second rise of the stress-strain curve; εu—Ultimate strain. Specimens TM0S2N-2, TM2S0N-2, TM2S2N-1 and TM3S2N-2 were destroyed outside of the measurement section, their data were not listed in the table, and they were not involved in subsequent data analysis; Cov—Coefficient of variation.
    下载: 导出CSV

    表  5  GRMM弯曲试验结果

    Table  5.   GRMM bending test results

    Specimen grouping Specimen number σcr/MPa δcr/mm σmax/MPa δmax/mm
    BM0S0N BM0S0N-1 6.15 0.39 6.15 0.39
    BM0S0N-2 6.07 0.34 6.07 0.34
    BM0S0N-3 6.84 0.26 6.84 0.26
    Mean 6.36 0.33 6.36 0.33
    Cov 0.07 0.20 0.07 0.20
    BM0S2N BM0S2N-1* 9.89 0.33 14.01 0.96
    BM0S2N-2 9.18 0.35 19.85 2.51
    BM0S2N-3 10.20 0.35 20.24 2.17
    Mean 9.69 0.35 20.05 2.34
    Cov 0.07 0.00 0.014 0.10
    BM2S0N BM2S0N-1 5.92 0.21 23.35 26.13
    BM2S0N-2 6.00 0.28 29.04 24.32
    BM2S0N-3 6.70 0.29 24.44 19.72
    Mean 6.20 0.26 25.61 23.39
    Cov 0.07 0.17 0.012 0.14
    BM1S2N BM1S2N-1 8.25 0.16 21.88 21.08
    BM1S2N-2 7.09 0.23 19.15 23.96
    BM1S2N-3 7.17 0.28 18.99 21.26
    Mean 7.50 0.22 20.01 22.10
    Cov 0.09 0.27 0.08 0.07
    BM2S2N BM2S2N-1 6.63 0.32 24.60 27.63
    BM2S2N-2 7.70 0.23 24.29 26.69
    BM2S2N-3 7.51 0.27 29.89 25.13
    Mean 7.28 0.27 26.26 26.48
    Cov 0.08 0.16 0.12 0.05
    BM3S2N BM3S2N-1 6.85 0.25 31.53 14.17
    BM3S2N-2 8.25 0.24 35.34 12.36
    BM3S2N-3 7.94 0.24 45.78 15.70
    Mean 7.68 0.24 37.55 14.08
    Cov 0.10 0.02 0.20 0.12
    BM3S2G BM3S2G-1 10.98 0.25 46.95 11.98
    BM3S2G-2 9.42 0.18 36.12 11.43
    BM3S2G-3 9.65 0.21 31.30 11.60
    Mean 10.02 0.21 38.12 11.67
    Cov 0.08 0.16 0.21 0.02
    Notes: δcr—Cracking deflection; σmax—Bending strength; δmax—Ultimate deflection. Since the uneven distribution of steel fibers affected the bending strength of specimen, BM0S2N-1* was not involved in the calculation of subsequent analysis.
    下载: 导出CSV
  • [1] 唐亮. 寒区隧道冻害形成机理与防治对策研究 [D]. 重庆: 重庆交通大学, 2011.

    TANG Liang. Study on the freezing damage mechanism and prevention of tunnels in cold regions[D]. Chongqing: Chongqing Jiaotong University, 2011(in Chinese).
    [2] 刘德军, 仲飞, 黄宏伟, 等. 运营隧道衬砌病害诊治的现状与发展[J]. 中国公路学报, 2021, 34(11): 178-199.

    LIU Dejun, ZHONG Fei, HUANG Hongwei, et al. Present status and development trend of diagnosis and treatment of tunnel lining diseases[J]. China Journal of Highway and Transport, 2021, 34(11): 178-199(in Chinese).
    [3] 秦继辉, 钱觉时, 宋庆, 等. 磷酸镁水泥的研究进展与应用[J]. 硅酸盐学报, 2022, 50(6): 1592-1606.

