留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FRP约束再生混凝土构件研究进展

刘春阳 闫凯 李秀领 隋玉武

刘春阳, 闫凯, 李秀领, 等. FRP约束再生混凝土构件研究进展[J]. 复合材料学报, 2024, 41(7): 3494-3506. doi: 10.13801/j.cnki.fhclxb.20240011.001
引用本文: 刘春阳, 闫凯, 李秀领, 等. FRP约束再生混凝土构件研究进展[J]. 复合材料学报, 2024, 41(7): 3494-3506. doi: 10.13801/j.cnki.fhclxb.20240011.001
LIU Chunyang, YAN Kai, LI Xiuling, et al. Research progress on FRP confined recycled aggregate concrete components[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3494-3506. doi: 10.13801/j.cnki.fhclxb.20240011.001
Citation: LIU Chunyang, YAN Kai, LI Xiuling, et al. Research progress on FRP confined recycled aggregate concrete components[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3494-3506. doi: 10.13801/j.cnki.fhclxb.20240011.001

FRP约束再生混凝土构件研究进展

doi: 10.13801/j.cnki.fhclxb.20240011.001
基金项目: 国家自然科学基金项目(52378520;52278507);泰山学者人才项目(tsqn202211181);山东省自然科学基金项目(ZR2022ME160)
详细信息
    通讯作者:

    刘春阳,博士,副教授,硕士生导师,研究方向为再生混凝土结构 E-mail: liucy2011@sdjzu.edu.cn

  • 中图分类号: TU528;TB332

Research progress on FRP confined recycled aggregate concrete components

Funds: National Natural Science Foundation of China (52378520; 52278507); Program for Taishan Scholars (tsqn202211181); Natural Science Foundation of Shandong Province (ZR2022ME160)
  • 摘要: 推广使用再生混凝土是实现建筑固废资源化再利用和生态环境可持续发展的重要途径,纤维增强复合材料(FRP)约束再生混凝土是改善和提升其力学性能的有效方法。国内外研究人员对不同再生骨料取代率、FRP种类、侧向约束刚度(FRP层数)、FRP全包裹/条带式包裹等设计参数下FRP约束再生混凝土材料抗压强度、应力-应变曲线及构件的力学性能和抗震性能指标的变化规律进行了试验研究和理论分析,比较了FRP约束普通混凝土极限强度和极限应变模型对FRP约束再生混凝土试件试验结果的适用性。本文分析了FRP约束再生混凝土材料和构件相关性能的研究现状及存在的不足,归纳了需要进一步研究的问题,以期为后续FRP约束再生混凝土结构力学性能研究和工程应用提供参考。

     

  • 图  1  再生骨料示意图

    Figure  1.  Schematic diagram of recycled aggregate

    图  2  纤维增强复合材料(FRP)-聚氯乙烯(PVC)管约束试件示意图[32]

    Figure  2.  Schematic diagram of fiber reinforced polymer (FRP)-polyvinyl chloride (PVC) pipe restraint specimen[32]

    PFRP—Polyester FRP; RAC—Recycled aggregate concrete

    图  3  FRP约束RAC极限强度与再生骨料取代率关系

    Figure  3.  Relation between the ultimate strength of RAC constrained by FRP and the replacement rate of recycled aggregate

    图  4  FRP约束RAC极限强度与FRP层数关系

    Figure  4.  Relation between the ultimate strength of RAC constrained by FRP and the number of FRP layers

    图  5  FRP约束冷弯钢管试件截面示意图[45]

    Figure  5.  Section diagram of FRP constrained cold-formed steel pipe[45]

    d—Length of the square hollow part

    图  6  FRP约束RAC柱极限荷载与再生骨料取代率关系

    Figure  6.  Relation between ultimate load of FRP-constrained RAC column and the replacement rate of recycled aggregate

    表  1  适用于表征FRP约束RAC应力-应变关系的常用模型

    Table  1.   Common models suitable for characterizing the stress-strain relationship of FRP confined RAC

