留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型层状BiOF光催化剂的制备及其应用研究进展

邓玉婷 林金池 于秀明 朱文韬 杨金辉 谢水波

邓玉婷, 林金池, 于秀明, 等. 新型层状BiOF光催化剂的制备及其应用研究进展[J]. 复合材料学报, 2024, 41(10): 5165-5182. doi: 10.13801/j.cnki.fhclxb.20240019.002
引用本文: 邓玉婷, 林金池, 于秀明, 等. 新型层状BiOF光催化剂的制备及其应用研究进展[J]. 复合材料学报, 2024, 41(10): 5165-5182. doi: 10.13801/j.cnki.fhclxb.20240019.002
DENG Yuting, LIN Jinchi, YU Xiuming, et al. Advance in preparation and application of novel layered BiOF as photocatalyst[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5165-5182. doi: 10.13801/j.cnki.fhclxb.20240019.002
Citation: DENG Yuting, LIN Jinchi, YU Xiuming, et al. Advance in preparation and application of novel layered BiOF as photocatalyst[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5165-5182. doi: 10.13801/j.cnki.fhclxb.20240019.002

新型层状BiOF光催化剂的制备及其应用研究进展

doi: 10.13801/j.cnki.fhclxb.20240019.002
基金项目: 湖南省自然科学基金(2023JJ50123);湖南省研究生科研创新项目(CX20230974)
详细信息
    通讯作者:

    杨金辉,硕士,教授,硕士生导师,研究方向为水环境与水处理工程 E-mail: 842893915@qq.com

  • 中图分类号: TQ426;TB332

Advance in preparation and application of novel layered BiOF as photocatalyst

Funds: Hunan Provincial Natural Science Foundation (2023JJ50123); Hunan Province Graduate Research Innovation Project (CX20230974)
  • 摘要: 世界经济迅速发展导致的环境污染和能源危机成为全球共同面对的威胁与挑战,光催化技术为该问题提供了高效的解决方案。氟氧化铋(BiOF)具有特殊的层状结构、低毒性、高稳定性、丰富的可调控性和良好的光催化性等优点,成为光催化研究领域的重要材料。然而BiOF带隙较大,导致其光生载流子易复合且电荷转移率低,因此寻求新的合成方式及改性修饰方法对提高BiOF光催化性能具有重要研究意义。本文介绍了近年来BiOF光催化剂的制备方法、改性策略、反应机制等方面的研究现状,综述分析其在降解污染物、CO2还原、电极与电池、纳米铝热剂等环境能源领域的应用,并对该类材料未来的发展与可能面临的挑战做出展望,旨在为开发新型高效的BiOF光催化剂提供理论借鉴与技术支撑。

     

  • 图  1  (a) BiOF的晶体结构[24];(b) BiOF的带隙结构图[25];(c) BiOF的内部电场(IEF)示意图[17]

    Figure  1.  (a) Crystal structure of BiOF[24]; (b) Band gap structure of BiOF[25]; (c) Internal electric field (IEF) diagram of BiOF[17]

    E—Energy; EF—Fermi level; Eg—Band gap energy; DOS—Density of states

    图  2  BiOF的光催化机制图[32]

    Figure  2.  Photocatalytic mechanism diagram of BiOF[32]

    图  3  溶剂热法制备BiOF的过程示意图[40]

    Figure  3.  Schematic diagram of the process for the preparation of BiOF using solvothermal method[40]

    图  4  纳米棉状BiOF的TEM图像[41]

    Figure  4.  TEM image of nano-cotton-like BiOF[41]

    图  5  溶剂热法120℃ ((a)~(c))、140℃ ((d)~(f))和160℃ ((g)~(i))条件下合成的BiOF的SEM图像[31]

    Figure  5.  SEM images of BiOF synthesised by solvothermal method at 120℃ ((a)-(c)), 140℃ ((d)-(f)) and 160℃ ((g)-(i))[31]

    图  6  pH=10.7 ((a), (b))、pH=11.5 ((c), (d))、pH=11.8 ((e), (f))下BiOF的SEM和HRTEM图像;(g)生长方向由[001]到[101]的转变示意图[44]

    Figure  6.  SEM and HRTEM images of BiOF at pH=10.7 ((a), (b)), pH=11.5 ((c), (d)), pH=11.8 ((e), (f)); (g) Schematic diagram of growth direction change from [001] to [101][44]

    图  7  球状BiOF的SEM图像[55]

    Figure  7.  SEM images of spherical BiOF[55]

    图  8  BiOCl向BiOF转换示意图[64]

    Figure  8.  Schematic diagram of BiOCl to BiOF conversion[64]

    VEth/VW—Ethanol/water volume ratio

    图  9  金属离子(a)和非金属元素(b)掺杂原理[86]

    Figure  9.  Doping principle of metal ion (a) and non-metal element (b)[86]

    VB—Valence band; CB—Conduction band; λ—Wave length

    图  10  I型异质结(a)、II型异质结(b)、Z型异质结(c)和p-n型异质结(d)电子-空穴对分离示意图[92]

    Figure  10.  Schematic illustration of separation of electron-hole pairs in the case of Type-I heterojunction (a), Type-II heterojunction (b), Z-scheme heterojunction (c) and p-n junction (d)[92]

    图  11  光催化CO2还原机制示意图[124]

    Figure  11.  Schematic diagram of photocatalytic CO2 reduction mechanism[124]

    SHE—Standard hydrogen electrode

    图  12  Li-BiOF复合材料的制备及其金属锂剥离/电镀行为示意图[131]

    Figure  12.  Schematic illustration of the fabrication and the metallic Li stripping/plating behavior of the Li-BiOF composite[131]

    图  13  n-Al/BiOF燃烧反应机制示意图[135]

    Figure  13.  Schematic diagram of the combustion reaction mechanism of n-Al/BiOF[135]

