留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ECC壳-RC组合墩柱抗震性能及塑性铰形成机制

王瑾 许维炳 杜修力 丁梦佳 陈彦江 方荣 闫晓宇

王瑾, 许维炳, 杜修力, 等. ECC壳-RC组合墩柱抗震性能及塑性铰形成机制[J]. 复合材料学报, 2024, 41(7): 3689-3703. doi: 10.13801/j.cnki.fhclxb.20240009.003
引用本文: 王瑾, 许维炳, 杜修力, 等. ECC壳-RC组合墩柱抗震性能及塑性铰形成机制[J]. 复合材料学报, 2024, 41(7): 3689-3703. doi: 10.13801/j.cnki.fhclxb.20240009.003
WANG Jin, XU Weibing, DU Xiuli, et al. Seismic performance of ECC shell-RC composite pier column and its plastic hinge developing mechanism[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3689-3703. doi: 10.13801/j.cnki.fhclxb.20240009.003
Citation: WANG Jin, XU Weibing, DU Xiuli, et al. Seismic performance of ECC shell-RC composite pier column and its plastic hinge developing mechanism[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3689-3703. doi: 10.13801/j.cnki.fhclxb.20240009.003

ECC壳-RC组合墩柱抗震性能及塑性铰形成机制

doi: 10.13801/j.cnki.fhclxb.20240009.003
基金项目: 国家自然科学基金(52108428;52178446);中央高校基本科研业务费专项资金资助项目(2023MS067);北京工业大学重点实验室校外开放课题资助项目(2022B02)
详细信息
    通讯作者:

    许维炳,博士,副教授,博士生导师,研究方向为高性能混凝土在工程结构中的应用 E-mail: weibingx@bjut.edu.cn

  • 中图分类号: TU528.58;TB333

Seismic performance of ECC shell-RC composite pier column and its plastic hinge developing mechanism

Funds: National Natural Science Foundation of China (52108428; 52178446); Fundamental Research Funds for the Central Universities (2023MS067); Open Research Fund of Key Laboratory of Beijing University of Technology (2022B02)
  • 摘要: 为提升钢筋混凝土(RC)墩柱的抗震性能并充分利用工程水泥基复合材料(ECC)的力学性能,提出了ECC壳-RC组合墩柱的构造;基于ABAQUS有限元软件建立了现浇ECC壳-RC组合墩柱数值分析模型,并基于既有试验结果验证;进而探究了ECC节段高度、ECC壳厚度、纵筋配筋率、体积配箍率、轴压比等参数对组合墩柱抗震性能的影响规律。在此基础上,探讨了该型组合墩柱塑性铰形成机制。结果表明:相较于RC墩柱,ECC壳-RC组合墩柱的承载能力、延性和耗能能力均有所提高。增加ECC节段高度,组合墩柱的峰值荷载有所增加,ECC节段高度达到1.4h (h为截面高度)后组合墩柱的抗震性能接近全高度ECC墩柱的抗震性能;增加ECC壳厚度及纵筋配筋率可同时提高组合墩柱的峰值荷载及延性,ECC壳厚度达到1/5h后继续增加ECC壳厚度对提升组合墩柱抗震性能效果不明显;增加轴压比可使试件初始刚度和峰值荷载增加,但对延性产生不利影响;减小塑性铰区域的体积配箍率试件延性明显降低,而承载力变化不明显;组合墩柱的塑性铰形成机制受ECC壳-RC组合节段高度影响显著,存在一个组合节段临界高度使该组合柱的塑性铰区不发生转移。

     

  • 图  1  工程水泥基复合材料(ECC)壳(节段)-钢筋混凝土(RC)组合墩柱构造

    Figure  1.  Engineered cementitious composites (ECC) shell (segment)-reinforced concrete (RC) composite pier structure diagram

    图  2  ECC本构关系模型

    Figure  2.  ECC constitutive relation model

    σt, σtp, σt0—Tensile stress, ultimate tensile strength, nominal cracking strength; εt, εtu, εt0—Tensile strain, ultimate tensile strain, nominal cracking strain; σc, σec0—Compressive stress, peak compressive stress; εc, εec0, $\varepsilon _{\text{ecu}}^{*} $—Compressive strain, peak compressive strain, ultimate compressive strain