    Number Model Model expression Model important parameter
    1 Jiang and Teng (2007) model[10] $ \dfrac{{{\sigma _{\text{c}}}}}{{f_{{\mathrm{cc}}}^{\prime * }}}{\text{ = }}\dfrac{{\left( {{{{\varepsilon _{\mathrm{c}}}}/{\varepsilon _{{\mathrm{cc}}}^ * }}} \right)r}}{{r - 1 + {{\left( {{{{\varepsilon _{\mathrm{c}}}} / {\varepsilon _{{\mathrm{cc}}}^ * }}} \right)}^r}}} $ $ r\text{ = }\dfrac{E_{\mathrm{c}}}{E_{\mathrm{c}}-f_{\mathrm{cc}}^{'*}/\varepsilon_{\mathrm{cc}}^*} $
    2 Xiao (2012) model[15] $ \sigma_{\mathrm{c}}=\frac{E_{\mathrm{c}} \varepsilon_{\mathrm{c}}}{1+\varepsilon_{\mathrm{c}}\left(E_{\mathrm{c}} / f_{\mathrm{cc}}-1 / \varepsilon_{\mathrm{cc}}\right)} $ $ {f_{{\mathrm{cc}}}} $,$ {\varepsilon _{{\mathrm{cc}}}} $
    3 Teng (2009) model[17] $\sigma_{\mathrm{c}}=\left\{\begin{array}{ccc}E_{\mathrm{c}} \varepsilon_{\mathrm{c}}-\dfrac{\left(E_{\mathrm{c}}-E_2\right)^2}{4 f_{\mathrm{co}}^{\prime}}, & & 0 \leqslant \varepsilon_{\mathrm{c}} \leqslant \varepsilon_{\mathrm{t}} \\f_{\mathrm{co}}^{\prime}+E_2 \varepsilon_{\mathrm{c}}, & \rho_{\mathrm{K}} \geqslant 0.01, & \varepsilon_{\mathrm{t}} \leqslant \varepsilon_{\mathrm{c}} \leqslant \varepsilon_{\mathrm{cu}} \\f_{\mathrm{co}}^{\prime}-\dfrac{f_{\mathrm{co}}^{\prime}-f_{\mathrm{cu}}^{\prime}}{\varepsilon_{\mathrm{cu}}-\varepsilon_{\mathrm{co}}}\left(\varepsilon_{\mathrm{c}}-\varepsilon_{\mathrm{co}}\right), & \rho_{\mathrm{K}}<0.01, & \varepsilon_{\mathrm{t}} \leqslant \varepsilon_{\mathrm{c}} \leqslant \varepsilon_{\mathrm{cu}}\end{array}\right. $ $ f_{\mathrm{cu}}' $,$ \varepsilon_{\mathrm{cu}} $,$ \rho_{\mathrm{K}} $
    4 Zhou and Wu (2012) model[20] $ \sigma\text{ = }\left[\left(E_1\varepsilon_n-f_0\right)\mathrm{e}^{-\varepsilon/\varepsilon_n}+f_0+E_2\varepsilon\right]\left(1-\mathrm{e}^{-\varepsilon/\varepsilon_n}\right) $ $ {f_0} $,$ {\varepsilon _n} $,$ {E_1} $, $ {E_2} $
    5 Gu (2016) model[26] $ \sigma\text{ = }\dfrac{\left(E\mathrm{_c}-E_2\right)\varepsilon}{\left[1+\left(\left(E_{\mathrm{c}}-E_2\right)\varepsilon/f_0\right)^n\right]^{1\mathord{\left/\vphantom{1n}\right.}n}}+E_2\varepsilon $ $ {E_2} $,$ {f_0} $
    Notes: Literature [10]: ${\sigma _{\mathrm{c}}}$—Axial stress of concrete; $ f_{\mathrm{cc}}^{'*} $—Peak axial of concrete under a specific constant confining pressure; ${\varepsilon _{\mathrm{c}}}$—Axial strain; $\varepsilon _{{\mathrm{cc}}}^*$—Corresponding axial strain of concrete under a specific constant confining pressure stress; $r$—Brittleness of concrete; ${E_{\mathrm{c}}}$—Elastic modulus of concrete. Literature [15]: ${\sigma _{\mathrm{c}}}$—Axial stress of concrete; ${E_{\mathrm{c}}}$—Tested elastic modulus of RAC; ${\varepsilon _{\mathrm{c}}}$—Calculated peak strain of RAC; ${f_{{\mathrm{cc}}}}$—Compressive strength of the confined concrete; ${\varepsilon _{{\mathrm{cc}}}}$—Strain corresponding to${f_{{\mathrm{cc}}}}$. Literature [17]: ${\sigma _{\mathrm{c}}}$—Axial stress; ${E_{\mathrm{c}}}$—Elastic modulus of unconfined concrete; ${\varepsilon _{\mathrm{c}}}$—Axial strain; ${E_2}$—Slope of the linear second portion; $f_{{\mathrm{co}}}^{\prime}$—Compressive strength of unconfined concrete; $ \varepsilon\mathrm{_t} $—Parabolic first portion meets the linear second portion with a smooth transition; $ \rho\mathrm{_K} $—Confinement stiffness ratio; $ \varepsilon_{\mathrm{cu}} $—Ultimate axial strain; $f_{{\mathrm{cu}}}^{\prime}$—Ultimate axial strength; ${\varepsilon _{{\mathrm{co}}}}$—Corresponding axial strain. Literature [20]: $\sigma $—Stress; ${E_1}$—Initial elastic modulus; $ \varepsilon\mathit{\mathit{_{{n}}\mathit{ }}} $= n$ \varepsilon_{\mathrm{0}} $; $ \varepsilon_{\mathrm{0}} $= ${f_0}/{E_1}$; n—A curve shape parameter that mainly controls the curvature in the transition zone; ${f_0}$—Vertical coordinate of the intersection between the asymptotic line and the y axis; $\varepsilon $—Strain ; ${E_2}$—Slope of the asymptotic line. Literature [26]: $\sigma $—Stress; ${E_{\mathrm{c}}}$—Elastic modulus; ${E_2}$—Elastic modulus of second slopes; $\varepsilon $—Strain; ${f_0}$—Reference plastic stress at the intercept of the second slope with the stress axis; $n$—A curve shaped parameter that mainly controls the curvature in the transition zone.
    下载: 导出CSV
  • [1] 鲍玖文, 于子浩, 张鹏, 等. 再生粗骨料混凝土及其构件抗冻性能研究进展[J]. 建筑结构学报, 2022, 43(4): 142-157.