    表  1  BiOF的制备方法

    Table  1.   Preparation method of BiOF

    Preparation
    method
    Bismuth
    source
    Fluoride
    source
    Reaction condition Advantage and disadvantage Ref.
    Solvothermal method Bi(NO3)3·5H2O NH4F/NaF/HF pH=6-10
    120-200℃
    Advantage: Economical and environmentally friendly, easy to operate, with small product particle size, high purity, and easy to control morphology;
    Disadvantage: High temperature and high pressure conditions are required, resulting in high equipment investment and difficulty in mass production
    [31, 36-45]
    Coprecipitation method Bi(NO3)3·5H2O NH4F Room temperature, 8 h; 400℃, 2 h Advantage: Simple, easy to operate, low cost, mild reaction conditions, suitable for industrial production; Disadvantage: Easy aggregation, poor crystallinity, and uneven particle size distribution [18, 46-55]
    Solid-state
    sintering method
    Bi2O3 HF 425℃, 12 h Advantage: Beneficial for preparing materials with high density, strength, and uniform structure;
    Disadvantage: Strict temperature conditions and difficulty in controlling particle size
    [56-59]
    Ion exchange method BiOCl NH4F 170℃, 6 h Advantage: Achieve precise control and optimization of materials, with high efficiency, and can be used in large-scale production;
    Disadvantage: Difficulty in regenerating exchange agents, high waste treatment and cost
    [60-64]
    Mechanochemical method Bi2O3 BiF3 700 r/min,
    2 h
    Advantage: Environmentally friendly, with short reaction time;
    Disadvantage: High energy consumption, possible introduction of impurities during the preparation process, and easy wear of equipment
    [38, 65-72]
    下载: 导出CSV

    表  2  BiOF离子掺杂改性的制备方法及改性效果

    Table  2.   Preparation method and modification effect of BiOF ion doping modification

    Photocatalyst Preparation method Modification effect Ref.
    Metal ion doping Ag-BiOF Solvothermal method The degradation rate of methylene blue (MB) under visible light is significantly better than that of pure BiOF. [87]
    Ti-BiOF Coprecipitation method The electrochemical performance test results show that 5% Ti-BiOF material has higher specific capacity and better rate performance than pure BiOF. [88]
    Pd-BiOF Solvothermal method Pd-BiOF exhibits strong absorption in both infrared and visible spectra, significantly enhancing its photocatalytic performance. [89]
    Eu3+-BiOF Solid-state
    sintering method
    Rhodamine B (RhB) is completely degraded under visible light for 75 min. [90]
    Er3+-BiOF Coprecipitation method The luminescence characteristics of BiOF submicron particles activated by Er3+ have potential applications in ratio thermometers. [91]
    Sm3+-BiOF Solid-state
    sintering method
    The photocatalytic activity of 0.11Sm3+-BiOF is the best, and RhB is completely degraded at 180 min. [15]
    Er3+/Yb3+-BiOF Solid-state
    sintering method
    Er3+/Yb3+ co-doped BiOF almost completely degrades RhB after 40 min. [32]
    Tm3+/Yb3+-BiOF Solvothermal method Tm3+/Yb3+-BiOF enhances the degradation effect of RhB. [30]
    Non-metallic
    element doping
    F-BiOF Solvothermal method F self doped layered BiOF enhances the internal electric field of the crystal and increases the luminescence intensity. [31]
    下载: 导出CSV

    表  3  BiOF异质结及其光催化活性总结

    Table  3.   Summary of BiOF heterojunction and its photocatalytic activity

    Photocatalyst Preparation
    method
    Heterojunction
    type
    Modification effect Ref.
    BiOF/BiFeO3 Hydrothermal method Type-I heterojunction The photocatalytic coupling of benzylamine to N-benzylidene benzylamine using BiOF/BiFeO3 can achieve a high conversion rate of 80%, which is 2.1 times higher than pure BiOF. [98]
    BiOBr/BiOF Hydrothermal method Type-II
    heterojunction
    The maximum degradation rates of RhB and nitrobenzene by BiOBr/BiOF under visible light irradiation are 100% (25 min) and 94% (300 min), respectively. [99]
    BiOF/BiOCl0.75Br0.25 Ultrasonic assisted alcoholysis method Type-II
    heterojunction
    Under visible light, the degradation rate of RhB by BiOF/BiOCl0.75Br0.25 reaches 97% after 45 min. [100]
    BiOF/Bi2O3 Solvothermal method Type-II
    heterojunction
    In the presence of H2O2, the degradation rate of RhB by BiOF/Bi2O3 is close to 100% after 30 min of visible light irradiation. [101]
    BiOF/TiO2 Solid-state
    sintering method
    Type-II
    heterojunction
    Under visible light, the degradation rate of RhB by BiOF/TiO2 reaches 91.2%, which is 7 times higher than that of pure BiOF. [59]
    Ag2O/BiOF Coprecipitation method Z-scheme heterojunction Under simulated sunlight and visible light irradiation, Ag2O/BiOF exhibits higher photocatalytic activity for the degradation of RhB compared to pure BiOF. [102]
    CdS/BiOF
    g-C3N4/BiOF
    Z-scheme heterojunction Both CdS/BiOF and g-C3N4/BiOF can efficiently photolysis and catalytic oxidation of formaldehyde at room temperature. [103]
    BiOCl/BiOF Mechanochemical method p-n junction The degradation activity of BiOCl/BiOF on methyl orange (MO) is better than that of pure BiOF, and the degradation rate reaches 95% at 70 min. [104]
    BiOF/BiOI Solvothermal method p-n junction Under visible light, the degradation rate of crystal violet (CV) and hydroxybenzoic acid (HBA) by BiOF/BiOI reaches 85%, with a rate constant 100 times higher than that of pure BiOF. [105]
    BiOF@ZIF-8 One-pot synthesis method p-n junction BiOF@ZIF-8 is used for selective green oxidation of alcohols, as an efficient multiphase catalyst. [41]
    BiVO4/BiOF Hydrothermal method p-n junction Under visible light, BiVO4/BiOF can completely degrade MB. [106]
    In-MOF/BiOF Hydrothermal method p-n junction 20%In-MOF/BiOF exhibits effective and complete degradation of perfluorooctanoic acid (PFOA) (15 mg/L) under illumination. [107]
    下载: 导出CSV
  • [1] 水博阳, 宋小三, 范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展, 2021, 40(S2): 356-363.