    QIN Jihui, QIAN Jueshi, SONG Qing, et al. Research progress on magnesium phosphate cement[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1592-1606(in Chinese).
    [4] 谢剑, 李明, 白伟亮. MPC混凝土制备及其力学性能试验研究[J]. 北京工业大学学报, 2020, 46(8): 948-955.

    XIE Jian, LI Ming, BAI Weiliang. Experimental study on preparation and mechanical properties of MPC concrete[J]. Journal of Beijing University of Technology, 2020, 46(8): 948-955(in Chinese).
    [5] FENG H, SHEIKH M N, HADI M N S, et al. Pullout behaviour of different types of steel fibres embedded in magnesium phosphate cementitious matrix[J]. International Journal of Concrete Structures and Materials, 2019, 13(1): 33. doi: 10.1186/s40069-019-0344-1
    [6] 贾兴文, 连磊, 田昊, 等. 超高性能磷酸镁水泥混凝土的制备和力学性能研究[J]. 功能材料, 2022, 53(6): 6019-6024. doi: 10.3969/j.issn.1001-9731.2022.06.004

    JIA Xingwen, LIAN Lei, TIAN Hao, et al. The preparation and mechanical properties of ultra high performance magnesium phosphate cement concrete[J]. Journal of Functional Materials, 2022, 53(6): 6019-6024(in Chinese). doi: 10.3969/j.issn.1001-9731.2022.06.004
    [7] FENG H, LI L, ZHANG P, et al. Microscopic characteristics of interface transition zone between magnesium phosphate cement and steel fiber[J]. Construction and Building Materials, 2020, 253: 119179.
    [8] FENG H, CHEN G, GAO D Y, et al. Mechanical properties of steel fiber-reinforced magnesium phosphate cement mortar[J]. Advances in Civil Engineering, 2018, 2018: 1-11. doi: 10.1155/2018/3978318
    [9] 李茂, 岳燕飞, 钱觉时, 等. 钢纤维增强磷酸镁水泥混凝土力学性能研究[J]. 武汉大学学报(工学版), 2022, 55(7): 691-698.

    LI Mao, YUE Yanfei, QIAN Jueshi, et al. Investigation on the mechanical properties of steel fiber reinforced magnesium phosphate cement concrete[J]. Engineering Journal of Wuhan University, 2022, 55(7): 691-698(in Chinese).
    [10] 武芳文, 刘一帆, 何岚清, 等. 钢纤维磷酸镁水泥混凝土梁受弯性能研究[J]. 中国公路学报, 2023, 36(9): 106-118.

    WU Fangwen, LIU Yifan, HE Lanqiang, et al. Flexural performance of steel fiber magnesium phosphate cement concrete beams[J]. China Journal of Highway and Transport, 2023, 36(9): 106-118(in Chinese).
    [11] 李振, 秦继辉, 尤超, 等. 渗浆法钢纤维增强磷酸镁水泥基复合材料的力学性能[J]. 硅酸盐学报, 2019, 47(11): 1559-1565.

    LI Zhen, QIN Jihui, YOU Chao, et al. Mechanical properties of steel fiber reinforced magnesium phosphate cement-based composite by slurry infiltrating[J]. Journal of the Chinese Ceramic Society, 2019, 47(11): 1559-1565(in Chinese)
    [12] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8): 1957-1967.

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1957-1967(in Chinese).
    [13] 王庆轩, 丁一宁. 玄武岩纤维网格布增强混凝土板双向弯曲性能试验[J]. 复合材料学报, 2020, 37(5): 1200-1210.

    WANG Qingxuan, DING Yining. Experiment on biaxial flexural behaviors of basalt fiber textile reinforced concrete slab[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1200-1210(in Chinese).
    [14] 邓宗才, 鹿宇浩, 桂营金. 钢丝网或纤维网增强超高性能混凝土双向板弯曲性能[J]. 复合材料学报, 2022, 39(10): 4757-4768.

    DENG Zongcai, LU Yuhao, GUI Yingjin. Flexural properties of ultra high performance concrete reinforced with steel wire mesh of fiber mesh[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4757-4768(in Chinese).
    [15] 艾珊霞, 尹世平, 徐世烺. 纤维编织网增强混凝土的研究进展及应用[J]. 土木工程学报, 2015, 48(1): 27-40.

