Loading [MathJax]/jax/output/SVG/jax.js

铁氧体/芦苇秆炭复合材料的制备与吸波性能

简煜, 范勋娥, 邱柏杨, 田迅东, 杨喜

简煜, 范勋娥, 邱柏杨, 等. 铁氧体/芦苇秆炭复合材料的制备与吸波性能[J]. 复合材料学报, 2024, 41(10): 5351-5360. DOI: 10.13801/j.cnki.fhclxb.20240018.001
引用本文: 简煜, 范勋娥, 邱柏杨, 等. 铁氧体/芦苇秆炭复合材料的制备与吸波性能[J]. 复合材料学报, 2024, 41(10): 5351-5360. DOI: 10.13801/j.cnki.fhclxb.20240018.001
JIAN Yu, FAN Xun'e, QIU Baiyang, et al. Preparation and microwave absorption properties of ferrite/reed charcoal composites[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5351-5360. DOI: 10.13801/j.cnki.fhclxb.20240018.001
Citation: JIAN Yu, FAN Xun'e, QIU Baiyang, et al. Preparation and microwave absorption properties of ferrite/reed charcoal composites[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5351-5360. DOI: 10.13801/j.cnki.fhclxb.20240018.001

铁氧体/芦苇秆炭复合材料的制备与吸波性能

基金项目: 湖南省自然科学基金(S2022JJQNJJ0900);国家自然科学基金(31901375);中南林业科技大学人才启动基金(2018YJ033)
详细信息
    通讯作者:

    杨喜,博士,副教授,硕士生导师,研究方向为竹材材性及改良、生物质炭材料 E-mail: yangxijy@126.com

  • 中图分类号: TB332

Preparation and microwave absorption properties of ferrite/reed charcoal composites

Funds: Natural Science Foundation of Hunan Province (S2022JJQNJJ0900); National Natural Science Foundation of China (31901375); Talent Initiation Fund of Central South University of Forestry and Technology (2018YJ033)
  • 摘要: 为了解决铁氧体吸波材料密度大、吸收带宽窄等问题,以芦苇茎秆为原料,采用常温浸渍及高温原位生长法制备了铁氧体/芦苇秆炭(Ferrite/RC,FRC)复合材料,通过调节碳化温度调控复合材料的电磁特性和电磁波吸收性能。SEM、TEM、XRD、VSM及VNA等结果表明:Ferrite/RC复合材料保留了芦苇秆天然的三维蜂窝状网络结构,Fe3O4及铁纳米颗粒均匀分布在芦苇秆碳壁与孔道中;提升碳化温度(650~690℃)可增大复合材料的电导率与介电损耗能力,但温度过高会导致材料阻抗失配从而降低电磁衰减能力。碳化温度为670℃时制备的复合材料(FRC-670)吸波性能最佳,它在匹配厚度仅为1.7 mm时反射损耗达到−45.7 dB,对应有效吸收带宽为3.4 GHz;在厚度为2 mm时有效吸收带宽为5.7 GHz (12.1~17.8 GHz)。其主要的电磁波衰减机制源于复合材料良好的电导损耗、极化弛豫损耗以及电损耗与磁损耗的协同作用。铁氧体/芦苇秆炭复合材料优异的吸波性能在电磁波吸收领域具有良好前景,可促进芦苇资源的高值化与功能化应用。

     

    Abstract: In order to solve the problems of high density and narrow absorption bandwidth of ferrite absorbing materials, the ferrite/reed charcoal (Ferrite/RC, FRC) composites were prepared from reed stalks by impregnation and high temperature in-situ growth methods. The electromagnetic characteristics and electromagnetic wave absorption properties of the composites were controlled by tailoring the carbonization temperature. The results of SEM, TEM, XRD, VSM and VNA show that the Ferrite/RC composites retain the natural three-dimensional honeycomb network structures of the reed stalks, and Fe3O4 and iron nanoparticles are uniformly distributed in the charcoal wall and pores of the reed stem; Raising the carbonization temperature (650-690℃) can increase the conductivity and dielectric loss ability of composites, but excessive temperature can lead to impedance mismatch of the material and reduce its electromagnetic attenuation ability. The composites prepared at a carbonization temperature of 670℃ exhibit the best absorption performance, with a reflection loss of −45.7 dB at a thickness of only 1.7 mm and an effective absorption bandwidth of 5.7 GHz (12.1-17.8 GHz) at a thickness of 2 mm, which is attributed to the good conductivity loss, polarization relaxation, and the synergistic effect of electrical and magnetic losses of composite materials. The excellent absorption performance of Ferrite/RC composites has good prospects in the field of electromagnetic wave absorption, which can promote the high-value and functional application of reed resources.

     

  • 可再生能源的间隙性和波动性为能量的安全、高效利用带来较大挑战,已经成为经济可持续发展面临的重要议题[1]。钒液流电池(Vanadium liquid flow battery,VRB)可将电能高效储存,具有本征安全、响应速度快和运行寿命长等特点,相对于其他类型储能技术,钒电池技术在大规模、长时储能领域显示出优越的发展前景[1-3]

    作为钒电池的关键部件,质子交换膜(Proton exchange membrane,PEM)需具有如下特性[4-5]:(1)高离子选择性,即高质子传导率和低钒离子渗透率;(2)高拉伸强度和穿刺强度;(3)良好的理化稳定性;(4)较好的经济性。目前,基于全氟磺酸树脂的PEM在VRB中的应用最为广泛,如杜邦公司Nafion系列膜,但其溶胀性和离子选择性等与VRB的严格要求仍存在差距,优化膜的离子渗透性是本领域的研究热点[6-8]。实验表明,向膜中引入具有适宜孔道结构和表面性质的功能材料是改善其离子选择性的有效手段[5],如金属-有机框架(Metal-organic frameworks,MOFs)材料[9-11]

