留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La-Fe改性蛭石对水中磷酸盐的高效去除:吸附行为及内在机制

李铃 莫创荣 邓冬祝 廖丹伶 曹传麒 许雪棠

李铃, 莫创荣, 邓冬祝, 等. La-Fe改性蛭石对水中磷酸盐的高效去除:吸附行为及内在机制[J]. 复合材料学报, 2024, 41(10): 5412-5422. doi: 10.13801/j.cnki.fhclxb.20240022.003
引用本文: 李铃, 莫创荣, 邓冬祝, 等. La-Fe改性蛭石对水中磷酸盐的高效去除:吸附行为及内在机制[J]. 复合材料学报, 2024, 41(10): 5412-5422. doi: 10.13801/j.cnki.fhclxb.20240022.003
LI Ling, MO Chuangrong, DENG Dongzhu, et al. Performance and mechanism of La-Fe modified vermiculite adsorbent for efficient phosphorus removal[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5412-5422. doi: 10.13801/j.cnki.fhclxb.20240022.003
Citation: LI Ling, MO Chuangrong, DENG Dongzhu, et al. Performance and mechanism of La-Fe modified vermiculite adsorbent for efficient phosphorus removal[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5412-5422. doi: 10.13801/j.cnki.fhclxb.20240022.003

La-Fe改性蛭石对水中磷酸盐的高效去除:吸附行为及内在机制

doi: 10.13801/j.cnki.fhclxb.20240022.003
基金项目: 国家自然科学基金(22065003)
详细信息
    通讯作者:

    莫创荣,博士,副教授,硕士生导师,研究方向为高级氧化 E-mail: mochuangrong@163.com

  • 中图分类号: X524;TB332

Performance and mechanism of La-Fe modified vermiculite adsorbent for efficient phosphorus removal

Funds: National Natural Science Foundation of China (22065003)
  • 摘要: 蛭石(VE)作为吸附剂具有很强的吸附性及离子交换能力,价格低廉、丰富易得,对环境无害。近年来,许多关于蛭石吸附的研究获得报道,但由于疏水性弱且缺乏活性位点使其在磷酸盐吸附方面表现不佳。本文制备了Le-Fe双金属改性蛭石提升对磷酸盐的吸附性能。结果表明:La、Fe原子比为1∶2时改性蛭石(La-Fe/VE-2)具有优异的磷吸附能力,最大吸附容量为185.09 mg P/g,且在pH=3~9的范围内能实现高效吸附。La-Fe/VE-2具有较强的抗阴离子干扰性能,在中低浓度磷酸盐溶液(50~100 mg P/L)条件下仍然保持较高的吸附率(>90%)。材料表征结果显示,La和Fe成功负载在蛭石上,静电吸附和配体交换是主要吸附机制。综上所述,双金属改性蛭石对磷酸盐亲和力强,是一种很有前途的除磷吸附剂。

     

  • 图  1  (a)不同样品的吸附性能;(b) La/Fe原子比为1∶2时改性蛭石(La-Fe/VE-2)剂量对吸附性能的影响

    Figure  1.  (a) Adsorption capacity of different samples; (b) Effect of vermiculite (VE) at the atomic ratio of La and Fe of 1∶2 (La-Fe/VE-2) dosage on adsorption performance

    qe—Equilibrium adsorption amount

    图  2  初始溶液(a)、温度(b)、pH值(c)对磷酸盐吸附的影响;(d) La-Fe/VE-2样品的 Zeta 电位分析;(e)磷酸盐在不同pH下的主要形态分布;(f) 共存离子对磷酸盐吸附的影响

    Figure  2.  Effect of initial solution (a), temperature (b), pH (c) on phosphate adsorption; (d) Zeta potential analysis of La-Fe/VE-2 sample; (e) Distribution of phosphate species at different pH; (f) Effect of co-existing ions on phosphate adsorption

    pzc—Point of zero charge

    图  3  La-Fe/VE-2在50 mg P/L溶液中5次吸附-解吸的去除率

    Figure  3.  Removal efficiency of La-Fe/VE-2 in 50 mg P/L solution in five adsorption desorption cycles

    图  4  La-Fe/VE-2吸附磷酸盐:(a)拟一级和拟二级模型;(b)粒子内模型

    Figure  4.  La-Fe/VE-2 adsorption of phosphate: (a) Pseudo-first and second-order model; (b) Introparticle model