    SHUI Boyang, SONG Xiaosan, FAN Wenjiang. Research progress and challenges of photocatalytic technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 356-363(in Chinese).
    [2] PORCU S, SECCI F, RICCI P C. Advances in hybrid composites for photocatalytic applications: A review[J]. Molecules, 2022, 27(20): 6828-6861.
    [3] CHONG M N, JIN B, CHOW C W K, et al. Recent developments in photocatalytic water treatment technology: A review[J]. Water Research, 2010, 44(10): 2997-3027.
    [4] TONG H, OUYANG S X, BI Y P, et al. Nano-photocatalytic materials: Possibilities and challenges[J]. Advanced Materials, 2012, 24(2): 229-251.
    [5] HE R A, CAO S W, ZHOU P, et al. Recent advances in visible light Bi-based photocatalysts[J]. Chinese Journal of Catalysis, 2014, 35(7): 989-1007.
    [6] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
    [7] WANG M Y, IOCCOZIA J, SUN L, et al. Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis[J]. Energy & Environmental Science, 2014, 7(7): 2182-2202.
    [8] HUMAYUN M, RAZIQ F, KHAN A, et al. Modification strategies of TiO2 for potential applications in photocatalysis: Acritical review[J]. Green Chemistry Letters and Reviews, 2018, 11(2): 86-102.
    [9] ZHENG Y, LIN L H, WANG B, et al. Graphitic carbon nitride polymers toward sustainable photoredox catalysis[J]. Angewandte Chemie International Edition, 2015, 54(44): 12868-12884.
    [10] WU W, HAO R, LIU F, et al. Single-crystalline α-Fe2O3 nanostructures: Controlled synthesis and high-index plane-enhanced photodegradation by visible light[J]. Journal of Materials Chemistry A, 2013, 1(23): 6888-6894.
    [11] ZHOU Y G, ZHANG Y F, LIN M S, et al. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis[J]. Nature Communications, 2015, 6: 8340-8347.
    [12] YU C L, WU Z, LIU R Y, et al. Novel fluorinated Bi2MoO6 nanocrystals for efficient photocatalytic removal of water organic pollutants under different light source illumination[J]. Applied Catalysis B: Environmental, 2017, 209: 1-11.
    [13] LIAO L, LIU J, WANG T, et al. Improved hydrogen generation of Al-H2O reaction by BiOX (X=Halogen) and influence rule[J]. Materials (Basel), 2022, 15(22): 8199-8210.
    [14] LIN D, ZHANG H, AN X, et al. Theoretical calculation assisted materials screening of BiOX (X=F, Cl, Br, I) for electrochemical absorption of cesium ions[J]. Physical Chemistry Chemical Physics, 2021, 23(14): 8500-8507.
    [15] WANG C, RAN W, DU P, et al. Enhanced visible light-driven photocatalytic activities and photoluminescence characteristics of BiOF nanoparticles determined via doping engineering[J]. Inorganic Chemistry, 2020, 59(16): 11801-11813.
    [16] MENG X C, ZHANG Z S. Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches[J]. Journal of Molecular Catalysis A-Chemical, 2016, 423: 533-549.
    [17] ZOU S, TENG F, CHANG C, et al. Controllable synthesis of uniform BiOF nanosheets and their improved photocatalytic activity by an exposed high-energy {002} facet and internal electric field[J]. RSC Advances, 2015, 5(108): 88936-88942.
    [18] SU W, WANG J, HUANG Y, et al. Synthesis and catalytic performances of a novel photocatalyst BiOF[J]. Scripta Materialia, 2010, 62(6): 345-348.
    [19] LIU S, YU J, CHENG B, et al. Fluorinated semiconductor photocatalysts: Tunable synthesis and unique properties[J]. Advances in Colloid and Interface Science, 2012, 173: 35-53.
    [20] LYU K L, CHENG B, YU J G, et al. Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity[J]. Physical Chemistry Chemical Physics, 2012, 14(16): 5349-5362.
    [21] JIA H M, HE W W, ZHANG B B, et al. Facile synthesis of bismuth oxyhalide nanosheet films with distinct conduction type and photo-induced charge carrier behavior[J]. Applied Surface Science, 2018, 441: 832-840.
    [22] 郝玮, 王杰, 胥生元, 等. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023, 37(20): 52-61. doi: 10.11896/cldb.22030313

    HAO Wei, WANG Jie, XU Shengyuan, et al. A review of preparation and application of BiOCl as photocatalyst[J]. Materials Reports, 2023, 37(20): 52-61(in Chinese). doi: 10.11896/cldb.22030313
    [23] 周汉强, 于明飞, 陈巧珊, 等. 碘氧化铋光催化剂的合成、改性及净化一氧化氮[J]. 化学进展, 2021, 33(12): 2404-2412.

    ZHOU Hanqiang, YU Mingfei, CHEN Qiaoshan, et al. Synthesis, modification of bismuth oxyiodide photocatalyst for purification of nitric oxide[J]. Progress in Chemistry, 2021, 33(12): 2404-2412(in Chinese).
    [24] 王田慧. 铋氧氟半导体层状结构演化下的稀土离子发光及温度探测行为研究[D]. 昆明: 昆明理工大学, 2022.

