留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型析出强化镍铁基高温合金GH4650T高温强塑性的优化

王玺同 周永莉 严靖博 刘鹏 袁勇 窦子濯 南艳丽 张鹏

王玺同, 周永莉, 严靖博, 等. 新型析出强化镍铁基高温合金GH4650T高温强塑性的优化[J]. 复合材料学报, 2024, 41(10): 5599-5606. doi: 10.13801/j.cnki.fhclxb.20240012.004
引用本文: 王玺同, 周永莉, 严靖博, 等. 新型析出强化镍铁基高温合金GH4650T高温强塑性的优化[J]. 复合材料学报, 2024, 41(10): 5599-5606. doi: 10.13801/j.cnki.fhclxb.20240012.004
WANG Xitong, ZHOU Yongli, YAN Jingbo, et al. Optimization of the high-temperature strong plasticity of the new precipitation-enhanced nickel-iron-based superalloy GH4650T[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5599-5606. doi: 10.13801/j.cnki.fhclxb.20240012.004
Citation: WANG Xitong, ZHOU Yongli, YAN Jingbo, et al. Optimization of the high-temperature strong plasticity of the new precipitation-enhanced nickel-iron-based superalloy GH4650T[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5599-5606. doi: 10.13801/j.cnki.fhclxb.20240012.004

新型析出强化镍铁基高温合金GH4650T高温强塑性的优化

doi: 10.13801/j.cnki.fhclxb.20240012.004
基金项目: 国家重点研发计划(2023YFB4102301);陕西省自然科学基金(2022JQ-314);华能集团科技项目(HNKJ23-H53);中国博士后基金(2020M683671XB)
详细信息
    通讯作者:

    南艳丽,博士,副教授,硕士生导师,研究方向为碳纳米材料 E-mail: nanyl@xauat.edu.cn

    张鹏,博士,高级工程师,硕士生导师,研究方向为高温合金 E-mail: pengzhangnas@163.com

  • 中图分类号: TG156;TB331

Optimization of the high-temperature strong plasticity of the new precipitation-enhanced nickel-iron-based superalloy GH4650T

Funds: National Key Research and Development Program of China (2023YFB4102301); Natural Science Basic Research Plan in Shaanxi Province of China (2022JQ-314); Science & Technology Project of Huaneng Power International, Inc. (HNKJ23-H53); China Postdoctoral Fund (2020M683671XB)
  • 摘要: 研究了750℃等温时效热处理对固溶态GH4650T在700℃拉伸性能及变形断裂机制的影响。实验发现,随着时效时间的延长,合金拉伸强度先升高后降低,而拉伸塑性表现出相反的变化趋势;时效48 h后,合金具有最佳的拉伸强度,而时效5 h后,合金拉伸伸长率最小。微观组织结构分析表明,时效过程中,γ′相粗化长大动力学遵循Lifshitz-Slyozov-Wagner熟化规律;等温时效过程中,随着γ′相颗粒尺寸的增加,合金主要变形机制由弱耦合位错对切割颗粒转变为强耦合位错对切割颗粒然后转变为Orowan绕过颗粒,而合金断裂的方式由塑性穿晶断裂转变为沿晶断裂然后转变为沿晶加穿晶混合型断裂,并且随着γ′相颗粒尺寸的增加,塑性穿晶断裂的方式越加明显。基于这些实验结果,讨论了合金拉伸性能与变形断裂机制之间的关系。

     

  • 图  1  (a)固溶态GH4650T合金晶界结构的SEM图像;(b)固溶态GH4650T合金晶界MC碳化物的TEM图像(插图是晶界MC碳化物选区衍射花样)

    Figure  1.  (a) SEM images showing the grain boundary structures in the experimental alloy GH4650T in the solutionized stage; (b) TEM image illustrating the MC carbides at grain boundary (The inset is the selected area diffraction pattern of a grain boundar MC carbides at grain boundaries)

    图  2  在750℃经过不同时间热处理后固溶态GH4650T合金晶界结构的SEM图像:(a) 5 h;(b) 36 h;(c) 48 h;(d) 120 h;(e) 275 h;(f) 500 h

    Figure  2.  SEM images showing the microstructures in the experimental alloy GH4650T after solutionizing and aging for different durations at 750℃: (a) 5 h; (b) 36 h; (c) 48 h; (d) 120 h; (e) 275 h; (f) 500 h

    图  3  (a)经过固溶和750℃/275 h时效处理的GH4650T合金晶界M23C6碳化物的TEM暗场像;(b)经过固溶和750℃/24 h时效处理的后GH4650T合金晶粒内部的γ′相颗粒的TEM暗场像

    Figure  3.  (a) TEM dark-field image showing the M23C6 carbides at grain boundary in GH4650T after solutionizing and aging for 275 h at 750℃;(b) TEM dark-field image showing the γ′ precipitates within grain interior in GH4650T after solutionizing and aging for 24 h at 750℃