    图  5  La-Fe/VE-2吸附磷酸盐的Langmuir和Freundlich模型

    Figure  5.  Langmuir model and Freundlich model for phosphate adsorption by La-Fe/VE-2

    Ce—Equilibrium concentration of phosphate

    图  6  (a) VE的SEM图像;((b), (c)) La-Fe/VE-2 的SEM图像;(d) La-Fe/VE-2磷酸盐吸附前后的 EDS图谱

    Figure  6.  (a) SEM image of VE; ((b), (c)) SEM images of La-Fe/VE-2; (d) EDS spectra of La-Fe/VE-2 before and after phosphate adsorption

    图  7  La-Fe/VE-2的N2吸附-解吸等温线及其BET分析得出的粒度分布

    Figure  7.  N2 adsorption-desorption isotherm of La-Fe/VE-2 composite and its particle size distribution derived from BET analysis

    STP—Standard temperature and pressure

    图  8  (a) VE、Fe-VE、La-Fe/VE-2、La-Fe/VE-2-P的XRD图谱;(b) VE、La-Fe/VE-2、La-Fe/VE-2-P的FTIR图谱;La-Fe/VE-2和La-Fe/VE-2-P的XPS 图谱:(c) 宽扫描;(d) P2p;(e) La3d5/2;(f) O1s

    Figure  8.  (a) XRD patterns of VE, Fe-VE, La-Fe/VE-2, La-Fe/VE-2-P; (b) FTIR spectra of VE, La-Fe/VE-2, La-Fe/VE-2-P; XPS spectra of La-Fe/VE-2 and La-Fe/VE-2-P: (c) Wide scan; (d) P2p; (e) La3d5/2; (f) O1s

    表  1  蛭石化学成分

    Table  1.   Chemical composition of vermiculite

    Oxide SiO2 Al2O3 K2O Na2O Fe2O3 FeO TiO2 MgO CaO MnO P2O5 H2O
    Content/wt% 37.46 14.19 1.83 0.25 13.07 0.8 1.51 11.42 3.47 0.14 0.043 7.00
    下载: 导出CSV

    表  2  La-Fe/VE复合材料的命名

    Table  2.   Naming of La-Fe/VE composites

    Sample Atomic ratio of La and Fe
    La-Fe/VE-1 1∶1
    La-Fe/VE-2 1∶2
    La-Fe/VE-3 1∶3
    La-Fe/VE-5 1∶4
    La-Fe/VE-2-P 1∶2 (After phosphate adsorption)
    下载: 导出CSV

    表  3  La-Fe/VE-2上磷酸盐吸附的动力学参数

    Table  3.   Kinetic parameters of phosphate adsorption on La-Fe/VE-2

    Kinetic equations qe/(mg·g−1) k1/k2 R2
    Pseudo first-order 48.73 0.0668 0.985
    Pseudo second-order 56.23 0.0015 0.995
    Notes: qe―Phosphate adsorption capacity inequilibrium; k1― Seudo-first-order kinetic con stant (min−1); k2―Pseudo-second-order kinetic constant (g·mg−1·min−1); R2―Determination coefficient.
    下载: 导出CSV

    表  4  La-Fe/VE-2 粒子内扩散方程参数

    Table  4.   Parameters of the intra-particle diffusion equation for La-Fe/VE-2

    kd1 R2 kd2 R2 kd3 R2
    5.01 0.99 3.43 0.98 0.18 0.98
    Note: kd1, kd2, kd3―Phase I, phase II, phase III intra-particle diffusion rate constant (mg·min0.5/g).
    下载: 导出CSV

    表  5  La-Fe/VE-2 的 Langmuir 和 Freundlich 拟合参数

    Table  5.   Langmuir and Freundlich fitting parameters for La-Fe/VE-2

    Langmuir Freundlich
    qm/(mg·g−1) KL/(L·mg−1) $ R^2$ KF/(L·mg−1) 1/n $R^2 $
    185.09 0.0089 0.977 9.53 0.456 0.907
    Notes: qm―Maximum adsorption capacity; KL―Adsorption equilibrium constants of Langmuir; KF―Freundlich Adsorption equilibrium constant; n―Constant related to the adsorption capacity and affinity.
    下载: 导出CSV