    WANG Tianhui. Study on the luminescence and temperature detection behavior of rare earth ions under the evolution of layered structure of bismuth oxygen fluoride semiconductor[D]. Kunming: Kunming University of Science and Technology, 2022(in Chinese).
    [25] ZHANG J X, ZHAO Z Y. Comparative analysis of the interfacial structure and properties of BiOX/BiOY (X, Y = F, Cl, Br, and I) heterostructures through DFT calculations[J]. Inorganic Chemistry, 2023, 62(21): 8397-8406.
    [26] LYU Y, LIU Y, ZHU Y, et al. Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod[J]. Journal of Materials Chemistry A, 2014, 2(4): 1174-1182.
    [27] HUANG H, HE Y, LIN Z, et al. Two novel Bi-based borate photocatalysts: Crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation[J]. The Journal of Physical Chemistry C, 2013, 117(44): 22986-22994.
    [28] ZHANG L, WANG W, YANG J, et al. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst[J]. Applied Catalysis A: General, 2006, 308: 105-110.
    [29] YADAV M, GARG S, CHANDRA A, et al. Quercetin-sensitized BiOF nanostructures: An investigation on photoinduced charge transfer and regeneration process for degradation of organic pollutants[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 383: 112014-112023.
    [30] 程妍. 稀土掺杂氟氧化铋基异质结材料的制备及其光催化性能的研究[D]. 沈阳: 辽宁大学, 2023.

    CHENG Yan. Preparation and photocatalytic properties of rare earth doped bismuth fluoride oxide heterojunction materials[D]. Shenyang: Liaoning University, 2023(in Chinese).
    [31] 徐祖元. 稀土掺杂层状BiOF半导体的制备及发光性质研究[D]. 昆明: 昆明理工大学, 2019.

    XU Zuyuan. Preparation and luminescent properties of rare earth doped layered BiOF semiconductor[D]. Kunming: Kunming University of Science and Technology, 2019(in Chinese).
    [32] DU P, RAN W, WANG C, et al. Facile realization of boosted near-infrared-visible light driven photocatalytic activities of BiOF nanoparticles through simultaneously exploiting doping and upconversion strategy[J]. Advanced Materials Interfaces, 2021, 8(17): 749-760.
    [33] 陶莎莎. 掺杂氯氧化铋(BiOCl)的制备及光催化降解染料性能增强机制研究[D]. 西安: 西安理工大学, 2021.

    TAO Shasha. Preparation of doped bismuth oxychloride and enhancement mechanism of photocatalytic degradation of dyes[D]. Xi'an: Xi'an University of Technology, 2021(in Chinese).
    [34] HUANG W L, ZHU Q. Structural and electronic properties of BiOX (X=F, Cl, Br, I) considering Bi5f states[J]. Computational Materials Science, 2009, 46(4): 1076-1084.
    [35] HUANG W L. Electronic structures and optical properties of BiOX (X=F, Cl, Br, I) via DFT calculations[J]. Journal of Computational Chemistry, 2009, 30(12): 1882-1891.
    [36] 赵林艳, 席晓丽, 樊佑书, 等. 纳米氧化钨的水热/溶剂热法制备及应用的综述[J]. 材料导报, 2019, 33(19): 3203-3209. doi: 10.11896/cldb.18060143

    ZHAO Linyan, XI Xiaoli, FAN Youshu, et al. Review of recent progress in the synthesis of nano-tungsten oxide via hydrothermal/solvothermal method and the application[J]. Materials Reports, 2019, 33(19): 3203-3209(in Chinese). doi: 10.11896/cldb.18060143
    [37] YANG B W V, GOLDSMITH M, RIZZI J P. A novel product from BECKMANN rearrangement of erythromycin—A 9(E)OXIME[J]. Tetrahedron Letters, 1994, 35(19): 3025-3028.
    [38] HU J, HUANG Z, LIU Y. Beyond solvothermal: Alternative synthetic methods for covalent organic frameworks[J]. Angewandte Chemie (International Edition in English), 2023, 62(37): 6999-7010.
    [39] XIA C, JOO S W, HOJJATI-NAJAFABADI A, et al. Latest advances in layered covalent organic frameworks for water and wastewater treatment[J]. Chemosphere, 2023, 329: 138580-138592.
    [40] LIU R, PAN Y, ZHANG J, et al. Upconversion of Yb3+/Ho3+ co-doped bismuth oxyfluoride and fluoride microcrystals for high-performance ratiometric luminescence thermometry[J]. Journal of Luminescence, 2023, 258: 119791-119798.
    [41] GHAYOUMIAN N, ALIYAN H, FAZAELI R. A novel nano-cotton-like bismuth oxyfluoride (NC-BiOF) and a novel nanosheet heterogeneous compound BiOF@ZIF-8 as catalyst for the selective and green oxidation of benzylic alcohols[J]. Journal of the Chinese Chemical Society, 2018, 66(4): 363-370.
    [42] 任鸣, 张棋棋, 余东方, 等. 一种制备BiOF光催化剂的方法及催化剂用途: 中国, 104891444A[P]. 2015-09-09.