    图  3  模型边界条件及网格划分示意图

    Figure  3.  Model boundary conditions and meshing diagram

    RP—Reference point

    图  4  模拟等效塑性应变(PEEQ)云图

    Figure  4.  Simulated equivalent plastic strain (PEEQ) cloud images

    图  5  试验和模拟滞回曲线对比

    Figure  5.  Hysteresis curves comparison between test and numerical results

    FEM—Finite element method

    图  6  ECC壳-RC组合墩柱整体布置图

    Figure  6.  Overall layout of ECC shell-RC composite pier column

    图  7  ECC节段高度he的影响

    Figure  7.  Effect of ECC segment height he

    Ks—Average secant stiffness; K0—Initial stiffness

    图  8  不同he试件PEEQ云图

    Figure  8.  PEEQ cloud diagram of specimens with different he

    图  9  ECC壳厚度t的影响

    Figure  9.  Effect of ECC shell thickness t

    图  10  ECC壳-RC组合墩柱纵筋配筋率ρs的影响

    Figure  10.  Effect of longitudinal reinforcement ratio ρs of ECC shell-RC composite pier column

    图  11  ECC壳-RC组合墩柱的体积配箍率ρsv的影响

    Figure  11.  Effect of volume stirrup ratio ρsv of ECC shell-RC composite pier column

    图  12  ECC壳-RC组合墩柱的轴压比n的影响

    Figure  12.  Effect of axial compression ratio n of ECC shell-RC composite pier column

    图  13  规范设计反应谱与地震波反应谱对比

    Figure  13.  Comparison between seismic response spectrum and code design response spectra

    IV—Imperial Valley-02 (1940) wave; KC—Kern County (1952) wave; AR—Artifical wave; T1—Fundamental natural vibration period of the ECC shell-RC composite pier column

    图  14  地震波作用下墩顶位移时程曲线

    Figure  14.  Pier top displacement time history curves under different ground motions

    图  15  IV作用下混凝土PEEQ损伤云图

    Figure  15.  PEEQ of concrete for piers subjected to IV

    图  16  不同地震波作用下各墩柱滞回曲线

    Figure  16.  Hysteresis curves of the specimens under different waves

    图  17  ECC壳(节段)-RC组合墩柱的弯矩分布

    Figure  17.  Moment distribution of ECC shell (segment)-RC composite pier

    L0—Height of the concrete segment; F—Horizontal load; N—Axial load; LECC—Height of the ECC shell-RC composite segment; MA—Bending moment of critical section A; MB—Bending moment of critical section B; My,RC—Yield bending moment of RC pier; My,ECC-RC—Yield bending moment of the ECC shell-RC composite section; L*—Critial height of ECC shell-RC composite segment; L—Total height of the composite pier

    图  18  不同ECC壳-RC组合节段高度时钢筋应变

    Figure  18.  Rebar strain with different ECC shell-RC composite segment height

    LE—Logarithmic strain

    表  1  试件具体信息

    Table  1.   Specific information of the specimens

    Specimen H/mm b×h/mm2 he/mm t/mm
    S1 1 400 300×300 400 150
    S2 100
    Notes: H—Pier height; b—Section width; h—Section height; he—ECC height; t—ECC shell thickness.
    下载: 导出CSV

    表  2  试件抗震性能指标

    Table  2.   Seismic performance index of the specimen

    Specimen Yield displacement/mm Yield load/kN Peak load/kN Ultimate displacement/mm Ultimate load/kN
    S1 Positive Test[36] 8.20 65.46 86.89 60 65.77
    FEM 7.04 78.65 89.31 60 67.23
    Error 14.10% −20.15% −2.79% 0% −2.22%
    Negative Test[36] −9.20 −68.47 −86.85 −60 −71.90
    FEM −7.26 −70.67 −81.26 −60 −66.42
    Error 21.09% −3.22% 6.44% 0% 7.62%
    S2 Positive Test[16] 7.39 64.24 87.20 60 60.37
    FEM 8.42 76.14 86.85 60 69.64
    Error −13.94% −18.52% 0.40% 0% −15.36%
    Negative Test[16] −8.31 −63.16 −87.35 −60 −66.48
    FEM −7.27 −70.76 −80.34 −60 −68.84
    Error 12.52% −12.03% 8.03% 0% −3.55%
    下载: 导出CSV

    表  3  ECC壳-RC组合墩柱基准设计参数

    Table  3.   Benchmark parameters of ECC shell-RC composite pier column

    Parts z×b×h/mm3 Material Longitudinal reinforcement Stirrup (Encrypted zone) Axial compression ratio n
    Pier 2000×450×450 C40/E40 12C18 A10@100 (A10@50) 0.2
    Cushion cap 700×1400×700 C40 A10@100
    Note: z—Height of the part.
    下载: 导出CSV