    在MOFs材料中,UIO-66 (Zr-MOF)由六核氧化锆簇作为二级构建单元和1, 4-苯二甲酸接头构建[12],具有刚性结构和较强的耐酸性,同时拥有介于水和离子(<0.3 nm)和钒离子(>0.6 nm)的孔道尺寸[13]。UIO-66主要通过水热合成法制备,但在合成过程中,烘箱加热较难提供均匀的受热环境,存在合成时间长、材料结构均一性差等问题[14]。微波加热可促进反应物中分子或离子直接耦合,实现能量的快速传导,具有反应速率快和产率高等优点,已被广泛用于多种纳米材料的合成[14-16]。Zhai等[6]通过在磺化聚醚醚酮(SPEEK)中掺入15wt% 的传统水热法UIO-66-NH2来改善复合膜的质子传导率,在120 mA·cm−2电流密度下,电池的能量效率(Energy efficiency,EE)为77.3%。Lu等[17]制备高质子选择性的聚多巴胺(PDA)@MOF-808,并将其掺入SPEEK中以优化复合膜的性能,在120 mA·cm−2电流密度下,该膜的EE为83.9%。贾儒等[13]和Wan等[14]也分别对UIO-66的合成和应用展开研究,均采用耗时较长的传统水热法。

    鉴于此,本文采用不同加热方式制备氨基官能化的UIO-66 (UIO-66-NH2),验证微波加热在UIO-66-NH2材料的合成效率、结构优化方面的优势,并将其与Nafion 掺杂,通过溶液浇筑法制备复合膜,对膜的理化性质和电池性能进行表征,探讨新型膜材料对钒电池性能的影响。

    氯化锆(ZrCl4,98%)、2-氨基对苯二甲酸(BDC-NH2,99%),上海麦克林生化科技有限公司;Nafion溶液(固含量5%),美国杜邦公司;无水乙醇,沈阳试剂二厂;N, N-二甲基甲酰胺(DMF)、MgSO4、硫酸氧钒(VOSO4·5H2O)、浓硫酸(98%)、乙酸(99%),国药集团化学试剂有限公司。

    UIO-66-NH2合成原料摩尔比:ZrCl4∶BDC-NH2 = 1∶1。首先,将二者分别溶于20 mL DMF,再在配体溶液中加入2.3 mL乙酸,超声波辅助下混合20 min后得均匀的合成液。随后,将适量上述合成液倒入微波合成罐中,在不同温度下合成15 min,离心后获得棕黄色粉末。将上述粉末分散在无水乙醇中,多次更新乙醇下保持48 h,完成产物清洗。最后,在60℃下干燥12 h,获得产物UIO-66-NH2,记为M-U66-NH2。作为对比,采用同样的合成液,利用传统烘箱加热,在120℃条件下反应24 h制备UIO-66-NH2,经过相同的清洗、干燥处理,获得产物UIO-66-NH2,记为T-U66-NH2。具体操作流程和样品编号见图1表1

    以溶液浇筑法制备复合膜[18]:称取一定质量的M-U66-NH2,在超声辅助下分散在Nafion树脂溶液(固含量5%)中,在450 r/min下搅拌10 h后获得铸膜液。将适量铸膜液倒入带有凹槽的玻璃板上,在140℃真空烘箱中处理4 h,除去溶剂后得到复合膜,在恒温、恒湿条件下保存、备用。将掺杂M-U66-NH2的复合膜记作M/N-XX=1、2、3、6和9,X表示Nafion树脂中M-U66-NH2的质量分数。将掺杂T-U66-NH2的复合膜记作T/N-XX=3。同时,采用相似工艺制备无M-U66-NH2掺杂的纯树脂膜,记作P-N。具体操作流程和样品编号见图1表1

    图  1  微波合成氨基官能化的UIO-66 (UIO-66-NH2)及Nafion复合膜的制备过程示意图
    Figure  1.  Schematic diagram of the preparation process of UIO-66-NH2 and Nafion composite membrane
    M-U66-NH2—UIO-66-NH2 prepared by microwave assisted method; UIO-66-NH2—Zr-MOF when the preparation method does not need to be distinguished; BDC-NH2—2-aminoterephthalic Acid; DMF—N, N-dimethylformamide; HAc—Acetic acid
    表  1  复合质子交换膜的命名
    Table  1.  Naming of composite proton exchange membranes
    Sample name Instruction
    M-U66-NH2 "M" represents microwave heating; "U66" refers to the metal-organic framework material UIO-66; Overall, it indicates the UIO-66-NH2 sample prepared by microwave heating.
    T-U66-NH2 "T" represents traditional oven heating; Overall, it indicates the UIO-66-NH2 sample prepared by oven heating.
    M/N-X "M/N" represents the composite membrane with M-U66-NH2 and Nafion resin; "X" represents the percentage content of M-U66-NH2 in the membrane.
    T/N-X "T/N" represents the composite membrane with T-U66-NH2 and Nafion resin; "X" represents the percentage content of T-U66-NH2 added to the membrane.
    P-N A pure, unmodified Nafion membrane
    N212 Commercial Nafion 212 membrane from DuPont (USA)
    下载: 导出CSV 
    | 显示表格

    采用X射线衍射仪(XRD,Bruker D8)和傅里叶红外光谱(FTIR,Nicolet 380,扫描范围:4000~750 cm−1)评价粉末结构;扫描电子显微镜(SEM,SU8010,Hitachi)和扫描电子能谱(EDS)表征样品的微观形貌和元素分布;万能拉伸试验机(Instron 1186,加载速度为10 mm/min)检测膜的力学性能。

    膜面积溶胀率的计算公式如下:

    SR = (SwetSdry)Sdry×100% (1)

    式中:Swet为湿膜面积(cm2);Sdry为干膜面积(cm2)。

    吸水率的计算公式如下:

