Pore structure and mechanical properties of steel fiber reinforced geopolymer recycled aggregate concrete
-
摘要: 为了研究钢纤维地聚物再生混凝土(SFGRC)孔隙特性与宏观性能的发展规律,测试了混凝土的内部孔隙结构、力学性能与干燥收缩性能,分析了再生骨料掺量和前驱体钙硅比对混凝土孔隙结构、力学性能与收缩性能的影响规律,基于分形理论建立了SFGRC孔隙结构和宏观性能关联模型。研究结果表明:再生骨料显著增大了SFGRC的孔隙率和有害孔占比,劣化了其力学性能。高掺量矿渣细化了SFGRC的孔隙结构,加大了材料的孔径与空间分布的复杂程度。两者均加剧了SFGRC的早期干燥收缩。SFGRC的孔结构表现出明显的分形特征,其分形维数在2.623~2.731,且与孔隙结构特征参数、力学性能具有很强的相关性,能够有效评价材料孔隙结构特征。采用 Bayesian-MCMC (Markov chain monte carlo)方法建立的基于分形维数的SFGRC弹性模量、极限应力、极限应变与干燥收缩应变等特征参数的预测模型,拟合优度为0.51~0.98,且具有较高的预测精度,为优化SFGRC孔隙结构和宏观性能提供了理论依据。Abstract: To study the pore characteristics and macroscopic performance of steel fiber reinforced geopolymer recycled aggregate concrete (SFGRC), the internal pore structure, mechanical properties and shrinkage performance of SFGRC were tested. The influences of recycled aggregate content and calcium silicon ratio on the pore structure, strength, stress-strain curve shape and characteristic parameters of concrete were analyzed. Based on fractal theory, a correlation model between pore structure and the macroscopic performance of SFGRC was established. The research results indicate that recycled aggregate significantly increases the porosity and harmful pore proportion of SFGRC and deteriorates its mechanical properties. The high ground granulated blast furnace slag (GGBS) content refines the pore structure of SFGRC, increasing the complexity of the material's pore size and spatial distribution. The GGBS and recycled aggregate significantly increase the shrinkage rate of SFGRC. The pore structure of SFGRC exhibits obvious fractal characteristics, with fractal dimensions ranging from 2.623 to 2.731. It strongly correlates with pore structure characteristic parameters and mechanical properties, which can effectively evaluate the pore structure characteristics of SFGRC. A prediction model based on fractal dimension for characteristic parameters such as SFGRC elastic modulus, ultimate stress, ultimate strain and drying shrinkage was established using the Bayesian-MCMC (Markov chain monte carlo) method, with a goodness of fit of 0.51-0.98 and high prediction accuracy. This provides a theoretical basis for optimizing the pore structure and macroscopic performance of GRC concrete.
-
表 1 再生骨料基本性能指标
Table 1. Basic performance index of recycled aggregate
Aggregate type RCA RFA Gradation/mm 2.36-16 0.15-4.75 Bulk density/(kg·cm−3) 1250 1130 Apparent density/(kg·cm−3) 2250 2650 24 h water absorption/% 8.3 11.2 Crush index/% 18.2 14.1 Notes: RCA—Recycled coarse aggregate; RFA—Recycled fine aggregate. 表 2 前驱体主要化学成分(wt%)
Table 2. Main chemical contents of precursor materials (wt%)
Material SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O Fly ash 51.49 37.19 3.52 2.79 0.41 0.83 1.11 1.15 GGBS 32.08 15.13 0.47 38.61 8.45 2.5 0.43 0.49 Silica fume 90.44 0.81 3.56 0.63 1.04 1.34 0.95 0.29 表 3 钢纤维物理性能指标
Table 3. Physical properties of steel fiber
Physical property Hooked end steel fiber Density/(kg·cm−3) 7800 Length/mm 35 Diameter/mm 0.5 Aspect ratio 65 Elasticity modulus/GPa 200 Tensile strength/MPa 1100 表 4 钢纤维地聚物再生混凝土(SFGRC)配合比 (kg·m−3)
Table 4. Regeneration mix ratio of steel fiber reinforced geopolymer recycled aggregate concrete (SFGRC) (kg·m−3)
Mixture GGBS Fly ash Silica
fumeRFA RCA Steel
fiberNaOH
solutionNa2SiO3
solutionWater Superplasticizer CG 420 210 70 530 675 39 54 209 88 7 Ca/Si-0.1 140 490 70 530 675 39 54 209 88 7 Ca/Si-0.26 280 350 70 530 675 39 54 209 88 7 Ca/Si-0.64 560 70 70 530 675 39 54 209 88 7 R-30% 589 295 98 318 405 39 76 123 123 10 R-40% 500 260 90 430 540 39 66 253 105 8.5 R-60% 340 170 70 640 810 39 44 167 70 5.5 Notes: CG is the blank group; Ca/Si-0.1, Ca/Si-0.26 and Ca/Si-0.64 are calcium silicon ratio (molar ratio) of precursor, indicating that the calcium silicon ratio is 0.1, 0.26 and 0.64, respectively; R-30%, R-40% and R-60% are volume fraction of recycled aggregate, indicating that the volume fraction of recycled aggregate accounts for 30vol%, 40vol% and 60vol%. 表 5 分形模型