    表  4  各墩柱墩顶位移峰值

    Table  4.   Peak value of displacement at the top of the pier

    Pier type Peak value of displacement/mm
    IV KC AR
    RC pier 58.28 29.24 40.77
    ECC shell-RC composite pier 42.61 22.98 36.65
    下载: 导出CSV

    表  5  墩底剪力峰值

    Table  5.   Peak value of shear force at the pier bottom

    Pier type Peak value of shear force/kN
    IV KC AR
    RC pier 237.64 191.99 181.90
    ECC shell-RC composite pier 270.59 225.56 216.94
    下载: 导出CSV

    表  6  不同地震波各墩柱最大混凝土塑性损伤PEEQ值

    Table  6.   Maximum PEEQ value of the concrete of each specimen subjected to ground motions

    Pier type Maximum PEEQ value/10−2
    IV KC AR
    RC pier 2.10 1.70 1.50
    ECC shell-RC composite pier 1.71 1.21 1.17
    下载: 导出CSV
  • [1] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [2] 江佳斐, 隋凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8): 1957-1967.

    JIANG Jiafei, SUI Kai. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1957-1967(in Chinese).
    [3] XU L, PAN J L, CAI J. Seismic performance of precast RC and RC/ECC composite columns with grouted sleeve connections[J]. Engineering Structures, 2019, 188: 104-110. doi: 10.1016/j.engstruct.2019.03.022
    [4] 潘金龙. 基于高延性水泥基复合材料的结构性能提升技术[M]. 北京: 中国建筑工业出版社, 2020: 1-25.

    PAN Jinlong. Structural performance improvement technology based on high ductility cementitious composites[M]. Beijing: China Architecture and Building Press, 2020: 1-25(in Chinese).
    [5] YUAN F, PAN J, WU Y. Numerical study on flexural behaviors of steel reinforced engineered cementitious composite (ECC) and ECC/concrete composite beams[J]. Science China Technological Sciences, 2014, 57(3): 637-645. doi: 10.1007/s11431-014-5478-4
    [6] ZHANG R, MATSUMOTO K, HIRATA T, et al. Shear behavior of polypropylene fiber reinforced ECC beams with varying shear reinforcement ratios[J]. Journal of JSCE, 2014, 2(1): 39-53. doi: 10.2208/journalofjsce.2.1_39
    [7] 陈全胜, 侯圣均, 蒋晨晨, 等. 钢-混凝土-ECC组合梁受弯性能试验研究与有限元分析[J]. 建筑结构学报, 2022, 43(S1): 136-146.

    CHEN Quansheng, HOU Shengjun, JIANG Chenchen, et al. Experimental research and FEA on bearing capacity under negativemoment of steel-concrete-ECC composite beams[J]. Journal of Building Structures, 2022, 43(S1): 136-146(in Chinese).
    [8] 白亮, 张雨航, 梁兴文, 等. 压型钢板-高延性水泥基材料组合楼板纵向剪切性能及承载力研究[J]. 工程力学, 2023, 40(6): 172-181.

    BAI Liang, ZHANG Yuhang, LIANG Xingwen, et al. Investigation on longitudinal shear behavior and bearing capacity of profiled steel sheeting and ECC composite slabs[J]. Engineering Mechanics, 2023, 40(6): 172-181(in Chinese).
    [9] 廖桥, 李碧雄, 章一萍. 超高强钢筋ECC梁受弯性能试验研究及参数分析[J]. 应用基础与工程科学学报, 2022, 30(1): 121-133.