    表  6  制备的 La-Fe/VE-2 与其他材料的性能比较

    Table  6.   Performance comparison of prepared La-Fe/VE-2 with other materials

    Material Adsorption capacity/
    (mg·g−1)
    pH Temperature/℃ Ref.
    Fe3O4/La-MOF 58.70 5-7 25 [28]
    Lanthanum modified natural zeolite (LZ)
    Lanthanum-modified magnetic zeolite (LMZ)
    122.70
    109.17
    6 25 [29]
    La/Fe engineered bentonite (LFB) 82.02 2-6 20 [19]
    NaLa(CO3)2/Fe3O4 composites (MLC) 77.85 4-11 25 [27]
    La/bi-hydroxyl double salts (HDS) 168.12 2-12 25 [30]
    La-incorporated ternary (hydr)oxides nanocomposite (MALZ) 80.80 4-10 25 [25]
    Lanthanum/aluminum engineered bentonite (LAB) 93.61 3-6 25 [31]
    La(OH)3-modified exfoliated vermiculites 79.60 3-7 25 [32]
    Le/Fe bimetallic-modified vermiculite (LFV) 185.09 3-9 25 This work
    下载: 导出CSV
  • [1] LÜRLING M, MACKAY E, REITZEL K, et al. Editorial—A critical perspective on geo-engineering for eutrophication management in lakes[J]. Water Research, 2016, 97: 1-10. doi: 10.1016/j.watres.2016.03.035
    [2] YOU K, YANG W, SONG P, et al. Lanthanum-modified magnetic oyster shell and its use for enhancing phosphate removal from water[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633: 127897. doi: 10.1016/j.colsurfa.2021.127897
    [3] SHANG Y, GUO K, JIANG P, et al. Adsorption of phosphate by the cellulose-based biomaterial and its sustained release of laden phosphate in aqueous solution and soil[J]. International Journal of Biological Macromolecules, 2018, 109: 524-534. doi: 10.1016/j.ijbiomac.2017.12.118
    [4] LIU X, ZHANG L. Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies[J]. Powder Technology, 2015, 277: 112-119. doi: 10.1016/j.powtec.2015.02.055
    [5] KOH K Y, ZHANG S, PAUL C J. Hydrothermally synthesized lanthanum carbonate nanorod for adsorption of phosphorus: Material synthesis and optimization, and demonstration of excellent performance[J]. Chemical Engineering Journal, 2020, 380: 122153. doi: 10.1016/j.cej.2019.122153
    [6] HUANG W, ZHANG Y, LI D. Adsorptive removal of phosphate from water using mesoporous materials: A review[J]. Journal of Environmental Management, 2017, 193: 470-482.
    [7] HAGHSERESHT F, WANG S, DO D D. A novel lanthanum-modified bentonite, phoslock, for phosphate removal from wastewaters[J]. Applied Clay Science, 2009, 46(4): 369-375. doi: 10.1016/j.clay.2009.09.009
    [8] LIU M, LI S, TANG N, et al. Highly efficient capture of phosphate from water via cerium-doped metal-organic frameworks[J]. Journal of Cleaner Production, 2020, 265: 121782. doi: 10.1016/j.jclepro.2020.121782
    [9] BUGARČIĆ M, LOPIČIĆ Z, ŠOŠTARIĆ T, et al. Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106020. doi: 10.1016/j.jece.2021.106020
    [10] 苏小丽. 河北灵寿蛭石的结构与表面性质调控及其反应机理[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019.

    SU Xiaoli. Modification on structure and surface property of vermiculite from Linshou Hebei and the mechamism involved[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2019(in Chinese).
    [11] HAN L, WANG T, GONG J, et al. Multi-hydroxyl containing organo-vermiculites for enhanced adsorption of coexisting methyl blue and Pb(II) and their adsorption mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129542. doi: 10.1016/j.colsurfa.2022.129542
    [12] FANG L, WU B, CHAN J K M, et al. Lanthanum oxide nanorods for enhanced phosphate removal from sewage: A response surface methodology study[J]. Chemosphere, 2018, 192: 209-216. doi: 10.1016/j.chemosphere.2017.10.154
    [13] LIU B, LOU S, ZENG Y, et al. High-efficiency adsorption of phosphate by Fe-Zr-La tri-metal oxide composite from aqueous media: Performance and mechanism[J]. Advanced Powder Technology, 2021, 32(12): 4587-4598. doi: 10.1016/j.apt.2021.10.011
    [14] YUAN M, QIU S, LI M, et al. Enhancing phosphate removal performance in water using La-Ca/Fe-LDH: La loading alleviates ineffective stacking of laminates and increases the number of active adsorption sites[J]. Journal of Cleaner Production, 2023, 388: 135857. doi: 10.1016/j.jclepro.2023.135857
    [15] 李含, 赵雨, 陈嘉超, 等. Ce-La双金属氧化物同步去除酸性废水中磷酸盐和氟的性能与机理[J]. 中国环境科学, 2023, 43(10): 5148-5156.