    BAO Jiuwen, YU Zihao, ZHANG Peng, et al. Review on frost resistance property of recycled coarse aggregate concrete and its structural components[J]. Journal of Building Structures, 2022, 43(4): 142-157(in Chinese).
    [2] 肖建庄, 李佳彬, 兰阳. 再生混凝土技术研究最新进展与评述[J]. 混凝土, 2003(10): 17-20, 57.

    XIAO Jianzhuang, LI Jiabin, LAN Yang. Research on recycled aggregate concrete—A review[J]. Concrete, 2003(10): 17-20, 57(in Chinese).
    [3] 王玉银, 王庆贺, 耿悦. 建筑结构用再生混凝土水平受力构件研究进展[J]. 工程力学, 2018, 35(4): 1-15.

    WANG Yuyin, WANG Qinghe, GENG Yue. State-of-the-art of horizontal structural members using recycled aggregate concrete[J]. Engineering Mechanics, 2018, 35(4): 1-15(in Chinese).
    [4] 曹万林, 肖建庄, 叶涛萍, 等. 钢筋再生混凝土结构研究进展及其工程应用[J]. 建筑结构学报, 2020, 41(12): 1-16.

    CAO Wanlin, XIAO Jianzhuang, YE Taoping, et al. Research progress and engineering application of reinforced recycled aggregate concrete structure[J]. Journal of Building Structures, 2020, 41(12): 1-16(in Chinese).
    [5] 曹万林, 赵羽习, 叶涛萍. 再生混凝土结构长期工作性能研究进展[J]. 哈尔滨工业大学学报, 2019, 51(6): 1-17.