    WU = (WwetWdry)Wdry×100% (2)

    式中:Wwet为湿膜质量(g);Wdry为干膜质量(g)。

    应用紫外分光光度计(TU-1810,Beijing Purcell General Instrument Co., Ltd.)测试膜的VO2+渗透性[7],取样间隔12 h,钒离子渗透率计算公式如下:

    VBd(CB(t))dt=APL(CACB(t)) (3)

    式中:CA为VOSO4溶液侧VO2+浓度;CB(t)t时刻MgSO4溶液侧VO2+浓度;VB为MgSO4溶液体积;P为钒离子渗透率;L为膜厚度;A为膜的有效面积(1.77 cm2)。

    应用电化学工作站(CHI660E,上海辰华)测试膜的离子电导率(σ),计算公式如下:

    σ=DRb (4)

    式中:Rb为膜的面电阻;D为膜厚度。

    采用新威电池测试系统表征VRB的电池性能,电流密度范围为100~200 mA·cm−2。循环测试的电流密度为150 mA·cm−2,循环200次。测试膜的放电容量衰减率,计算公式如下:

    =Qdis200Qdis1×100% (5)

    式中:Qdis200为循环200次后的放电容量;Qdis1为第一次循环前放电容量。

    = (6)

    为了优化UIO-66-NH2的合成参数,考察微波合成温度对材料结构的影响。如图2(a)所示,合成时间为15 min,当温度较低时(60℃),晶体结构较规则,颗粒尺寸约为1 μm,但产率仅为60%。随着合成温度的升高,晶体结构特征逐渐增强。如图2(c)所示,100℃下所合成样品具有明显的近八面体的晶体形貌[18]。当温度升至120℃时,晶体结构更加完整,此时粒径约为200 nm (图2(d)),分散性较好,且产率接近90%。由图2(e)可见,通过普通水热法也可以制备出形貌规则的UIO-66-NH2材料,只是所需的合成时间更长[19]

    图  2  不同温度下微波加热15 min ((a)~(d))、烘箱加热24 h (e)制备UIO-66-NH2的SEM图像及微波加热15 min样品的XRD图谱(f)
    Figure  2.  SEM images of UIO-66-NH2 by microwave heating for 15 min ((a)-(d)), oven heating for 24 h (e) and XRD patterns of UIO-66-NH2 by microwave heating for 15 min (f)

    XRD图谱反映样品的结晶度,如图2(f)所示,样品在2θ=7.40°和8.66°处出现了较明显的衍射峰,对应UIO-66-NH2的(111)和(002)晶面,在2θ=26.22°和31.86°等处出现强度略低的衍射峰,以上峰位置和强度与文献报道结果基本一致[20],证明本实验成功合成出UIO-66-NH2晶体。而且,随着合成温度的升高,晶体的衍射峰强度逐渐增加,即使在60℃下仍能合成出晶体。主要原因在于微波作用下反应釜内晶体前驱体溶液能够快速、均匀受热,微波的折射和反射诱导晶体快速成核、生长[21],合成效率得到显著提高。

    为了更清晰地观察复合膜的微观形貌以及膜厚度,本实验对膜样品进行SEM表征。如图3(a)~3(c)所示,不同膜样品均呈现出较均匀、致密的形貌特征,M-U66-NH2的掺杂量对膜形貌的影响较小。图3(d)~3(f)中,不同膜的厚度相近,约为40 μm。P-N膜的截面更加平滑,随着M-U66-NH2掺杂量的增加,复合膜截面的粗糙度逐渐增加,但晶体的掺入未明显改变复合膜的结构。图3(g)~3(j)清晰地展现出M-U66-NH2在M/N-3膜表面的元素分布情况,与M-U66-NH2相关的Zr、N元素及与Nafion树脂相关的F、S元素在膜表面均匀分布,说明复合膜中M-U66-NH2的分散性良好,未发生明显的团聚现象,这为功能材料充分发挥其表面性质和孔道尺寸等优势提供了条件。

    图  3  P-N (a)、M/N-1 (b)、M/N-3 (c) 膜的表面SEM图像;P-N (d)、M/N-1 (e)、M/N-3 (f)膜的截面SEM图像;M/N-3膜的表面EDS元素分布图((g) N;(h) Zr;(i) F;(j) S)
    Figure  3.  Surface SEM images of P-N (a), M/N-1 (b) and M/N-3 (c); Cross-section SEM images of P-N (d), M/N-1 (e) and M/N-3 (f); EDS element images of M/N-3 ((g) N; (h) Zr; (i) F; (j) S)

    为了探究高M-U66-NH2含量对复合膜结构的影响,本实验制备了M/N-6和M/N-9膜。如图4(a)所示,当掺杂量为6wt%时,复合膜截面出现较多尺寸约为2~3 μm的孔洞,这是由于较高掺杂量下,强相互作用促使M-U66-NH2粒子团聚,导致膜内出现缺陷。当掺杂量增至9wt%时,复合膜截面呈现出非对称结构,膜层中可以观察到大尺寸的M-U66-NH2团聚体。产生该现象的原因在于成膜过程中随着溶剂的缓慢挥发,较大尺寸的团聚体会逐渐下沉,并在玻璃板侧富集,形成高M-U66-NH2含量的多孔、疏松区域,此结构不利于UIO-66-NH2功能的充分发挥。同时,产生的缺陷会加速钒离子的跨膜渗透,降低质子交换膜的离子选择性和力学性能[14]

    图  4  M/N-6 ((a), (c))和M/N-9 ((b), (d))膜的截面SEM图像
    Figure  4.  Cross-sectional SEM images of M/N-6 ((a), (c)) and M/N-9 ((b), (d))