    REN Ming, ZHANG Qiqi, YU Dongfang, et al. A method for preparing BiOF photocatalyst and its application: CN Patent, 104891444A[P]. 2015-09-09(in Chinese).
    [43] YUE C, ZHU L, QIU Y, et al. Recent advances of plasmonic elemental Bi based photocatalysts in environmental remediation and energy conversion[J]. Journal of Cleaner Production, 2023, 392: 136017-136035.
    [44] ZHANG A, TENG F, ZHAI Y, et al. Controllable synthesis and efficient photocatalytic activity of BiOF nanodisks exposed with {101} facets, instead of {001} facets[J]. Journal of Alloys and Compounds, 2019, 794: 127-136.
    [45] JIANG J, ZHAO K, XIAO X Y, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets[J]. Journal of the American Chemical Society, 2012, 134(10): 4473-4476.
    [46] TRIFOI A R, MATEI E, RÂPĂ M, et al. Coprecipitation nanoarchitectonics for the synthesis of magnetite: A review of mechanism and characterization[J]. Reaction Kinetics, Mechanisms and Catalysis, 2023, 136(6): 2835-2874.
    [47] POPESCU R C, ANDRONESCU E, VASILE B S. Recent advances in magnetite nanoparticle functionalization for nanomedicine[J]. Nanomaterials, 2019, 9(12): 1791-1821.
    [48] DAOUSH W M. Co-precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications[J]. Journal of Nanomedicine Research, 2017, 5(3): 1-6.
    [49] VINOSHA P A, MANIKANDAN A, JUDITH CEICILIA A S, et al. Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications[J]. Ceramics International, 2021, 47(8): 10512-10535.
    [50] 汪永丽, 张远欣. 共沉淀法与水热法制备磁性四氧化三铁纳米颗粒的比较研究[J]. 山东化工, 2016, 45(21): 47-48, 51. doi: 10.3969/j.issn.1008-021X.2016.21.019

    WANG Yongli, ZHANG Yuanxin. A comparative study between coprecipitation method and hydrothermal method magnetic to prepareferroferric oxide nanoparticles[J]. Shandong Chemical Industry, 2016, 45(21): 47-48, 51(in Chinese). doi: 10.3969/j.issn.1008-021X.2016.21.019
    [51] SANTOSO U T, ABDULLAH A, MUJIYANTI D R, et al. Room temperature synthesis of magnetite particles by an oil membrane layer-assisted reverse co-precipitation approach[J]. Advanced Materials Research, 2021, 1162: 41-46.
    [52] AJINKYA N, YU X F, KAITHAL P, et al. Magnetic iron oxide nanoparticle (IONP) synthesis to applications: Present and future[J]. Materials, 2020, 13(20): 4644-4678.
    [53] MYLKIE K, NOWAK P, RYBCZYNSKI P, et al. Polymer-coated magnetite nanoparticles for protein immobilization[J]. Materials (Basel), 2021, 14(2): 248-287.
    [54] ALZAMLY A, BAKIRO M, AHMED S H, et al. Construction of BiOF/BiOI nanocomposites with tunable band gaps as efficient visible-light photocatalysts[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375: 30-39.
    [55] 孙剑辉, 胡莉敏, 董淑英, 等. 一种氟氧化铋/石墨烯复合可见光催化剂的制备方法: 中国, 104148094B[P]. 2016-09-21.

    SUN Jianhui, HU Limin, DONG Shuying, et al. A preparation method of bismuth oxyfluoride/graphene composite visible light catalyst: CN Patent, 104148094B[P]. 2016-09-21(in Chinese).
    [56] KUMAR A, DUTTA S, KIM S, et al. Solid-state reaction synthesis of nanoscale materials: Strategies and applications[J]. Chemical Reviews, 2022, 122(15): 12748-12863.
    [57] RABHA S, DOBBIDI P. Structural, electrical and dielectric studies on (1−x)MgTiO3xBa0.5Sr0.5TiO3 composite ceramics for type-II capacitor applications[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(6): 5327-5341.
    [58] 李芬芬, 沈以赴. 烧结法制备金属多孔材料[J]. 金属功能材料, 2008(5): 33-36.

    LI Fenfen, SHEN Yipu. Preparation technologies of sintered metallic porous material[J]. Metallic Functional Materials, 2008(5): 33-36(in Chinese).
    [59] NASR M, HUANG W, BITTENCOURT C, et al. Synthesis of BiOF/TiO2 heterostructures and their enhanced visible-light photocatalytic activity[J]. European Journal of Inorganic Chemistry, 2020, 2020(3): 253-260.
    [60] PRIYADARSHINI P, DAS S, SENAPATI S, et al. Preparation of nanosheets embedded ZnSe/Bi2Se3 core/shell quantum dots for the study of optical properties and antibacterial activity[J]. Surfaces and Interfaces, 2023, 37: 102687-102698.
    [61] CHO G, PARK Y, HONG Y K, et al. Ion exchange: An advanced synthetic method for complex nanoparticles[J]. Nano Convergence, 2019, 6(1): 17-33.
    [62] CAO Y, XIAO M, DONG W, et al. Intrinsic pseudocapacitive Na0.44MnO2 prepared by novel ion-exchange method for high-rate and robust sodium-ion storage[J]. Science China Materials, 2023, 66(10): 3810-3816.
    [63] PENG Y, WANG Z, REN D, et al. Ion exchange synthesis of copper-based hydroxyapatite for the catalytic degradation of phenol[J]. Water Science and Technology, 2023, 88(9): 2332-2343.
    [64] KAN Y, TENG F, YANG Y, et al. Direct conversion mechanism from BiOCl nanosheets to BiOF, Bi7F11O5 and BiF3 in the presence of a fluorine resource[J]. RSC Advances, 2016, 6(68): 63347-63357.
    [65] DUBADI R, HUANG S D, JARONIEC M. Mechanochemical synthesis of nanoparticles for potential antimicrobial applications[J]. Materials, 2023, 16(4): 1460-1480.
    [66] TSUZUKI T. Mechanochemical synthesis of metal oxide nanoparticles[J]. Communications Chemistry, 2021, 4(1): 143-153.
    [67] DIPPONG T, LEVEI E A, CADAR O. Recent advances in synthesis and applications of MFe2O4 (M=Co, Cu, Mn, Ni, Zn) nanoparticles[J]. Nanomaterials (Basel), 2021, 11(6): 1560-1592.
    [68] RIGHTMIRE N R, HANUSA T P. Advances in organometallic synthesis with mechanochemical methods[J]. Dalton Transactions, 2016, 45(6): 2352-2362.
    [69] FANTOZZI N, VOLLE J N, PORCHEDDU A, et al. Green metrics in mechanochemistry[J]. Chemical Society Reviews, 2023, 52(19): 6680-6714.
    [70] QU J, ZHANG Q W, LI X W, et al. Mechanochemical approaches to synthesize layered double hydroxides: A review[J]. Applied Clay Science, 2016, 119: 185-192.
    [71] WU L, ZHANG Q, LI Z, et al. Mechanochemical syntheses of a series of bismuth oxyhalide composites to progressively enhance the visible-light responsive activities for the degradation of bisphenol-A[J]. Materials Science in Semiconductor Processing, 2020, 105: 104733-104740.
    [72] 刘恩辉, 周勇, 韩秀莉, 等. 一种BiOF材料的制备方法及其应用: 中国, 108483495B[P]. 2020-04-07.