    图  4  在750℃经过不同时间热处后固溶态GH4650T合金晶内的γ′相颗粒的SEM图像:(a) 5 h;(b) 36 h;(c) 48 h;(d) 120 h;(e) 275 h;(f) 500 h

    Figure  4.  SEM images showing the γ′ precipitates in the experimental alloy GH4650T after solutionizing and aging for different durations at 750℃: (a) 5 h; (b) 36 h; (c) 48 h; (d) 120 h; (e) 275 h; (f) 500 h

    图  5  (a) GH4650T合金的平衡相图(Jmat Pro Version 13.2);(b) γ′相颗粒平均直径d随时效时间t变化关系;(c) γ′相颗粒尺寸的三次方与时效时间的关系

    Figure  5.  (a) Equilibrium phase diagram of the experimental alloy GH4650T (Jmat Pro Version 13.2); (b) Changes in the mean diameter d of γ′ precipitates size with aging time t; (c) d3 versus t

    BCC—Body-centered cubic; MB2—Borides; D—The experimtal datum

    图  6  (a) GH4650T合金700℃时拉伸性能与750℃时效处理时间变化关系;(b) 700℃时GH4650T合金拉伸性能在750℃等温时效过程中随γ′相颗粒平均直径d的变化关系

    Figure  6.  (a) Variations in the tensile properties of the experimental alloy GH4650T at 700℃ with the aging time during thermal aging at 750℃; (b) Variations in the tensile properties of the experimental alloy GH4650T at 700℃ with the γ′ particle size d during thermal aging at 750℃

    图  7  TEM图像显示不同热处理态合金在700℃经过大约1.0%塑性应变之后合金内的位错组态:(a) 750℃/5 h;(b) 750℃/36 h;(c) 750℃/48 h;(d) 750℃/275 h

    Figure  7.  TEM images illustrating the typical microstructures in the experimental alloy after various heat treatments and around 1.0% plastic strain at 700℃: (a) 750℃/5 h; (b) 750℃/36 h; (c) 750℃/48 h; (d) 750℃/275 h

    图  8  不同热处理态合金在700℃的拉伸断口形貌 SEM图像:(a)固溶处理;(b)固溶处理+750℃/5 h;(c)固溶处理+750℃/36 h;(d)固溶处理+750℃/48 h;(e)固溶处理+750℃/275 h;(f)固溶处理+750℃/500 h

    Figure  8.  SEM images showing the fracture morphologies of the experimental alloy after various heat treatments at 700℃: (a) Solutionizing; (b) Solutionizing+750℃/5 h; (c) Solutionizing+750℃/36 h; (d) uolutionizing+750℃/48 h; (e) Solutionizing+750℃/275 h; (f) Solutionizing+750℃/500 h

    图  9  理论计算各种变形机制所需要的临界分切应力随颗粒尺寸的变化关系[21, 23]

    Figure  9.  Critical resolved shear stresses needed for various deformation mechanisms to take place following the procedures[21, 23]

  • [1] 刘正东, 陈正宗, 何西扣, 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548. doi: 10.11900/0412.1961.2019.00419

    LIU Zhengdong, CHEN Zhengzong, HE Xikou, et al. Systematical innovation of heat resistant materials used for 630-700℃ advanced ultra-supercritical (A-USC) fossil fired boilers[J]. Acta Metallica, 2020, 56(4): 539-548(in Chinese). doi: 10.11900/0412.1961.2019.00419
    [2] GIANFRANCESCO A D. Materials for ultra-supercritical and advanced ultra-supercritical power plants[M]. Cambridge: Woodhead Publishing, 2016: 1-49.
    [3] ZHANG Z, ZHOU R, GE X, et al. Perspectives for 700℃ ultra-supercritical power generation: Thermal safety of high-temperature heating surfaces[J]. Energy, 2020, 190: 116411. doi: 10.1016/j.energy.2019.116411
    [4] 袁勇, 党莹樱, 杨珍, 等. 700℃先进超超临界机组末级过热器用新型镍铁基高温合金的组织与性能[J]. 机械工程材料, 2020, 44(1): 44-50. doi: 10.11973/jxgccl202001008