    通过FTIR分析M-U66-NH2、P-N、M/N-3膜样品的结构特征,如图5所示。M-U66-NH2345833561436 cm−1处具有明显的特征峰,分别对应N—H的对称和非对称伸缩振动及N—H的剪切伸缩振动,与文献报道一致[22]。P-N膜在12071151 cm−1处为C—F伸缩振动峰,1053 cm−1处为O=S=O振动峰及980 cm−1处为C—F特征峰,此结果与文献中Nafion树脂的特征峰一致[18]。M/N-3膜的FTIR图谱可以近似为M-U66-NH2和P-N图谱的叠加,表明UIO-66-NH2材料在膜中稳定存在,制膜过程并未破坏其微观结构。

    图  5  M-U66-NH2、P-N膜和M/N-3膜的红外图谱
    Figure  5.  FTIR spectra of M-U66-NH2, P-N and M/N-3 membranes

    吸水率和溶胀率是质子交换膜的重要性能指标。如图6(a)所示,基于M-U66-NH2的亲水性和丰富孔道,复合膜的吸水率和溶胀率均随掺入量的提高而增大[23]。同时,M-U66-NH2的刚性结构赋予膜较低的溶胀率(<4%)[24]。膜的吸水率和溶胀率直接影响其离子传导性能,由图6(b)可见,随着UIO-66-NH2掺杂量的提高,膜的质子传导率逐渐增大,而面电阻逐渐变小,如M/N-3的质子传导率达到122.18 mS·cm−1,此改善效果得益于膜中—NH2和—SO3H形成的酸/碱对及存在的氢键网络[25]。当掺杂量超过6wt%时,M-U66-NH2在膜内团聚而缺陷产生,膜的质子传导率较低。比较可见,M/N-3膜的吸水率、溶胀率和质子传导率均高于T/N-3膜,这与UIO-66-NH2的尺寸均一性和完整结构相关。

    图  6  复合膜的吸水率和溶胀率(a)、面电阻和质子传导率(b)、力学性能(c)和应力-应变曲线(d)
    Figure  6.  Water uptake and swelling ratio (a), area resistance and conductivity (b), mechanical properties (c) and stress-strain curves of different membranes (d)
    N212—Nafion 212 commercial membrane, DuPont, USA

    通过拉伸测试评价膜的机械强度。如图6(c)图6(d)所示,M-U66-NH2掺杂量低于3wt%时,复合膜的拉伸强度均高于P-N膜,如M/N-3膜的强度达到27 MPa,也高于T/N-3膜(22.3 MPa)。主要原因是UIO-66-NH2具有刚性结构,且—NH2基团与Nafion的—SO3H基团可形成共轭酸碱对,其强相互作用促使Nafion的分子链与UIO-66-NH2发生物理交联,从而提高了复合膜的力学性能[26]。同时,尺寸更小、更规则的M-U66-NH2与Nafion树脂间的分散更充分、交联程度更高,表现出更优的强化作用[1]。当UIO-66-NH2掺杂量超过6wt%时,膜中的孔洞缺陷导致其机械强度显著降低。

    本实验选取的UIO-66-NH2的有效孔径为0.52 nm,介于水分子(<0.3 nm)和钒离子(>0.6 nm)之间[14],可通过筛分效应提高膜的离子选择性。如图7(a)所示,M/N-X系列复合膜的阻钒性更好,如M/N-3膜的钒离子渗透浓度最低,仅为P-N膜的23%左右,而M/N-9膜的阻钒性能最差。当测试时间大于48 h,T/N-3膜的表现略差于M/N-3膜,主要原因是传统水热法所制备UIO-66-NH2的晶体结构不够完善。

    图  7  复合膜的钒离子渗透浓度(a)、钒离子渗透率和离子选择性(b)
    Figure  7.  Vanadium ion permeation concentration (a), vanadium ion permeability and ion selectivity (b) of composite membranes

    高钒离子渗透性不利于钒电池长期稳定运行,如图7(b)所示,优化条件下所制备的M/N-3膜的钒离子渗透率最低,仅为8.3×10−8 cm2·min−1,且该膜的离子选择性达到15.6×105 S·min·cm−3,约为P-N膜的30倍。当UIO-66-NH2掺入量过低或过高时,膜的离子选择性均较低。另外,与M/N-3膜相比,掺杂T-U66-NH2的复合膜具有接近的离子选择性,这说明两种方法所制备UIO-66-NH2对复合膜离子选择性的影响较小。有研究结果指出增加厚度会提高膜的钒离子渗透率,进而降低膜的离子选择性[7, 27-29]。因此,本实验在充分参考文献数据的基础上,为了平衡氢离子、钒离子的渗透情况,确定膜厚度为40 μm左右。

    分别将P-N、M/N-X和T/N-3膜组装成模拟电池进行测试,评价不同电池的电压效率(Voltage efficiency,VE)、库伦效率(Coulombic efficiency,CE)和能量效率(EE)。由图8(a)可知,在相同电流密度下,随着M-U66-NH2掺杂量的增加,电池的CE逐渐增大,在100 mA·cm−2电流密度下,M/N-3膜电池的库伦效率达到97.66%,高于P-N膜(95.8%)。因膜内粒子团聚造成了结构缺陷,M/N-6和M/N-9膜电池的CE低于M/N-3膜。图8(b)显示M/N-X复合膜的VE高于P-N膜,且随着电流密度的增加,复合膜所装配电池的VE逐渐减小,该趋势与文献报道相似[5]。能量效率是电池性能的综合体现,由图8(c)可见,在电流密度为100~200 mA·cm−2的范围内,M/N-3膜的电池能量效率均高于P-N膜和N212膜(美国杜邦公司Nafion212商品膜),最高达到83.8%,说明M-U66-NH2的掺入有效提升了Nafion膜的电池性能。图8(d)~8(f)更清晰地显示了P-N膜、M/N-3膜和T/N-3膜的性能。在测试电流密度范围内,M/N-3膜的库伦效率与T/N-3膜相当,而其电压效率和能量效率均高于其他两种类型膜样品。可见,适宜比例M-U66-NH2的引入有利于改善膜性能,进而提升钒电池的充放电效率。