    LIU Enhui, ZHOU Yong, HAN Xiuli, et al. A preparation method and application of BiOF materials: CN Patent, 108483495B[P]. 2020-04-07(in Chinese).
    [73] BERVAS M, YAKSHINSKIY B, KLEIN L C, et al. Soft-chemistry synthesis and characterization of bismuth oxyfluorides and ammonium bismuth fluorides[J]. Journal of the American Ceramic Society, 2005, 89(2): 645-651.
    [74] ESCUDERO A, MORETTI E, OCAÑA M. Synthesis and luminescence of uniform europium-doped bismuth fluoride and bismuth oxyfluoride particles with different morphologies[J]. CrystEngComm, 2014, 16(16): 3274-3284.
    [75] LI J M, WU C C, LI J, et al. 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution[J]. Chinese Journal of Catalysis, 2022, 43(2): 339-349.
    [76] PUTRI L K, NG B J, ONG W J, et al. Engineering nanoscale p-n junction via the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2018, 6(7): 3181-3194.
    [77] LOW J X, YU J G, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694.
    [78] 付荣荣, 李延敏, 高善民, 等. TiO2光催化剂的形貌与晶面调控[J]. 无机化学学报, 2014, 30(10): 2231-2245.

    FU Rongrong, LI Yanmin, GAO Shanmin, et al. Morphology and crystal face control of TiO2 photocatalyst[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(10): 2231-2245(in Chinese).
    [79] WANG Y, MENG J, JING S, et al. Origin of bismuth-rich strategy in bismuth oxyhalide photocatalysts[J]. Energy & Environmental Materials, 2022, 6(5): 12432-12439.
    [80] ZHANG M, CHEN X J, JIANG X Y, et al. Activate Fe3S4 nanorods by Ni doping for efficient dye-sensitized photocatalytic hydrogen production[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14198-14206.
    [81] ZHOU Y, CHEN J, BAKR O M, et al. Metal-doped lead halide perovskites: Synthesis, properties, and optoelectronic applications[J]. Chemistry of Materials, 2018, 30(19): 6589-6613.
    [82] DEVI L G, KAVITHA R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity[J]. Applied Catalysis B: Environmental, 2013, 140: 559-587.
    [83] KANNAN K, RADHIKA D, NESARAJ A S, et al. Facile synthesis of NiO-CYSO nanocomposite for photocatalytic and antibacterial applications[J]. Inorganic Chemistry Communications, 2020, 122: 108307-108330.
    [84] KANNAN K, RADHIKA D, GNANASANGEETHA D, et al. Photocatalytic and antimicrobial properties of microwave synthesized mixed metal oxide nanocomposite[J]. Inorganic Chemistry Communications, 2021, 125: 108429-108438.
    [85] 王广钊. 密度泛函理论对掺杂及异质结构复合宽隙半导体光催化活性的研究[D]. 重庆: 西南大学, 2017.

    WANG Guangzhao. Density functional theory study on photocatalytic activities of doped and heterostructured wide band gap semiconductors[D]. Chongqing: Southwest University, 2017(in Chinese).
    [86] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.

    LONG Zeqing, SONG Hui, ZHANG Guangming. Research progress in modification and application of bismuth oxyhalide photocatalyst[J]. Materials Reports, 2021, 35(5): 5067-5074(in Chinese).
    [87] VADIVEL S, KAMALAKANNAN V P, KAVITHA N P, et al. Development of novel Ag modified BiOF squares/g-C3N4 composite for photocatalytic applications[J]. Materials Science in Semiconductor Processing, 2016, 41: 59-66.
    [88] 周勇. Ti掺杂BiOF、Bi掺杂TiO2材料的制备及其电化学性能研究[D]. 湘潭: 湘潭大学, 2019.