Table 5. Fractal model
Fractal model Formula Menger sponge model $ \lg (1 - {V_n}) = (3 - D)\lg \left( {{r_n}/R} \right) $ The pore axis fractal model $ \mathrm{lg}\dfrac{{\text{d}}^{2}{V}_{n}}{ \text{d}{r}_{n}{}^{2}}\propto (1-D)\mathrm{lg}{r}_{n} $ Fractal model based on thermo-
dynamic relationships$ \lg \left( {{{{W_n}} \mathord{\left/ {\vphantom {{{W_n}} {r_n^2}}} \right. } {r_n^2}}} \right) = D\lg {Q_n} + \lg C' $
$ {W_n}{\text{ = }}\displaystyle\sum\limits_{i = 1}^n {{{\bar P}_i}} \Delta V $ $ {Q_n} = {{V_n^{1/3}} \mathord{\left/ {\vphantom {{V_n^{1/3}} {{r_n}}}} \right. } {{r_n}}} $Notes: R—Maximum pore size; i—Different pressure stages; ${{{\bar P}_i}} $—Average pressure of stage i; ΔV—Volume of mercury injected in phase i; n—Number of times mercury is injected; D—Fractal dimension; rn—Pore diameter corresponding to the nth injection of mercury; Vn—Accumulated volume of mercury injected up to the nth injection; C'—Constant. 表 6 SFGRC混凝土孔隙结构特征参数
Table 6. Pore structure characteristic parameters of SFGRC
Specimen Porosity/% Most probable aperture/nm Tortuosity Total pore volume/
(mL·g−1)CG 22.06 126.33 2.009 0.0662 Ca/Si-0.64 20.78 110.68 2.057 0.0624 Ca/Si-0.26 23.56 135.90 1.959 0.0707 Ca/Si-0.10 25.32 131.22 1.929 0.0759 R-30% 19.06 100.20 1.998 0.0599 R-40% 21.06 120.96 1.976 0.0632 R-60% 26.72 161.18 1.932 0.0802 表 7 SFGRC力学性能(MPa)
Table 7. Mechanical properties of SFGRC (MPa)
Specimen fcu,3 d fcu,7 d fcu,28 d fts ff CG 28.18 32.08 43.13 3.27 3.77 Ca/Si-0.64 38.27 39.87 47.15 3.65 3.91 Ca/Si-0.26 25.59 32.08 36.20 2.78 3.59 Ca/Si-0.10 13.94 17.05 23.05 2.48 3.03 R-30% 37.28 40.44 46.12 3.35 4.05 R-40% 37.45 40.66 44.77 3.38 3.96 R-60% 20.69 26.39 27.39 2.35 2.62 表 8 基于分形维数的特征参数预测模型
Table 8. Prediction model of characteristic parameters based on fractal dimension
Characteristic parameter Prediction model Goodness of fit
R2Prediction error Mean Standard deviation Covariance Elastic modulus $ E_{\mathrm{c}}=5300\sqrt[3]{f_{\mathrm{c}}}\left(0.0057D-0.0143\right) $ 0.80 1.06 0.1008 0.0948 Peak stress $ {f_{\text{c}}} = {f_{{\text{cu}}}}\left( {{\text{1}}{{.3353 - }}0.1475 D} \right) $ 0.98 0.98 0.0050 0.0051 Peak strain $ \varepsilon_{\text{c}}=\left(\text{0}\text{.3097}D-0.1681\right)f_{\mathrm{c}}^{0.3838} $ 0.51 1.01 0.1066 0.1057 -
[1] 刘岩, 叶涛萍, 曹万林. 地聚物混凝土结构研究与发展[J]. 自然灾害学报, 2020, 29(4): 8-19.LIU Yan, YE Taoping, CAO Wanlin. Research and development of geopolmer concrete structure[J]. Journal of Natural Disasters, 2020, 29(4): 8-19(in Chinese) [2] 王爱国, 郑毅, 张祖华, 等. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560. doi: 10.11896/cldb.19040211WANG Aiguo, ZHENG Yi, ZHANG Zuhua, et al. Research progress of geopolymer cementitious material modification for improving durability of concrete[J]. Materials Reports, 2019, 33(15): 2552-2560(in Chinese). doi: 10.11896/cldb.19040211 [3] WANG B, YAN L, FU Q, et al. A comprehensive review on recycled aggregate and recycled aggregate concrete[J]. Resources, Conservation and Recycling, 2021, 171: 105565. [4] THOMAS C, DE BRITO J, CIMENTADA A, et al. Macro- and micro-properties of multi-recycled aggregate concrete[J]. Journal of Cleaner Production, 2020, 245: 118843. [5] NEGAHBAN E, BAGHERI A, SANJAYAN J. Pore gradation effect on portland cement and geopolymer concretes[J]. Cement and Concrete Composites, 2021, 122: 104141. [6] 黄华, 郭梦雪, 张伟, 等. 粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J]. 哈尔滨工业大学学报, 2022, 54(3): 74-84.HUANG Hua, GUO Mengxue, ZHANG Wei, et al. Mechanical property and microstructure of geopolymer concrete based on fly ash and slag[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 74-84(in Chinese). [7] AHMED H U, MOHAMMED A A, MOHAMMED A S. The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review[J]. Journal of Building Engineering, 2022, 49: 104062. [8] ROVNANÍK P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer[J]. Construction and Building Materials, 2010, 24(7): 1176-1183. doi: 10.1016/j.conbuildmat.2009.12.023 [9] 杨世玉, 赵人达, 靳贺松, 等. 