    LIAO Qiao, LI Bixiong, ZHANG Yiping. Experimental study and parametric analysis of flexural behaviors of ultra high strength rebar reinforced ECC beams[J]. Journal of Basic Science and Engineering, 2022, 30(1): 121-133(in Chinese).
    [10] XU L, PAN J L, LU C, et al. Development mechanism of plastic hinge in reinforced engineered cementitious composite beams under monotonic loading[J]. Structural Concrete, 2019, 20(1): 252-266. doi: 10.1002/suco.201800009
    [11] BILLINGTON S L, YOON J K. Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete[J]. Journal of Bridge Engineering, 2004, 9(4): 353-363. doi: 10.1061/(ASCE)1084-0702(2004)9:4(353)
    [12] CHO C, KIM Y, FEO L, et al. Cyclic responses of reinforced concrete composite columns strengthened in the plastic hinge region by HPFRC mortar[J]. Composite Structures, 2012, 94(7): 2246-2253. doi: 10.1016/j.compstruct.2012.01.025
    [13] SHAN Q, PAN J, CHEN J. Mechanical behaviors of steel reinforced ECC/concrete composite columns under combined vertical and horizontal loading[J]. Journal of Southeast University (English Edition), 2015, 31(2): 259-265.
    [14] MOHEBBI A, SAIIDI M, ITANI A. Shake table studies and analysis of a precast two-column bent with advanced materials and pocket connections[J]. Journal of Bridge Engineering, 2018, 23(7): 04018046. doi: 10.1061/(ASCE)BE.1943-5592.0001247
    [15] XU L, PAN J L, CHEN J H. Mechanical behavior of ECC and ECC/RC composite columns under reversed cyclic loading[J]. Journal of Materials in Civil Engineering, 2017, 29(9): 1-24.
    [16] ZHANG R, MENG Q L, SHUI Q J, et al. Cyclic response of RC composite bridge columns with precast PP-ECC jackets in the region of plastic hinges[J]. Composite Structures, 2019, 221: 110844. doi: 10.1016/j.compstruct.2019.04.016
    [17] ZHANG R, ZHAO R, LIU Z L, et al. Cyclic behavior of existing flexure-dominated RC bridge columns retrofitted by ECC jackets in the region of plastic hinge[J]. Engineering Structures, 2022, 269: 114820. doi: 10.1016/j.engstruct.2022.114820
    [18] LI X, CHEN K D, HU P, et al. Effect of ECC jackets for enhancing the lateral cyclic behavior of RC bridge columns[J]. Engineering Structures, 2020, 219: 110714. doi: 10.1016/j.engstruct.2020.110714
    [19] 王新玲, 李世伟, 罗鹏程, 等. 水泥基复合材料加固小偏心受压钢筋混凝土柱承载力[J]. 复合材料学报, 2023, 40(3): 1773-1784.

    WANG Xinling, LI Shiwei, LUO Pengcheng, et al. Bearing capacity of reinforced concrete columns strengthened by engineered cementitious composite under small eccentric compression load[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1773-1784(in Chinese).
    [20] 王新玲, 李赟璞, 李苗浩夫, 等. 高强不锈钢绞线网增强ECC加固RC短柱轴心受压试验[J]. 复合材料学报, 2022, 39(5): 2308-2317.

    WANG Xinling, LI Yunpu, LIMIAO Haofu, et al. Compressive behavior of RC short columns strengthened with high-strength stainless steel wire strand mesh and ECC[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2308-2317(in Chinese).
    [21] DENG M K, ZHANG Y X, LI Q Q. Shear strengthening of RC short columns with ECC jacket: Cyclic behavior tests[J]. Engineering Structures, 2018, 160: 535-545. doi: 10.1016/j.engstruct.2018.01.061
    [22] DI J, FAN J H, ZHOU X H, et al, Hysteretic behavior of composite bridge columns with plastic hinge enhanced by engineered cementitious composite jacket for seismic resistance[J]. Engineering Structures, 2022, 251: 113532.
    [23] 程彩霞. PVA纤维水泥基复合材料增强框架节点抗震性能研究[D]. 武汉: 湖北工业大学, 2009.

    CHENG Caixia. A study on the earthquake-resistant behavior of the PVA fiber cementitious composite reinforced frame joints[D]. Wuhan: Hubei University of Technology, 2009(in Chinese).
    [24] SAID S H, RAZAK H A. Structural behavior of RC engineered cementitious composite (ECC) exterior beam-column joints under reversed cyclic loading[J]. Construction and Building Materials, 2016, 107: 226-234. doi: 10.1016/j.conbuildmat.2016.01.001
    [25] 董胜, 陈盈. 后浇高韧性水泥基复合材料预制混凝土节点有限元分析[J]. 施工技术, 2017, 46(3): 55-60.

    DONG Sheng, CHEN Ying. Finite element analysis for precast concrete joints with engineered cementitious composite material[J]. Construction Technology, 2017, 46(3): 55-60(in Chinese).
    [26] SURYANTO B, TAMBUSAY A, SUPROBO P, et al. Seismic performance of exterior beam-column joints constructed with engineered cementitious composite: Comparison with ordinary and steel fibre reinforced concrete[J]. Engineering Structures, 2022, 250: 113377. doi: 10.1016/j.engstruct.2021.113377
    [27] ZHANG R, MATSUMOTO K, HIRATA T, et al. Application of PP-ECC in beam-column joint connections of rigid-framed railway bridges to reduce transverse reinforcements[J]. Engineering Structures, 2015, 86: 146-156. doi: 10.1016/j.engstruct.2015.01.005
    [28] 丁梦佳, 许维炳, 王瑾, 等. 一种灌浆套筒连接的装配式ECC-RC混合柱: 中国, 202110242254.4[P]. 2022-07-19.