    ZHOU Yong. The preparation of Ti doped BiOF, Bi doped TiO2 mateirals and studies for their electrochemical performance[D]. Xiangtan: Xiangtan University, 2019(in Chinese).
    [89] ZHOU S, SHI T, CHEN Z, et al. First-principles study of optoelectronic properties of the noble metal (Ag and Pd) doped BiOX (X=F, Cl, Br, and I) photocatalytic system[J]. Catalysts, 2019, 9(2): 198-208.
    [90] SARAF R, SHIVAKUMARA C, BEHERA S, et al. Synthesis of Eu3+-activated BiOF and BiOBr phosphors: Photoluminescence, Judd-Ofelt analysis and photocatalytic properties[J]. RSC Advances, 2015, 5(12): 9241-9254.
    [91] WANG C, DU P, LI W, et al. Facile synthesis and photoluminescence performance of Er3+-activated BiOF sub-micro particles for ratiometric thermometers[J]. Journal of Luminescence, 2020, 226: 117416-117422.
    [92] REN Y, ZENG D, ONG W J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review[J]. Chinese Journal of Catalysis, 2019, 40(3): 289-319.
    [93] MARSCHALL R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Advanced Functional Materials, 2014, 24(17): 2421-2440.
    [94] WHITE J L, BARUCH M F, PANDER J E, et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes[J]. Chemical Reviews, 2015, 115(23): 12888-12935.
    [95] ZHOU H L, QU Y Q, ZEID T, et al. Towards highly efficient photocatalysts using semiconductor nanoarchitectures[J]. Energy & Environmental Science, 2012, 5(5): 6732-6743.
    [96] QI K Z, CHENG B, YU J G, et al. A review on TiO2-based Z-scheme photocatalysts[J]. Chinese Journal of Catalysis, 2017, 38(12): 1936-1955.
    [97] HE M R, SUN K W, SURYAWANSHI M P, et al. Interface engineering of p-n heterojunction for kesterite photovoltaics: A progress review[J]. Journal of Energy Chemistry, 2021, 60: 1-8.
    [98] ABDELHAMID A S, ALZARD R H, SIDDIG L A, et al. Facile synthesis, characterization, and photocatalytic performance of BiOF/BiFeO3 hybrid heterojunction for benzylamine coupling under simulated light irradiation[J]. Photochem, 2023, 3(1): 187-196.
    [99] JIANG T, LI J, GAO Y, et al. BiOBr/BiOF composites for efficient degradation of rhodamine B and nitrobenzene under visible light irradiation[J]. Journal of Colloid and Interface Science, 2017, 490: 812-818.
    [100] HAN J, LI G, QIANG L, et al. Ultransonic-assisted alcoholysis preparation of BiOClxBr1−x modified BiOF microstructure with enhanced photocatalytic performance[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(6): 5995-6006.
    [101] QIANG Z, ZHU S, LI T, et al. Excellent photo- and sono- catalytic BiOF/Bi2O3 heterojunction nanoflakes synthesized via pH-dependent and ionic liquid assisted solvothermal method[J]. Materials Today Communications, 2020, 23: 100980-100989.
    [102] YANG M, YANG Q, ZHONG J, et al. Enhanced photocatalytic performance of Ag2O/BiOF composite photocatalysts originating from efficient interfacial charge separation[J]. Applied Surface Science, 2017, 416: 666-671.
    [103] ZHANG Y, QI S, YU J, et al. Theoretical study on two direct Z-scheme heterostructure photocatalysts for efficient photohydrolysis and catalytic oxidation of formaldehyde, CdS/BiOF and g-C3N4/BiOF[J]. ChemistrySelect, 2022, 7(48): 2723-2734.
    [104] CHENG J, FREZET L, BONNET P, et al. Preparation and photocatalytic properties of a hierarchical BiOCl/BiOF composite photocatalyst[J]. Catalysis Letters, 2018, 148(5): 1281-1288.
    [105] CHEN C C, FU J Y, CHANG J L, et al. Bismuth oxyfluoride/bismuth oxyiodide nanocomposites enhance visible-light-driven photocatalytic activity[J]. Journal of Colloid and Interface Science, 2018, 532: 375-386.
    [106] RAZAVI-KHOSROSHAHI H, MOHAMMADZADEH S, HOJAMBERDIEV M, et al. BiVO4/BiOX (X=F, Cl, Br, I) heterojunctions for degrading organic dye under visible light[J]. Advanced Powder Technology, 2019, 30(7): 1290-1296.
    [107] WANG J, CAO C S, WANG J, et al. Insights into highly efficient photodegradation of poly/perfluoroalkyl substances by In-MOF/BiOF heterojunctions: Built-in electric field and strong surface adsorption[J]. Applied Catalysis B: Environmental, 2022, 304: 121013.
    [108] AI C, WANG B, DUAN K, et al. Enhanced photocatalytic activity by regulating charge transferring: Unveiling the decisive role of cerium oxide crystal-facet engineering over heterojunction[J]. Journal of Colloid and Interface Science, 2023, 636: 341-350.
    [109] WANG J, CAO C, ZHANG Y, et al. Underneath mechanisms into the super effective degradation of PFOA by BiOF nanosheets with tunable oxygen vacancies on exposed {101} facets[J]. Applied Catalysis B: Environmental, 2021, 286: 119911.
    [110] CHAWLA A, SUDHAIK A, SONU, et al. Bi-rich BixOyBrz-based photocatalysts for energy conversion and environmental remediation: A review[J]. Coordination Chemistry Reviews, 2023, 491: 215246.
    [111] HASSAN J Z, RAZA A, QUMAR U, et al. Recent advances in engineering strategies of Bi-based photocatalysts for environmental remediation[J]. Sustainable Materials and Technologies, 2022, 33: 478-504.
    [112] SHARMA K, DUTTA V, SHARMA S, et al. Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 1-20.
    [113] HU W, SHAN P, SUN T, et al. Preparation, nonlinear optical properties, and theoretical analysis of the non-centrosymmetric bismuth oxyfluoride, Bi7F11O5[J]. Journal of Alloys and Compounds, 2016, 658: 788-794.
    [114] GUAN Y, WANG S, LI Z, et al. Polycrystalline bismuth oxyfluoride of BiO0.51F1.98 with self-doped BiOF achieving distinctly enhanced photocatalytic activity[J]. Materials Letters, 2020, 262: 127197.
    [115] IBRAHIM S, MINASYAN L, BONNET P, et al. Photocatalytic properties of bismuth oxyfluoride thin films deposited by reactive magnetron sputtering in Ar/O2/CF4 atmosphere[EB/OL]. (2023-03-30) [2024-01-17]. https://hal.science/hal-04037069.
    [116] ZHANG N, WEN L, YAN J, et al. Dye-sensitized graphitic carbon nitride (g-C3N4) for photocatalysis: A brief review[J]. Chemical Papers, 2019, 74(2): 389-406.
    [117] 汤晓蕾, 董延茂, 袁妍, 等. 染料敏化TiO2光催化剂的研究进展[J]. 工业水处理, 2021, 41(10): 8-13.