地聚物砂浆的力学性能与孔结构分形特征分析[J]. 华南理工大学学报(自然科学版), 2020, 48(3): 126-135.YANG Shiyu, ZHAO Renda, JIN Hesong, et al. Analysis on mechanical mechanical properties and fractal characteristics of micropore structure of geopolymer mortar[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(3): 126-135(in Chinese). [10] WAN Q, ZHANG Y M, ZHANG R B. The effect of pore behavior and gel structure on the mechanical property at different initial water content[J]. Construction and Building Materials, 2021, 309: 125146. [11] JAYA N A, YUN M L, CHENG Y H, et al. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer[J]. Construction and Building Materials, 2020, 247: 118641. [12] CHEN S, RUAN S, ZENG Q, et al. Pore structure of geopolymer materials and its correlations to engineering properties: A review[J]. Construction and Building Materials, 2022, 328: 127064. [13] LUO Y, JIANG Z, WANG D, et al. Effects of alkaline activators on pore structure and mechanical properties of ultrafine metakaolin geopolymers cured at room temperature[J]. Construction and Building Materials, 2022, 361: 129678. [14] ZHU Z, HUO W, SUN H, et al. Correlations between unconfined compressive strength, sorptivity and pore structures for geopolymer based on SEM and MIP measurements[J]. Journal of Building Engineering, 2023, 67: 106011. [15] WITTMANN F H, SCHWESINGER P. High performance concrete: Material properties and design[C]//Proceedings of the 4th Weimar Workshop on HPC. Weimar, Germany: University for Architecture and Civil Engineering, 1995: 269-281. [16] ZENG Q, LUO M Y, PANG X Y, et al. Surface fractal dimension: An indicator to characterize the microstructure of cement-based porous materials[J]. Applied Surface Science, 2013, 282: 302-307. [17] 丁一宁, 马跃, 郝晓卫. 基于分形理论分析裂缝形态对纤维/混凝土渗透性的影响[J]. 复合材料学报, 2020, 37(11): 2908-2916.DING Yining, MA Yue, HAO Xiaowei. Investigation on effect of crack geometry on permeability of fiber/concrete based on fractal theory[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2908-2916(in Chinese). [18] ZARNAGHI V N, FOUROGHI-ASL A, NOURANI V, et al. On the pore structures of lightweight self-compacting concrete containing silica fume[J]. Construction and Building Materials, 2018, 193: 557-564. [19] LYU Q, QIU Q, ZHENG J, et al. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability[J]. Construction and Building Materials, 2019, 228: 116986. [20] JIN S, ZHANG J, HAN S. Fractal analysis of relation between strength and pore structure of hardened mortar[J]. Construction and Building Materials, 2017, 135: 1-7. [21] 中国国家标准化管理委员会. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国标准出版社, 2019.Standardization Administration of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Standards Press, 2019(in Chinese). [22] ZHANG B, LI S. Determination of the surface fractal dimension for porous media by mercury porosimetry[J]. Industrial and Engineering Chemistry Research, 1995, 34(4): 1383-1386. [23] ZHENG Y, XIAO Y. A comparative study on strength, bond-slip performance and microstructure of geopolymer/ordinary recycled brick aggregate concrete[J]. Construction and Building Materials, 2023, 366: 130257. [24] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979(3): 262-270.WU Zhongwei. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979(3): 262-270(in Chinese). [25] LI Z, LIU X, KOU D, et al. Probabilistic models for the shear strength of RC deep beams[J]. Applied Sciences, 2023, 13(8): 485. [26] COLLINS F, SANJAYAN J G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete[J]. Cement and Concrete Research, 2000, 30(9): 1401-1406.