    LI Han, ZHAO Yu, CHEN Jiachao, et al. Simultaneous removal of phosphate and fluoride from acid wastewater by Ce-La bimetal oxides: Performance and mechanism[J]. China Environmental Science, 2023, 43(10): 5148-5156(in Chinese).
    [16] 刘晨阳, 王毅力, 李小林, 等. Fe3O4负载非晶态(碳酸)氧化锆复合材料对磷的吸附性能及机理[J]. 环境工程学报, 2022, 16(4): 1133-1144.

    LIU Chenyang, WANG Yili, LI Xiaolin, et al. Fe3O4 loaded amorphous zirconium (carbonate) oxides composite for phosphate adsorption: Performance, mechanism and treatment effect in real wastewater[J]. Chinese Journal of Environmental Engineering, 2022, 16(4): 1133-1144(in Chinese).
    [17] 徐硕, 夏夜, 邹本东, 等. 镧铝复合改性膨润土的制备及其对磷酸盐吸附性能的研究[J]. 稀土, 2023, 44(1): 198-206.

    XU Shuo, XIA Ye, ZOU Bendong, et al. Preparation and phosphate adsorption performance of lanthanum aluminum composite modified bentonite[J]. Chinese Rare Earths, 2023, 44(1): 198-206(in Chinese).
    [18] YU J, XIANG C, ZHANG G, et al. Activation of lattice oxygen in LaFe (oxy)hydroxides for efficient phosphorus removal[J]. Environmental Science & Technology, 2019, 53(15): 9073-9080.
    [19] WANG B, ZHANG H, HU X, et al. Efficient phosphate elimination from aqueous media by La/Fe bimetallic modified bentonite: Adsorption behavior and inner mechanism[J]. Chemosphere, 2023, 312: 137149. doi: 10.1016/j.chemosphere.2022.137149
    [20] TANG N, NIU C, LI X, et al. Efficient removal of Cd2+ and Pb2+ from aqueous solution with amino- and thiol-functionalized activated carbon: Isotherm and kinetics modeling[J]. Science of the Total Environment, 2018, 635: 1331-1344. doi: 10.1016/j.scitotenv.2018.04.236
    [21] 中华人民共和国生态环境部. 污水综合排放标准: GB/T 8978—1996[S]. 北京: 中国环境科学出版社, 1997.