    图  8  不同膜所装配钒液流电池(VRBs)的库伦效率(CE) ((a), (d))、电压效率(VE) ((b), (e))和能量效率(EE) ((c), (f))
    Figure  8.  Coulombic efficiency (CE) ((a), (d)), voltage efficiency (VE) ((b), (e)) and energy efficiency (EE) ((c), (f)) of vanadium liquid flow battery (VRBs) assembled with different membranes

    在150 mA·cm−2电流密度下,对不同膜所装配电池充放电200次,比较其循环稳定性。如图9(a)所示,在200次的充放电测试过程中,M/N-3和T/N-3膜的电池CE、VE和EE相对较稳定,无明显降低,说明UIO-66-NH2的引入有效阻碍了钒离子在膜内的渗透,保证了质子在膜中快速、稳定传输。此外,在测试周期内,M/N-3和T/N-3膜的能量效率分别稳定在77.8%和76.5%,无明显衰减,说明复合膜的理化稳定性可以满足钒电池工作环境的需求。但是,测试周期内不同电池的容量衰减情况差异较大。由图9(b)可见,P-N膜的电池容量衰减了81%,而经过同样测试后,掺杂UIO-66-NH2膜的电池容量衰减率仅为45%左右,其中基于M-U66-NH2的复合膜显示出更低的容量衰减率,单次衰减率仅为0.19%,较T/N-3膜(0.24%)提高0.05%,较P-N膜(0.41%)提高0.22%,同时,图9(c)证明了掺杂M-U66-NH2的确会优化VRBs所用质子交换膜的电池性能。

    图  9  150 mA·cm−2电流密度下复合膜所装配电池的循环效率(a)、容量保持率(b)以及与报道性能的对比(c)
    Figure  9.  Cycle efficiency (a) and capacity retention (b) of composite membranes at 150 mA·cm−2, and comparisons with reported performance (c)
    PBI—Polybenzimidazole; PS—Polystyrene; GO—Graphene oxide; SPEEK—Sulfonated poly(ether ether ketone); 2D-ZMs—Two-dimensional zeolite

    (1)与传统水热法相比,微波加热合成UIO-66-NH2的效率更高,耗时仅为前者的1/96,且所制备晶体的结构更完整、更均匀,粒径约为200 nm,在Nafion溶液中分散性良好。

    (2) UIO-66-NH2可改善复合膜的理化稳定性,且可提高膜的质子传导性和离子选择性,优化条件下复合膜的质子传导率可达122.18 mS·cm−1,离子选择性可达15.6×105 S·min·cm−3

    (3)优化条件下复合膜体现出良好的电池性能。在150 mA·cm−2电流密度下,电池的能量效率大于77%,200次循环周期内单次容量衰减率为0.19%,较纯树脂膜提高0.22%。

    (4)基于微波法的UIO-66-NH2与Nafion形成的复合膜具有良好的理化性质和电池性能,为全钒液流电池用高性能质子交换膜的设计和制备提供了新的策略,具有良好的发展前景。

  • 图  1   (a)铁氧体/芦苇秆炭(Ferrite/RC,FRC)复合材料的XRD图谱;(b) FRC-670的热重分析图

    Figure  1.   (a) XRD patterns of ferrite/reed charcoal (Ferrite/RC, FRC) composites; (b) Thermogravimetric analysis diagram of FRC-670

    图  2   FRC-670的SEM图像((a)~(d))和TEM图像((e)~(g))

    Figure  2.   SEM images ((a)-(d)) and TEM images ((e)-(g)) of FRC-670

    图  3   Ferrite/RC复合材料的磁滞回线

    Figure  3.   Magnetic hysteresis loops of Ferrite/RC composites

    M—Magnetization intensity; H—Magnetic field

    图  4   Ferrite/RC复合材料的电磁参数:复介电常数实部ε' (a)、虚部ε'' (b) 和介电损耗正切值tanδε (c);复磁导率实部μ' (d)、虚部μ'' (e)和磁损耗正切值tanδμ (f)

    Figure  4.   Electromagnetic parameters of Ferrite/RC composites: Real part ε' (a), imaginary part ε'' (b) and tangent tanδε (c) of complex permittivity; Real part μ' (d), imaginary part μ'' (e) and tangent tanδμ (f) of permeability

    图  5   Ferrite/RC复合材料的ε'-ε''曲线图((a)~(c))、涡流系数C0 (d)、衰减系数α (e)和FRC-670的阻抗匹配系数|Z| (f)

    Figure  5.   ε'-ε'' curves ((a)-(c)), eddy coefficient C0 (d), attenuation factor α (e) of Ferrite/RC composites and |Z| of FRC-670 (f)

    Zin—Input impedance of the absorber; Z0—Intrinsic impedance of free space

    图  6   FRC-650、FRC-670、RC690和RC-670的反射损耗值((a)~(d))

    Figure  6.   Reflection loss values ((a)-(d)) of FRC-650, FRC-670, FRC-690 and RC-670

    表  1   铁氧体/芦苇秆炭(RC) (FRC)复合材料的命名

    Table  1   Naming of ferrite/reed charcoal (RC) (FRC) composites

    Sample Carbonization temperature/℃
    RC-670 670
    FRC-650 650
    FRC-670 670
    FRC-690 690
    下载: 导出CSV

    表  2   碳基吸波材料的性能对比

    Table  2   Comparison of microwave absorption properties of carbon-based materials