    CAO Wanlin, ZHAO Yuxi, YE Taoping. A review of recent advances in the long-term working characteristic of recycled concrete structure[J]. Journal of Harbin Institute of Technology, 2019, 51(6): 1-17(in Chinese).
    [6] TENG J G, LAM L. Behavior and modeling of fiber reinforced polymer-confined concrete[J]. Journal of Structural Engineering, 2004, 130(11): 1713-1723. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1713)
    [7] XIAO J Z, HUANG Y J, YANG J, et al. Mechanical properties of confined recycled aggregate concrete under axial compression[J]. Construction and Building Materials, 2012, 26(1): 591-603.
    [8] CHEN G M, HE Y H, JIANG T, et al. Behavior of CFRP-confined recycled aggregate concrete under axial compression[J]. Construction and Building Materials, 2016, 111: 85-97. doi: 10.1016/j.conbuildmat.2016.01.054
    [9] CHEN G M, ZHANG J J, JIANG T, et al. Compressive behavior of CFRP-confined recycled aggregate concrete in different-sized circular sections[J]. Journal of Composites for Construction, 2018, 22(4): 04018021. doi: 10.1061/(ASCE)CC.1943-5614.0000859
    [10] JIANG T, TENG J G. Analysis-oriented stress-strain models for FRP-confined concrete[J]. Engineering Structures, 2007, 29(11): 2968-2986. doi: 10.1016/j.engstruct.2007.01.010
    [11] DEY T, DAS C S, MISHRA N. Behaviour of confined recycled aggregate concrete under compressive loading: An experimental investigation[J]. Journal of Building Engineering, 2020, 32: 101825. doi: 10.1016/j.jobe.2020.101825
    [12] ZHOU J K, LIN G, TENG J G. Stress-strain behavior of FRP-confined concrete containing recycled concrete lumps[J]. Construction and Building Materials, 2021, 267: 120915. doi: 10.1016/j.conbuildmat.2020.120915
    [13] TENG J G, ZHAO J L, YU T, et al. Behavior of FRP-confined compound concrete containing recycled concrete lumps[J]. Journal of Composites for Construction, 2016, 20(1): 040150381.
    [14] 肖建庄, 杨洁. 玻璃纤维增强塑料约束再生混凝土轴压试验[J]. 同济大学学报(自然科学版), 2009, 37(12): 1586-1591. doi: 10.3969/j.issn.0253-374x.2009.12.005

    XIAO Jianzhuang, YANG Jie. On recycled concrete confined by GFRP tube under axial compression[J]. Journal of Tongji University (Natural Science), 2009, 37(12): 1586-1591(in Chinese). doi: 10.3969/j.issn.0253-374x.2009.12.005
    [15] XIAO J Z, HUANG Y J, YANG J, et al. Mechanical properties of confined recycled aggregate concrete under axial compression[J]. Construction and Building Materials, 2012, 26(1): 591-603. doi: 10.1016/j.conbuildmat.2011.06.062
    [16] ZHAO J L, YU T, TENG J G. Stress-strain behavior of FRP-confined recycled aggregate concrete[J]. Journal of Composites for Construction, 2015, 19(3): 040140541.
    [17] TENG J G, JIANG T, LAM L, et al. Refinement of a design-oriented stress-strain model for FRP-confined concretes[J]. American Society of Civil Engineers, 2009, 13: 269-278.
    [18] XIE T, OZBAKKALOGLU T. Behavior of recycled aggregate concrete-filled basalt and carbon FRP tubes[J]. Construction and Building Materials, 2016, 105: 132-143. doi: 10.1016/j.conbuildmat.2015.12.068
    [19] ZHOU Y W, HU J J, LI M L, et al. FRP-confined recycled coarse aggregate concrete: Experimental inve stigation and model comparison[J]. Polymers, 2016, 8(10): 375. doi: 10.3390/polym8100375
    [20] ZHOU Y W, WU Y F. General model for constitutive relationships of concrete and its composite structures[J]. Composite Structures, 2012, 94(2): 580-592. doi: 10.1016/j.compstruct.2011.08.022
    [21] GAO C, HUANG L, YAN L, et al. Behavior of glass and carbon FRP tube encased recycled aggregate concrete with recycled clay brick aggregate[J]. Composite Structures, 2016, 155: 245-254. doi: 10.1016/j.compstruct.2016.08.021
    [22] JIANG T, WANG X M, ZHANG W P, et al. Behavior of FRP-confined recycled brick aggregate concrete under monotonic compression[J]. Journal of Composites for Construction, 2020, 24(6): 04020067. doi: 10.1061/(ASCE)CC.1943-5614.0001080
    [23] XU J J, CHEN Z P, XIAO Y, et al. Recycled aggregate concrete in FRP-confined columns: A review of experimental results[J]. Composite Structures, 2017, 174: 277-291.
    [24] CHOUDHURY M S I, AMIN A F M S, ISLAM M M, et al. Effect of confining pressure distribution on the dilation behavior in FRP-confined plain concrete columns using stone, brick and recycled aggregates[J]. Construction and Building Materials, 2016, 102: 541-551.
    [25] TENG J G, HUANG Y L, LAM L, et al. Theoretical model for fiber-reinforced polymer-confined concrete[J]. Journal of Composites for Construction, 2007, 11(2): 201-210. doi: 10.1061/(ASCE)1090-0268(2007)11:2(201)
    [26] 顾光明. JFRP管约束含烧结砖骨料再生混凝土受压性能研究[D]. 长沙: 湖南大学, 2016.