    TANG Xiaolei, DONG Yanmao, YUAN Yan, et al. Research development of dye-sensitized technology on TiO2 photocatalyst[J]. Industrial Water Treatment, 2021, 41(10): 8-13(in Chinese).
    [118] NARAYAN M R. Review: Dye sensitized solar cells based on natural photosensitizers[J]. Renewable and Sustainable Energy Reviews, 2011, 16: 208-215.
    [119] 黄应兴. 染料敏化BiOX (X=F、Cl)的制备及可见光催化性能[D]. 福州: 福州大学, 2015.

    HUANG Yingxing. Dye-sensitized BiOX (X=F, Cl): Preparation and visible-light photocatalysis[D]. Fuzhou: Fuzhou University, 2015(in Chinese).
    [120] AHMED S, RASUL M G, MARTENS W N, et al. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments[J]. Desalination, 2010, 261(1-2): 3-18.
    [121] FIELD J A, JOHNSON C A, ROSE J B. What is "emerging"?[J]. Environmental Science & Technology, 2006, 40(23): 7105.
    [122] 王斌, 邓述波, 黄俊, 等. 我国新兴污染物环境风险评价与控制研究进展[J]. 环境化学, 2013, 32(7): 1129-1136. doi: 10.7524/j.issn.0254-6108.2013.07.003

    WANG Bin, DENG Shubo, HUANG Jun, et al. Environmental risk assessment and control of emerging contaminants in China[J]. Environmental Chemistry, 2013, 32(7): 1129-1136(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.003
    [123] YANG M, YANG Q, ZHONG J, et al. PVA-assisted hydrothermal preparation of BiOF with remarkably enhanced photocatalytic performance[J]. Materials Letters, 2017, 201: 35-38.
    [124] RAN J R, JARONIEC M, QIAO S Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities[J]. Advanced Materials, 2018, 30(7): 1704649.
    [125] GUO R T, WANG J, BI Z X, et al. Recent advances and perspectives of core-shell nanostructured materials for photocatalytic CO2 reduction[J]. Small, 2023, 19(9): 6314-6331.
    [126] 李跃军, 曹铁平, 孙大伟. 富Bi型 Bi4O5Br2/TiO2 复合纤维的高效光催化CO2还原[J]. 复合材料学报, 2023, 40(11): 6251-6259.

    LI Yuejun, CAO Tieping, SUN Dawei. A bismuth-rich Bi4O5Br2/TiO2 composites fibers photocatalyst enables dramatic CO2 reduction activity[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6251-6259(in Chinese).
    [127] WANG P, HUANG B B, DAI Y, et al. Plasmonic photocatalysts: Harvesting visible light with noble metal nanoparticles[J]. Physical Chemistry Chemical Physics, 2012, 14(28): 9813-9825.
    [128] 任学君. 卤氧化铋的制备及光催化性能[D]. 石家庄: 河北师范大学, 2020.

    REN Xuejun. Preparation and photocatalytic properties of BiOX[D]. Shijiazhuang: Hebei Normal University, 2020(in Chinese).
    [129] SORCAR S, YORIYA S, LEE H, et al. A review of recent progress in gas phase CO2 reduction and suggestions on future advancement[J]. Materials Today Chemistry, 2020, 16: 100264.
    [130] ZHANG X M, CHEN Y L, LIU R S, et al. Plasmonic photocatalysis[J]. Reports on Progress in Physics, 2013, 76(4): 046401.
    [131] FU X, SHANG C, ZHOU G, et al. Li3Bi/LiF/Li2O derived from mechanical rolling of Li metal with BiOF nanoplates as stable filler for dendrite-free Li metal batteries[J]. Journal of Colloid and Interface Science, 2022, 626: 435-444.
    [132] 管辉. BiOX(X=Br, F)/rGO二维复合材料的合成及其在锂硫电池中的应用[D]. 郑州: 郑州大学, 2022.

    GUAN Hui. Preparation of BiOX(X=Br, F)/rGO two-dimensional composites and their application in lithium-sulfur batteries[D]. Zhengzhou: Zhengzhou University, 2022(in Chinese).
    [133] NIE H, PISHARATH S, HNG H H. Reactivity of Al/CuO nanothermite composites with fluoropolymers[J]. Combustion Science and Technology, 2020, 194(7): 1378-1394.
    [134] MURSALAT M, HUANG C, JULIEN B, et al. Low-temperature exothermic reactions in Al/CuO nanothermites producing copper nanodots and accelerating combustion[J]. ACS Applied Nano Materials, 2021, 4(4): 3811-3820.
    [135] LI J, LIU X, HUANG Q, et al. A novel nano-thermite system with BiOF as fluorine-containing oxidant for enhanced energy release performance[J]. Chemical Engineering Journal, 2023, 468: 143591-143603.
    [136] 李经纬, 朱晨光. BiOF的掺入对n-Al/CuO纳米铝热体系性能的影响[J]. 爆破器材, 2023, 52(4): 20-25. doi: 10.3969/j.issn.1001-8352.2023.04.003

    LI Jingwei, ZHU Chenguang. Effect of BiOF doping on properties of n-Al/CuO nano-thermite system[J]. Explosive Materials, 2023, 52(4): 20-25(in Chinese). doi: 10.3969/j.issn.1001-8352.2023.04.003
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  46
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-23
  • 修回日期:  2024-01-09
  • 录用日期:  2024-01-12
  • 网络出版日期:  2024-01-19
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回