    DING Mengjia, XU Weibing, WANG Jin, et al. The utility model relates to an assembled ECC-RC mixed column with grouting sleeve connection: CN, 202110242254.4[P]. 2022-07-19(in Chinese).
    [29] ZHANG Y, DENG M, LI T, et al. Strengthening of flexure-dominate RC columns with ECC jackets: Experiment and analysis[J]. Engineering Structures, 2021, 231: 111809.
    [30] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Architecture and Building Press, 2010(in Chinese).
    [31] KANDA T, LIN Z, LI V C. Modeling of tensile stress-strain relation of pseudo strain-hardening cementitious composites[J]. Journal of Materials in Civil Engineering, 2011, 12(2): 147-156.
    [32] 温丛格. 工程纤维增强水泥基复合材料PVA-ECC力学性能研究[D]. 焦作: 河南理工大学, 2015.

    WEN Congge. Study on mechanical performance of engineering fiber reinforced cementitious composites PVA-ECC[D]. Jiaozuo: Master Dissertation of Henan Polytechnic University, 2015(in Chinese).
    [33] 田俊. 超高韧性水泥基复合材料加固混凝土结构的界面力学性能与耐久性能研究[D]. 南京: 东南大学, 2017.

    TIAN Jun. Experimental study on mechanical properties and durability of ultra high toughness cementitious composite-to-concrete interface[D]. Nanjing: Doctoral Dissertation of Southeast University, 2017(in Chinese).
    [34] 方自虎, 周海俊, 赖少颖, 等. 循环荷载下钢筋混凝土ABAQUS粘结滑移单元[J]. 武汉大学学报(工学版), 2014, 47(4): 527-531.

    FANG Zihu, ZHOU Haijun, LAI Shaoying, et al. ABAQUS bond-slip element of reinforced concrete under cyclic loads[J]. Engineering Journal of Wuhan University, 2014, 47(4): 527-531(in Chinese).
    [35] LI C, HAO H, BI K M. Seismic performance of precast concrete-filled circular tube segmental column under biaxial lateral cyclic loadings[J]. Bulletin of Earthquake Engineering, 2019, 17: 271-296. doi: 10.1007/s10518-018-0443-4
    [36] 陈科旭. PP-ECC墩柱抗震性能研究[D]. 绵阳: 西南科技大学, 2019.

    CHEN Kexu. Research on seismic behavior of PP-ECC piers[D]. Mianyang: Master Dissertation of Southwest University of Science and Technology, 2019(in Chinese).
    [37] DING M, XU W, WANG J, et al. Seismic performance of prefabricated concrete columns with grouted sleeve connections, and a deformation-capacity estimation method[J]. Journal of Building Engineering, 2022, 55: 104722. doi: 10.1016/j.jobe.2022.104722
    [38] 中华人民共和国交通运输部. 公路桥梁抗震设计规范: JTG/T 2231-01—2020[S]. 北京: 人民交通出版社, 2020.

    Ministry of Transport of the People's Republic of China. Specifications for seismic design of highway bridges: JTG/T 2231-01—2020[S]. Beijing: China Communication Press, 2020(in Chinese).
    [39] 邓江东, 彭展翼. 功能梯度混凝土受弯构件形成机制和力学性能研究[J]. 工程力学, 2023, 40(9): 74-80.

    DENG Jiangdong, PENG Zhanyi. Formulation mechanism and mechanical performance of functionally graded flexural concrete members[J]. Engineering Mechanics, 2023, 40(9): 74-80(in Chinese).
    [40] 邓江东, 杨思远, 郭春泉. 梯级GFRP筋混凝土受弯构件多塑性区形成机制[J]. 复合材料学报, 2023, 40(11): 6324-6335.

    DENG Jiangdong, YANG Siyuan, GUO Chunquan. Formation mechanism of multi-plastic regions in concrete flexural members with graded GFRP bars[J]. Acta Materiae Compositae Sinica. 2023, 40(11): 6324-6335(in Chinese).
  • 加载中
图(18) / 表(6)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  101
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2023-12-08
  • 录用日期:  2023-12-29
  • 网络出版日期:  2024-01-10
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回