    GU Guangming. Compressive behavior of nature jute fiber reinforced polymer (JFRP) tube encased recycled aggregate concrete (RAC) with partially claybrick aggregate (CBA)[D]. Changsha: Hunan University, 2016(in Chinese).
    [27] 陈刘欣. 轴压荷载下PFRP 约束含砖骨料再生混凝土的尺寸效应研究[D]. 长沙: 湖南大学, 2018.

    CHEN Liuxin. Size effect of polyester FRP tube encased recycled aggregate concrete with recycled clay brick aggregate under axial compression[D]. Changsha: Hunan University, 2018(in Chinese).
    [28] HUANG L, CHEN L X, YAN L B, et al. Behavior of polyester FRP tube encased recycled aggregate concrete with recycled clay brick aggregate: Size and slenderness ratio effects[J]. Construction and Building Materials, 2017, 154: 123136.
    [29] YAN B, HUANG L, YAN L, et al. Behavior of flax FRP tube encased recycled aggregate concrete with clay brick aggregate[J]. Construction and Building Materials, 2017, 136: 265-276. doi: 10.1016/j.conbuildmat.2017.01.046
    [30] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction & Building Materials, 2003, 17(6-7): 471-489.
    [31] WANG Y F, WU H L. Size effect of concrete short columns confined with aramid FRP jackets[J]. Journal of Composites for Construction, 2011, 15(4): 535-544. doi: 10.1061/(ASCE)CC.1943-5614.0000178
    [32] GAO C, HUANG L, YAN L B, et al. Strength and ductility improvement of recycled aggregate concrete by polyester FRP-PVC tube confinement[J]. Composites Part B: Engineering, 2019, 162: 178-197. doi: 10.1016/j.compositesb.2018.10.102
    [33] ZENG J J, ZHANG X W, CHEN G M, et al. FRP-confined recycled glass aggregate concrete: Concept and axial compressive behavior[J]. Journal of Building Engineering, 2020, 30: 101288. doi: 10.1016/j.jobe.2020.101288
    [34] LI P D, YANG T Q, ZENG Q, et al. Axial stress-strain behavior of carbon FRP-confined seawater sea-sand recycled aggregate concrete square columns with different corner radii[J]. Composite Structures, 2021, 262: 113589. doi: 10.1016/j.compstruct.2021.113589
    [35] 郝浩宇. FRP 管约束碱激发-再生骨料混凝土柱力学性能研究[D]. 南京: 东南大学, 2019.

    HAO Haoyu. Study on mechanical behavior of FRP tube confined alkali activated recycled aggregate concrete columns[D]. Nanjing: Southeast University, 2019(in Chinese).
    [36] OZBAKKALOGLU T, XIE T. Geopolymer concrete-filled FRP tubes: Behavior of circular and square columns under axial compression[J]. Composites Part B: Engineering, 2016, 96: 215-230. doi: 10.1016/j.compositesb.2016.04.013
    [37] 马辉, 崔航, 李哲, 等. 玻璃纤维管约束再生混凝土柱轴压性能研究[J]. 应用力学学报, 2019(1): 209-218.

    MA Hui, CUI Hang, LI Zhe, et al. Axial compression performance and bearing capacity of restrained recycled concrete columns with glass fiber tube[J]. Journal of Applied Mechanics, 2019(1): 209-218(in Chinese).
    [38] 华文, 董世明, 徐积刚. FRP加固再生混凝土圆柱力学性能试验研究[J]. 应用数学和力学, 2014, 35(S1): 299-303.

    HUA Wen, DONG Shiming, XU Jigang. Experimental study on mechanical properties of recycled concrete cylinders reinforced with FRP[J]. Applied Mathematics and Mechanics, 2014, 35(S1): 299-303(in Chinese).
    [39] 李家齐, 李诗娴, 胡皓, 等. FRP约束玄武岩纤维再生混凝土圆柱力学性能试验研究[J]. 混凝土, 2018(12): 57-61. doi: 10.3969/j.issn.1002-3550.2018.12.015

    LI Jiaqi, LI Shixian, HU Hao, et al. Experimental study and finite element analysis on mechanical properties of FRP confined basalt fiber reinforced recycled concrete circular columns[J]. Concrete, 2018(12): 57-61(in Chinese). doi: 10.3969/j.issn.1002-3550.2018.12.015
    [40] 曹若钰. PVC管/CFRP条带联合外贴加固对再生混凝土柱轴压性能的影响研究[D]. 武汉: 武汉工程大学, 2023.