    Absorber RLmin/dB EAB/GHz Thickness/mm Filler loading/wt% Ref.
    FRC-670 −45.7 3.4 1.7 35 This work
    FRC-670 −32.1 5.7 2.0 35 This work
    Walnut shell-based porous carbon −42.4 1.8 2.0 70 [35]
    Functionalized loofah sponge −43.8 5.3 3.0 50 [36]
    Rice husk-based porous C/Co −21.8 5.6 1.4 25 [37]
    Fe3O4@lignin −29.5 2.0 4.0 20 [38]
    NiO/porous carbon −33.8 6.7 8.0 30 [39]
    Wheat straw-derived carbon foam −37.0 8.8 2.5 10 [40]
    Shaddock peel-based CA −29.5 5.8 1.7 20 [31]
    BHPC −47.46 3.40 2.8 10 [41]
    Fe3C/biochar −45.6 5.5 4.24 30 [30]
    Cotton-derived porous Fe3O4/C composite −22.1 4.4 2.0 50 [42]
    NC@Fe3O4 −40.3 4.0 2.0 70 [43]
    Notes: RLmin—Minimum reflection loss value; EAB—Effective absorption bandwidth; CA—Carbon aerogel; BHPC—Biomass hierarchical porous carbon; NC—Nanoporous carbon.
    下载: 导出CSV
  • [1]

    LYU H, YAO Y, LI S, et al. Staggered circular nanoporous graphene conerts electromagentic wave into electricity[J]. Nature Communications, 2023, 14: 1982. DOI: 10.1038/s41467-023-37436-6

    [2]

    YANG B, FANG J, XU C, et al. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption[J]. Nano-Micro Letters, 2022, 14(1): 170. DOI: 10.1007/s40820-022-00920-7

    [3]

    ZHAO X, YAN J, HUANG Y, et al. Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2021, 595: 78-87. DOI: 10.1016/j.jcis.2021.03.109

    [4] 禹刚, 杨嗣星. 移动电话射频电磁辐射对精子质量影响的研究进展[J]. 安全与环境工程, 2022, 29(5): 22-28, 45.

    YU Gang, YANG Sixing. Research progress on the effects of radio frequency electromagnetic radiation from mobile phone on sperm quality[J]. Safety and Environmental Engineering, 2022, 29(5): 22-28, 45(in Chinese).

    [5] 叶好, 胡平, 王策, 等. 磁性纤维电磁波吸收剂研究进展[J]. 化工进展, 2023, 42(10): 5310-5321.

    YE Hao, HU Ping, WANG Ce, et al. Advances in research on magnetic fibrous electromagnetic wave absorbers[J]. Chemical Progress, 2023, 42(10): 5310-5321(in Chinese).

    [6]

    ZHOU X, ZHAO B, LYU H. Low-dimensional cobalt doped carbon composite toward electromagnetic dissipation[J]. Nano Research, 2023, 16: 70-79. DOI: 10.1007/s12274-022-4950-x

    [7]

    HUANG X, WANG Y, LOU Z, et al. Porous, magnetic carbon derived from bamboo for microwave absorption[J]. Carbon, 2023, 209: 118005. DOI: 10.1016/j.carbon.2023.118005

    [8] 杨喜, 曹敏, 简煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 4590-4601.

    YANG Xi, CAO Min, JIAN Yu, et al. Preparation and microwave absorption properties of porous charcoal/Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4590-4601(in Chinese).

    [9]

    GAO X, WU X, QIU J. High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers-carbon nanotubes and Fe3O4 nanoparticles[J]. Advanced Electronic Materials, 2018, 4(5): 1700565. DOI: 10.1002/aelm.201700565

    [10]

    LIU Y, FU Y, LIU L, et al. Low-cost carbothermal reduction preparation of monodisperse Fe3O4/C core-shell nanosheets for improved microwave absorption[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16511-16520.

    [11] 赵佳, 姚艳青, 杨煊赫, 等. 铁氧体及其复合吸波材料的研究进展[J]. 复合材料学报, 2020, 37(11): 2684-2699.

    ZHAO Jia, YAO Yanqing, YANG Xuanhe et al. Research progress of ferrite and its composite absorbing materials[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2684-2699(in Chinese).

    [12]

    SHAO Y Q, LU W B, CHEN H, et al. Flexible ultra-thin Fe3O4/MnO2 coreshell decorated CNT composite with enhanced electromagnetic wave absorption performance[J]. Composites Part B: Engineering, 2018, 144: 111-117. DOI: 10.1016/j.compositesb.2018.02.015

    [13]

    LIU J, LIANG H, WU H. Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance[J]. Composites Part A: Applied Science and Manufacturing, 2020, 130: 105760. DOI: 10.1016/j.compositesa.2019.105760

    [14]

    XU H, YIN X, ZHU M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6332-6341.

    [15]

    LI G, XIE T, YANG S, et al. Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers[J]. The Journal of Physical Chemistry C, 2012, 116(16): 9196-9201. DOI: 10.1021/jp300050u

    [16]

    ZHAO S, GAO Z, CHEN C, et al. Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property[J]. Carbon, 2016, 98: 196-203. DOI: 10.1016/j.carbon.2015.10.101

    [17]

    LI J, DUAN Y, LU W, et al. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film[J]. Nanotechnology, 2018, 29(15): 155201. DOI: 10.1088/1361-6528/aaac72

    [18]

    SHI B, LIU K, CHEN J, et al. Microwave absorption properties of ZnFe2O4/graphite composites prepared by high-temperature ball milling[J]. Journal of Alloys and Compounds, 2022, 905: 164210. DOI: 10.1016/j.jallcom.2022.164210

    [19]

    LYU H, GUO Y, YANG Z, et al. A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials[J]. Journal of Materials Chemistry C, 2017, 5(3): 491-512. DOI: 10.1039/C6TC03026B

    [20]

    LI B, ZENG Z, QIAO J, et al. Hollow ZnO/Fe3O4@C nanofibers for efficient electromagnetic wave absorption[J]. ACS Applied Nano Materials, 2022, 5(8): 11617-11626. DOI: 10.1021/acsanm.2c02616

    [21]

    WANG X, HUANG X, CHEN Z, et al. Ferromagnetic hierarchical carbon nanofiber bundles derived from natural collagen fibers: Truly lightweight and high-performance microwave absorption materials[J]. Journal of Materials Chemistry C, 2015, 3(39): 10146-10153. DOI: 10.1039/C5TC02689J

    [22]

    ZHANG Z, ZHAO Y, LI Z, et al. Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption[J]. Advanced Composites and Hybrid Materials, 2022, 5: 513-524.