    Ministry of Ecology and Environment of the People's Republic of China. Integrated wastewater discharge standard: GB/T 8978—1996[S]. Beijing: China Environmental Science Press, 1997(in Chinese).
    [22] CHUBAR N I, KANIBOLOTSKYY V A, STRELKO V V, et al. Adsorption of phosphate ions on novel inorganic ion exchangers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 255(1-3): 55-63.
    [23] XIE J, WANG Z, LU S, et al. Removal and recovery of phosphate from water by lanthanum hydroxide materials[J]. Chemical Engineering Journal, 2014, 254: 163-170. doi: 10.1016/j.cej.2014.05.113
    [24] LIU J, ZHOU Q, CHEN J, et al. Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber[J]. Chemical Engineering Journal, 2013, 215-216: 859-867. doi: 10.1016/j.cej.2012.11.067
    [25] SHI W, FU Y, JIANG W, et al. Enhanced phosphate removal by zeolite loaded with Mg-Al-La ternary (hydr)oxides from aqueous solutions: Performance and mechanism[J]. Chemical Engineering Journal, 2019, 357: 33-44. doi: 10.1016/j.cej.2018.08.003
    [26] ZHANG W, OU J, WANG B, et al. Efficient heavy metal removal from water by alginate-based porous nanocomposite hydrogels: The enhanced removal mechanism and influencing factor insight[J]. Journal of Hazardous Materials, 2021, 418: 126358. doi: 10.1016/j.jhazmat.2021.126358
    [27] HAO H, WANG Y, SHI B. NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: Synthesis and adsorption mechanistic study[J]. Water Research, 2019, 155: 1-11. doi: 10.1016/j.watres.2019.01.049
    [28] HE Q, ZHAO H, TENG Z, et al. Efficient recovery of phosphate by Fe3O4/La-MOF: An insight of adsorption performance and mechanism from electrochemical properties[J]. Separation and Purification Technology, 2023, 314: 123529. doi: 10.1016/j.seppur.2023.123529
    [29] LUO Q, WEI J, GUO Z, et al. Adsorption and immobilization of phosphorus from water and sediments using a lanthanum-modified natural zeolite: Performance, mechanism and effect[J]. Separation and Purification Technology, 2024, 329: 125187. doi: 10.1016/j.seppur.2023.125187
    [30] LU B, WANG G, ZHAO L, et al. Bimetallic capture sites on porous La/Bi hydroxyl double salts for efficient phosphate adsorption: Multiple active centers and excellent selective properties[J]. Chemosphere, 2023, 344: 140304. doi: 10.1016/j.chemosphere.2023.140304
    [31] WANG B, ZHANG H, XU Z, et al. La/Al engineered bentonite composite for efficient phosphate separation from aqueous media: Preparation optimization, adsorptive behavior and mechanism insight[J]. Separation and Purification Technology, 2022, 290: 120894. doi: 10.1016/j.seppur.2022.120894
    [32] HUANG W, LI D, LIU Z, et al. Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents[J]. Chemical Engineering Journal, 2014, 236: 191-201. doi: 10.1016/j.cej.2013.09.077
    [33] CHEN M, GUO Q, PEI F, et al. The role of Fe(III) in enhancement of interaction between chitosan and vermiculite for synergistic co-removal of Cr(VI) and Cd(II)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606: 125356. doi: 10.1016/j.colsurfa.2020.125356
    [34] WANG G, YUE X, ZHANG S, et al. La(III) loaded Fe(III) cross-linked chitosan composites for efficient removal of phosphate from wastewater: Performance and mechanisms[J]. Journal of Cleaner Production, 2022, 379: 134833. doi: 10.1016/j.jclepro.2022.134833
    [35] QIU H, LIANG C, YU J, et al. Preferable phosphate sequestration by nano-La(III) (hydr)oxides modified wheat straw with excellent properties in regeneration[J]. Chemical Engineering Journal, 2017, 315: 345-354. doi: 10.1016/j.cej.2017.01.043
    [36] HE Y, LIN H, DONG Y, et al. Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite[J]. Chemosphere, 2016, 164: 387-395. doi: 10.1016/j.chemosphere.2016.08.110
    [37] REN S, HUANG S, LIU B. Enhanced removal of ammonia nitrogen from rare earth wastewater by NaCl modified vermiculite: Performance and mechanism[J]. Chemosphere, 2022, 302: 134742. doi: 10.1016/j.chemosphere.2022.134742
    [38] AKALIN H A, HIÇSÖNMEZ Ü, YILMAZ H, et al. Removal of cesium from aqueous solution by adsorption onto sivas-yildizeli (Türkiye) vermiculite: Equilibrium, kinetic and thermodynamic studies[J]. Journal of the Turkish Chemical Society, Section A: Chemistry, 2018, 5(1): 85-116. doi: 10.18596/jotcsa.317771
    [39] KONG L, TIAN Y, PANG Z, et al. Needle-like Mg-La bimetal oxide nanocomposites derived from periclase and lanthanum for cost-effective phosphate and fluoride removal: Characterization, performance and mechanism[J]. Chemical Engineering Journal, 2020, 382: 122963. doi: 10.1016/j.cej.2019.122963
    [40] AKRAM M, GAO B, PAN J, et al. Enhanced removal of phosphate using pomegranate peel-modified nickel-lanthanum hydroxide[J]. Science of the Total Environment, 2022, 809: 151181. doi: 10.1016/j.scitotenv.2021.151181
    [41] ZHAO Y, SHAN X, AN Q, et al. Interfacial integration of zirconium components with amino-modified lignin for selective and efficient phosphate capture[J]. Chemical Engineering Journal, 2020, 398: 125561. doi: 10.1016/j.cej.2020.125561
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  42
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2023-12-26
  • 录用日期:  2024-01-12
  • 网络出版日期:  2024-01-23
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回