    CAO Ruoyu. Research on the effect of PVC tube/CFRP strips joint external reinforcement on the axial compression performance of recycled aggregate concrete columns[D]. Wuhan: Wuhan Institute of Technology, 2023(in Chinese).
    [41] XIAO J Z, TRESSERRAS J, TAM V W Y. GFRP-tube confined RAC under axial and eccentric loading with and without expansive agent[J]. Construction and Building Materials, 2014, 73: 575-585. doi: 10.1016/j.conbuildmat.2014.09.038
    [42] 肖建庄, 刘胜. 钢管/GFRP管约束再生混凝土柱偏心受压试验[J]. 建筑科学与工程学报, 2015, 32(2): 21-26. doi: 10.3969/j.issn.1673-2049.2015.02.002

    XIAO Jianzhuang, LIU Sheng. Eccentric loading test on recycled aggregate concrete columns confined by steel tube/GFRP tube[J]. Journal of Architecture and Civil Engineering, 2015, 32(2): 21-26(in Chinese). doi: 10.3969/j.issn.1673-2049.2015.02.002
    [43] BISBY L, RANGER M. Axial-flexural interaction in circular FRP-confined reinforced concrete columns[J]. Construction and Building Materials, 2010, 24(9): 1672-1681. doi: 10.1016/j.conbuildmat.2010.02.024
    [44] 肖建庄, 黄一杰. GFRP管约束再生混凝土柱抗震性能与损伤评价[J]. 土木工程学报, 2012, 45(11): 112-120.

    XIAO Jianzhuang, HUANG Yijie. On the seismic behavior and damage assessment of recycled aggregate concrete filled GFRP tube column[J]. China Civil Engineering Journal, 2012, 45(11): 112-120(in Chinese).
    [45] DONG J F, WANG Q Y, GUAN Z W. Structural behaviour of recycled aggregate concrete filled steel tube columns strengthened by CFRP[J]. Engineering Structures, 2013, 48: 532-542. doi: 10.1016/j.engstruct.2012.11.006
    [46] 梁炯丰, 蒋丽忠, 吴华英, 等. CFRP圆钢管约束再生混凝土轴压短柱试验研究[J]. 混凝土, 2015(3): 18-20. doi: 10.3969/j.issn.1002-3550.2015.03.005

    LIANG Jiongfeng, JIANG Lizhong, WU Huaying, et al. Experimental research on behavior of CFRP circular steel tubular confined recycled aggregate concrete columns under axial compression[J]. Concrete, 2015(3): 18-20(in Chinese). doi: 10.3969/j.issn.1002-3550.2015.03.005
    [47] 梁炯丰, 王增亮, 王佳佳, 等. CFRP圆钢管约束再生混凝土长柱轴压试验研究[J]. 混凝土, 2015(8): 12-14.

    LIANG Jiongfeng, WANG Zengliang, WANG Jiajia, et al. Experimental research on behavior of CFRP circular steel tubular confined recycled aggregate concrete long columns under axial compression[J]. Concrete, 2015(8): 12-14(in Chinese).
    [48] 梁炯丰, 刘大为, 刘小娟, 等. CFRP约束方钢管再生混凝土柱轴压性能研究[J]. 混凝土, 2023(5): 21-26.

    LIANG Jiongfeng, LIU Dawei, LIU Xiaojuan, et al. Study on axial compression performance of recycled concrete-filled CFRP confined square steel tubular columns[J]. Concrete, 2023(5): 21-26(in Chinese).
    [49] 曾岚, 李丽娟, 陈光明, 等. GFRP-再生混凝土-钢管组合柱轴压力学性能试验研究[J]. 土木工程学报, 2014, 47(S2): 21-27.