    [23]

    DAI B, DONG F, WANG H, et al. Fabrication of CuS/Fe3O4@polypyrrole flower-like composites for excellent electromagnetic wave absorption[J]. Journal of Colloid and Interface Science, 2023, 634: 481-494. DOI: 10.1016/j.jcis.2022.12.029

    [24] 程显彬. Fe3O4/介电复合材料的制备与吸波性能研究[D]. 沈阳: 沈阳工业大学, 2019.

    CHENG Xianbin. Preparation and microwave absorption performance of Fe3O4/dielectric composites[D]. Shenyang: Shenyang University of Technology, 2019(in Chinese).

    [25]

    WANG L, SU S, WANG Y. Fe3O4-graphite composites as a microwave absorber with bimodal microwave absorption[J]. ACS Applied Nano Materials, 2022, 5(12): 17565-17575. DOI: 10.1021/acsanm.2c02977

    [26]

    ZHANG R, WANG L, XU C, et al. Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency[J]. Nano Research, 2022, 15(7): 6743-6750. DOI: 10.1007/s12274-022-4401-8

    [27] 白良平. 芦苇多孔材料的水蒸发及水输运机理研究[D]. 南京: 南京林业大学, 2023.

    BAI Liangping. Study on water evaporation and transport mechanism of reed porous materials[D]. Nanjing: Nanjing Forestry University, 2023(in Chinese).

    [28] 赵双双, 田中建, 陈嘉川, 等. 碱浸渍对芦苇茎秆微观结构及其机械浆性能的影响[J]. 中国造纸, 2021, 40(3): 20-26. DOI: 10.11980/j.issn.0254-508X.2021.03.004

    ZHAO Shuangshuang, TIAN Zhongjian, CHEN Jiachuan, et al. Effect of alkali impregnation on microstructure and mechanical pulp properties of reed stems[J]. China Paper, 2021, 40(3): 20-26(in Chinese). DOI: 10.11980/j.issn.0254-508X.2021.03.004

    [29]

    YANG X, PANG X, CAO M, et al. Efficient microwave absorption induced by hierarchical pores of reed-derived ultralight carbon materials[J]. Industrial Crops and Products, 2021, 171: 113814. DOI: 10.1016/j.indcrop.2021.113814

    [30]

    LOU Z, WANG Q, SUN W, et al. Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability[J]. Chemical Engineering Journal, 2022, 430: 133178. DOI: 10.1016/j.cej.2021.133178

    [31]

    GU W, SHENG J, HUANG Q, et al. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption[J]. Nano-Micro Letters, 2021, 13: 1-14. DOI: 10.1007/s40820-020-00525-y

    [32]

    HAN M, YANG Y, LIU W, et al. Recent advance in three-dimensional porous carbon materials for electromagnetic wave absorption[J]. Science China Materials, 2022, 65(11): 2911-2935. DOI: 10.1007/s40843-022-2153-7

    [33]

    LIU X, CUI X, CHEN Y, et al. Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly (vinylidene fluoride) composites[J]. Carbon, 2015, 95: 870-878. DOI: 10.1016/j.carbon.2015.09.036

    [34]

    ZHANG X J, LYU G C, WANG G S, et al. High-performance microwave absorption of flexible nanocomposites based on flower-like Co superstructures and polyvinylidene fluoride[J]. RSC Advances, 2015, 5(68): 55468-55473. DOI: 10.1039/C5RA06597F

    [35]

    QIU X, WANG L, ZHU H, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon[J]. Nanoscale, 2017, 9(22): 7408-7418. DOI: 10.1039/C7NR02628E

    [36]

    LIU L, YANG S, HU H, et al. Lightweight and efficient microwave-absorbing materials based on loofah-sponge-derived hierarchically porous carbons[J]. ACS Sustainable Chemistry & Engineering, 2018, 7(1): 1228-1238.

    [37]

    FANG J, SHANG Y, CHEN Z, et al. Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation[J]. Journal of Materials Chemistry C, 2017, 5(19): 4695-4705. DOI: 10.1039/C7TC00987A

    [38]

    PEI W, SHANG W, LIANG C, et al. Using lignin as the precursor to synthesize Fe3O4@lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive[J]. Industrial Crops and Products, 2020, 154: 112638. DOI: 10.1016/j.indcrop.2020.112638

    [39]

    WANG H, ZHANG Y, WANG Q, et al. Biomass carbon derived from pine nut shells decorated with NiO nanoflakes for enhanced microwave absorption properties[J]. RSC Advances, 2019, 9(16): 9126-9135. DOI: 10.1039/C9RA00466A

    [40]

    ASLAM M A, DING W, UR REHMAN S, et al. Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance[J]. Applied Surface Science, 2021, 543: 148785. DOI: 10.1016/j.apsusc.2020.148785

    [41]

    WU Z, MENG Z, YAO C, et al. Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption[J]. Materials Chemistry and Physics, 2022, 275: 125246. DOI: 10.1016/j.matchemphys.2021.125246

    [42]

    FANG Y, XUE W, ZHAO R, et al. Effect of nanoporosity on the electromagnetic wave absorption performance in a biomass-templated Fe3O4/C composite: A small-angle neutron scattering study[J]. Journal of Materials Chemistry C, 2020, 8: 319-327. DOI: 10.1039/C9TC04569D

    [43]

    ZHOU P , WANG X, WANG L, et al. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance[J]. Journal of Alloys and Compounds, 2019, 805: 1071-1080.