    AI Shanxia, YIN Shiping, XU Shilang. A review on the development of research and application of textile reinforced concrete[J]. China Civil Engineering Journal, 2015, 48(1): 27-40(in Chinese).
    [16] 刘赛. 织物增强水泥基复合材料力学行为的试验研究[D]. 长沙: 湖南大学, 2019.

    LIU Sai. Experimental investigations on mechanical properties of textile reinforced cementitious composite materials[D]. Changsha: Hunan University, 2019(in Chinese).
    [17] 周芬, 刘玲玲, 杜运兴. 碳纤维织物增强水泥基复合材料试验研究[J]. 湖南大学学报(自然科学版), 2017, 44(11): 66-72.

    ZHOU Fen, LIU Lingling, DU Yunxing. Experimental investigations on carbon textile reinforced cementitious composites[J]. Journal of Hunan University (Natural Sciences), 2017, 44(11): 66-72(in Chinese).
    [18] 殷梦缇, 尹世平, 王波. 氯盐环境下纤维编织网增强混凝土拉伸性能[J]. 复合材料学报, 2018, 35(2): 433-440.

    YIN Mengti, YIN Shiping, WANG Bo. Tensile property of textile reinforced concrete under chloride salt environment[J]. Acta Materiae Compositae Sinica, 2018, 35(2): 433-440(in Chinese).
    [19] YIN S P, XU S L, LI H D. Improved mechanical properties of textile reinforced concrete thin plate[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2013, 28(1): 92-98. doi: 10.1007/s11595-013-0647-z
    [20] 李冬, 丁一宁. 钢纤维对玄武岩纤维编织网增强混凝土板双向弯曲性能的影响[J]. 复合材料学报, 2019, 36(2): 482-490.

    LI Dong, DING Yining. Effect of steel fiber on biaxial flexural property of textile reinforced with basalt fiber mesh in slab test[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 482-490(in Chinese).
    [21] 张汉振, 李伟, 谢剑, 等. 碳纤维编织网增强磷酸镁水泥砂浆界面黏结性能研究[J]. 石家庄铁道大学学报(自然科学版), 2023, 36(2): 42-48.

    ZHANG Hanzhen, LI Wei, XIE Jian, et al. Interfacial bonding performance of carbon fiber textile reinforced magnesium phosphate cement mortar[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2023, 36(2): 42-48(in Chinese).
    [22] 中交第一公路勘察设计研究院有限公司. 公路隧道加固技术规范: JTG/T 5440—2018[S]. 北京: 人民交通出版社, 2019.

    CCCC First Highway Consultants Co., Ltd. Technical specification for strengthening of highway tunnel: JTG/T 5440—2018[S]. Beijing: China Communication Press, 2019(in Chinese).
    [23] 秦继辉. 超高强磷酸镁水泥基复合材料制备与力学行为研究[D]. 重庆: 重庆大学, 2021.

    QIN Jihui. Study on preparation and mechanical behavior of ultra-high strength magnesium phosphate cement composites[D]. Chongqing: Chongqing university, 2021(in Chinese).
    [24] 李传秀, 尹世平, 赵俊伶. 纤维编织网增强ECC的拉伸和弯曲性能[J]. 建筑材料学报, 2021, 24(4): 736-741.

    LI Chuanxiu, YIN Shiping, ZHAO Junling. Tensile and bending properties of textile reinforced ECC[J]. Journal of Building Materials, 2021, 24(4): 736-741(in Chinese).
    [25] 中国建筑材料联合会. 超高性能混凝土基本性能与试验方法: T/CBMF 37—2018[S]. 北京: 中国建材工业出版社, 2018.

    China Building Materials Federation. Basic properties and test methods of ultra high performance concrete: T/CBMF 37—2018[S]. Beijing: China Building Material Industry Press, 2018(in Chinese).
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  108
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-01-04
  • 录用日期:  2024-01-14
  • 网络出版日期:  2024-01-24
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回