    ZENG Lan, LI Lijuan, CHEN Guangming, et al. Experimental study on mechanical behavior of GFRP-recycled concrete-steel tubular columns under axial compression[J]. China Civil Engineering Journal, 2014, 47(S2): 21-27(in Chinese).
    [50] ZHENG J, OZBAKKALOGLU T. Sustainable FRP-recycled aggregate concrete-steel composite columns: Behavior of circular and square columns under axial compression[J]. Thin-Walled Structures, 2017, 120: 60-69. doi: 10.1016/j.tws.2017.08.011
    [51] 马辉, 谢钟辉, 吴亚楠, 等. CFRP约束型钢再生混凝土柱轴压性能及承载力计算研究[J]. 自然灾害学报, 2021, 30(4): 81-91.

    MA Hui, XIE Zhonghui, WU Yanan, et al. Study on axial compression behavior and bearing capacity calculation of CFRP confined steel reinforced recycled concrete columns[J]. Journal of Natural Disasters, 2021, 30(4): 81-91(in Chinese).
    [52] 马辉, 贾晨俊, 吴亚楠, 等. 碳纤维条带约束型钢再生混凝土短柱轴压性能试验研究[J]. 实验力学, 2021, 36(5): 655-667.

    MA Hui, JIA Chenjun, WU Yanan, et al. Experimental study on axial compression behavior of steel reinforced recycled concrete short columns confined by CFRP strips[J]. Journal of Experimental Mechanics, 2021, 36(5): 655-667(in Chinese).
    [53] 马辉, 杨藩婷, 黄成, 等. CFRP约束型钢再生混凝土组合柱轴压性能有限元非线性分析[J]. 实验力学, 2022, 37(5): 689-700.

    MA Hui, YANG Fanting, HUANG Cheng, et al. Finite element analysis on axial compression behavior of CFRP confined steel reinforced recycled concrete composite columns[J]. Journal of Experimental Mechanics, 2022, 37(5): 689-700(in Chinese).
    [54] 李佳彬, 肖建庄, 孙振平. 再生粗骨料特性及其对再生混凝土性能的影响[J]. 建筑材料学报, 2004(4): 390-395. doi: 10.3969/j.issn.1007-9629.2004.04.006

    LI Jiabin, XIAO Jianzhuang, SUN Zhenping. Properties of recycled coarse aggregate and Its influence on recycled concrete[J]. Journal of Building Materials, 2004(4): 390-395(in Chinese). doi: 10.3969/j.issn.1007-9629.2004.04.006
    [55] WIJAYASUNDARA M, MENDIS P, CRAWFORD R H. Methodology for the integrated assessment on the use of recycled concrete aggregate replacing natural aggregate in structural concrete[J]. Journal of Cleaner Production, 2017, 166: 321-334. doi: 10.1016/j.jclepro.2017.08.001
    [56] OMARY S, GHORBEL E, WARDEH G. Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties[J]. Construction and Building Materials, 2016, 108: 163-174. doi: 10.1016/j.conbuildmat.2016.01.042
    [57] MCGINNIS M J, DAVIS M, ANDRES D L R, et al. Strength and stiffness of concrete with recycled concrete aggregates[J]. Construction and Building Materials, 2017, 154(15): 258-269.
    [58] THOMAS C, SETIN J, POLANCO J A, et al. Durability of recycled aggregate concrete[J]. Construction and Building Materials, 2013, 40: 1054-1065. doi: 10.1016/j.conbuildmat.2012.11.106
    [59] 何媛媛, 武丽, 董江峰, 等. CFRP加固对冻融再生混凝土短柱承载能力的影响[J]. 建筑材料学报, 2019, 22(3): 451-458, 466.

    HE Yuanyuan, WU Li, DONG Jiangfeng, et al. Effects of CFRP reinforcement on loading capacity of recycled concrete column under cycled freeze thaw environment[J]. Journal of Building Materials, 2019, 22(3): 451-458, 466(in Chinese).
    [60] 徐一, 董江峰, 王清远, 等. 冻融对碳纤维管约束玄武岩纤维再生混凝土短柱受力性能影响[J]. 建筑结构学报, 2022, 43(S1): 98-105.

    XU Yi, DONG Jiangfeng, WANG Qingyuan, et al. Effect of freeze-thaw on mechanical properties of CFRP tube-confined basalt fiber reinforced recycled concrete stub columns[J]. Journal of Building Structures, 2022, 43(S1): 98-105(in Chinese).
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  68
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2023-12-29
  • 录用日期:  2023-12-30
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回