  • 目的 

    电磁污染已成为仅次于水污染和大气污染的新型环境污染源,而解决电磁污染问题的关键在于设计性能优异的吸波材料。铁氧体是一种典型的磁损耗型吸波材料,有着吸收强、成本低、无毒、制备简单等优点。然而,单独使用铁氧体作为吸波材料时阻抗匹配特性较差,存在吸收带宽较窄、密度大、热稳定性不好等问题,限制了其在电磁波吸收领域的实际应用。为了解决铁氧体吸波材料密度大、吸收带宽窄等问题,将碳基材料与铁氧体材料复合制备吸波材料,使铁氧体的磁损耗与碳材料的介电损耗结合,从而达到优势互补的效果,提升材料的吸波性能。

    方法 

    以芦苇茎秆为原料,采用常温浸渍及高温原位生长法制备了铁氧体/芦苇秆炭(Ferrite/RC)复合材料,通过调节碳化温度调控复合材料的电磁特性和电磁波吸收性能。首先于烧杯内配置0.01 mol/L的硝酸铁溶液60 ml,然后将2 g芦苇秆放入硝酸铁溶液中室温浸泡20 h后移至电热鼓风干燥箱中60℃烘至绝干,得到混合前驱体。将干燥好的混合前驱体置于刚玉舟内并移至管式炉中,在氮气气氛中以5℃/min速率升温至预设温度(650℃、670℃、690℃)保温2 h后,再以相同的速率降温至100℃,自然冷却至室温后取出样品,得到Ferrite/RC复合吸波材料。使用使用场发射扫描电子显微镜(SEM)观察样品的微观形态与结构。采用X射线衍射仪(XRD)分析样品的元素组成。采用热重分析仪(TG)对碳组分和FeO的相对含量进行分析。使用振动样品磁强计(VSM)研究材料的静态磁性能。利用矢量网络分析仪 (VAN) 获取样品测试环在 2~18 GHz 频率范围内的电磁参数()。

    结果 

    ① XRD结果显示,样品在2=18.3°、30.1°、35.5°、43.1°、57.0°、62.5°处均可观察到FeO的特征衍射峰(JCPDS No.74-0748),且几乎所有衍射峰半高宽较小,峰较尖锐,说明芦苇秆炭内成功载入FeO,且得到的复合材料结晶性较好。当碳化温度为690℃时,在2=44°左右出现了Fe的(100)晶面衍射峰 (JCPDS 50-1275)。这可能是因为在较高温度下,Fe被碳元素或热解气体还原生成单质铁。② TG测试结果表明样品中碳组分的相对含量大约是24%,铁氧体大约为74%,二者比例约为1:3。③ 通过SEM可观察到复合材料呈现典型的蜂窝状结构,蜂窝状单元由六边形炭壁围绕而成,其内部为中空通直的管道结构,管道半径约15-30 μm。六边形炭壁上存在一些1~3 μm不等的小孔。芦苇秆炭壁达到了纳米级别,炭壁表面不光滑、有褶皱,纳米FeO颗粒密集有序地固定在芦苇秆碳骨架中。④ TEM结果显示铁氧体纳米颗粒均匀分布在芦苇秆碳骨架中,颗粒大小较为均匀,直径约为20~100 nm。高分辨率TEM图像显示纳米颗粒的条纹间距为0.25 nm,对应于FeO的(311)平面,这与XRD结果相匹配。⑤ 通过VSM得到,FRC-650、FRC-670、FRC-690的饱和磁化强度分别为1.37 emu/g、1.57 emu/g和2.34 emu/g,矫顽力分别为67.98 Oe、60.48 Oe、59.83 Oe。⑥ 通过VNA测试,FRC-650样品在4 mm时具有最低反射损耗峰值()-45.4 dB;厚度为2 mm 时,具有最大的EAB(4.3 GHz)。FRC-670的整体上随厚度减小而增大,它在厚度仅为1.7 mm时的达到 -45.7 dB,对应的EAB为3.4 GHz(14.7-18 GHz);在厚度为2 mm时的吸收频带最宽,可达5.7 GHz(12.1-17.8 GHz),对应的为 -32.1dB。FRC-690在1.5 mm厚度下具有最优的吸波性能,对应的最低值与EAB分别为 -18 dB与4.8 GHz。

    结论 

    铁氧体/芦苇秆炭复合材料保留了芦苇杆天然的三维蜂窝状网络结构,FeO及铁纳米颗粒均匀分布在芦苇秆炭壁与孔道中;提升碳化温度(650~690℃)可增大复合材料的电导率与介电损耗能力,但温度过高会导致材料阻抗失配从而降低电磁衰减能力。碳化温度为670℃时制备的复合材料(FRC-670)吸波性能最佳,它在匹配厚度仅为1.7 mm时反射损耗达到 -45.7 dB,对应有效吸收带宽为3.4 GHz;在厚度为2 mm时有效吸收带宽为5.7 GHz(12.1-17.8 GHz)。其主要的电磁波衰减机制源于复合材料良好的电导损耗、极化弛豫损耗以及电损耗与磁损耗的协同作用。

图(6)  /  表(2)
计量
  • 文章访问数:  332
  • HTML全文浏览量:  209
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-15
  • 修回日期:  2023-12-18
  • 录用日期:  2024-01-07
  • 网络出版日期:  2024-01-17
  • 刊出日期:  2024-10-14

目录

/

返回文章
返回