    YUAN Yong, DANG Yingying, YANG Zhen, et al. Microstructure and properties of Ni-Fe-base superalloy for 700℃ advanced ultra supercritical unit final superheater[J]. Mechanical Engineering Material, 2020, 44(1): 44-50. doi: 10.11973/jxgccl202001008
    [5] ZHONG Z H, GU Y F, YUAN Y, et al. A new wrought Ni-Fe-base superalloy for advanced ultra-supercritical power plant applications beyond 700℃[J]. Materials Letters, 2013, 109: 38-41. doi: 10.1016/j.matlet.2013.07.060
    [6] ZHANG P, YUAN Y, ZHONG L, et al. Microstructural stability and tensile properties of a new γ′-hardened Ni-Fe-base superalloy[J]. Materialia, 2021, 16: 101-061.
    [7] CHENG S, WANG J, WU Y, et al. Microstructure, thermal stability and tensile properties of a Ni-Fe-Cr based superalloy with different Fe contents[J]. Intermetallics, 2023, 153: 107785. doi: 10.1016/j.intermet.2022.107785
    [8] SUN F, GU Y F, YAN J B, et al. Phenomenological and microstructural analysis of intermediate temperatures creep in a Ni-Fe-based alloy for advanced ultra-supercritical fossil power plants[J]. Acta Materialia, 2016, 102: 70-78. doi: 10.1016/j.actamat.2015.09.006
    [9] WANG C S, GUO Y A, GUO J T, et al. Gamma prime stability and its influence on tensile behavior of a wrought superalloy with different Fe contents[J]. Journal of Materials Research, 2016, 31(9): 1361-1371. doi: 10.1557/jmr.2016.139
    [10] WU Y, QIN X, WANG C, et al. Influence of phosphorus on hot deformation micro-structure of a Ni-Fe-Cr based alloy[J]. Materials Science and Engineering: A, 2019, 768: 138454. doi: 10.1016/j.msea.2019.138454
    [11] HUANG Y, ZHANG R, ZHOU Z, et al. Effect of long-term aging on microstructural stability and tensile deformation of a Fe-Ni-based superalloy[J]. Materials Science and Engineering: A, 2022, 847: 143298. doi: 10.1016/j.msea.2022.143298
    [12] ZHOU Z Q, ZHANG P, YAN J B, et al. Microstructural evolution of a new Ni-Fe-based superalloy deformed by creep[J]. Materials Characterization, 2023, 201: 112917. doi: 10.1016/j.matchar.2023.112917
    [13] HUANG Y, ZHANG R, ZHOU Z, et al. Microstructure optimization for higher strength of a new Fe-Ni-based superalloy[J]. Materials Science and Engineering: A, 2023, 865: 144632. doi: 10.1016/j.msea.2023.144632
    [14] DU B, YANG J, CUI C, et al. Effects of grain refinement on the microstructure and tensile behavior of K417G superalloy[J]. Materials Science and Engineering: A, 2015, 623: 59-67. doi: 10.1016/j.msea.2014.11.041
    [15] ZHANG P, YUAN Y, LI B, et al. Tensile deformation behavior of a new Ni-base superalloy at room temperature[J]. Materials Science and Engineering: A, 2016, 655: 152-159. doi: 10.1016/j.msea.2015.12.089
    [16] GAO Z, ZHANG P, LI J, et al. Tunning the tensile deformation behavior and mechanism of nickel-based superalloy CM247LC by adjusting ageing treatment[J]. Materials Research Letters, 2023, 11(12): 1013-1021. doi: 10.1080/21663831.2023.2276340
    [17] LIFSHITZ I M, SLYOZOV V V. The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids, 1961, 19(1-2): 35-50. doi: 10.1016/0022-3697(61)90054-3
    [18] WAGNER C L. Theorie der alterung von niederschlägen durch umlöse[J]. Bunsen-Magazin, 1961, 65(7-8): 581-591.
    [19] NEMBACH E, NEITE G. Precipitation hardening of superalloys by ordered γ′-particles[J]. Progress in Materials Science, 1985, 29(3): 177-319. doi: 10.1016/0079-6425(85)90001-5
    [20] GUO C H, ZHANG P, ZHOU Y L, et al. Micro-structural evolution and yield strength of a novel precipitate-strengthened Fe-based superalloy during thermal aging at 700℃[J]. Intermetallics, 2023, 163: 108077. doi: 10.1016/j.intermet.2023.108077
    [21] REPPICH B, SCHEPP P, WEHNER G. Some new aspects concerning particle hardening mechanisms in γ' precipitating nickel-base alloys—II. Experiments[J]. Acta Metallurgica, 1982, 30(1): 95-104. doi: 10.1016/0001-6160(82)90049-9
    [22] ZHANG P, MA L, YANG G, et al. Extraordinary plastic behaviour of the γ′ precipitate in a directionally solidified nickel-based superalloy[J]. Philosophical Magazine Letters, 2016, 96(1): 19-26. doi: 10.1080/09500839.2015.1134832
    [23] ARDELL A J. Intermetallics as precipitates and dispersoids in high-strength alloys[M]. Amsterdam: Elsevier Ltd., 1994, 2: 257-286.
    [24] RAYNOR D, SILCOCK J M. Strengthening mechanisms in γ′ precipitating alloys[J]. Metal Science Journal, 1970, 4(1): 121-130. doi: 10.1179/msc.1970.4.1.121
    [25] GALINDO-NAVA E I, CONNOR L D, RAE C M F. On the prediction of the yield stress of unimodal and multimodal γ′ nickel-base superalloys[J]. Acta Materialia, 2015, 98: 377-390.
  • 加载中
图(9)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  149
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 修回日期:  2023-12-29
  • 录用日期:  2024-01-04
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回