淀粉/PBAT可降解地膜在不同环境下老化性能对比

林军, 李晓萱, 柴喜存, 何春霞

林军, 李晓萱, 柴喜存, 等. 淀粉/PBAT可降解地膜在不同环境下老化性能对比[J]. 复合材料学报, 2024, 41(10): 5575-5583. DOI: 10.13801/j.cnki.fhclxb.20240009.002
引用本文: 林军, 李晓萱, 柴喜存, 等. 淀粉/PBAT可降解地膜在不同环境下老化性能对比[J]. 复合材料学报, 2024, 41(10): 5575-5583. DOI: 10.13801/j.cnki.fhclxb.20240009.002
LIN Jun, LI Xiaoxuan, CHAI Xicun, et al. Comparison of aging properties of starch/ PBAT degradable mulching film in different environments[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5575-5583. DOI: 10.13801/j.cnki.fhclxb.20240009.002
Citation: LIN Jun, LI Xiaoxuan, CHAI Xicun, et al. Comparison of aging properties of starch/ PBAT degradable mulching film in different environments[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5575-5583. DOI: 10.13801/j.cnki.fhclxb.20240009.002

淀粉/PBAT可降解地膜在不同环境下老化性能对比

基金项目: 中央高校基本科研业务费专项资金项目(XUEKEN2022010);“十四五”国家重点研发计划(2022YFD2300700)
详细信息
    通讯作者:

    何春霞,博士, 教授,博士生导师,研究方向为新型工程材料、 全生物降解材料 E-mail: chunxiahe@hotmail.com

  • 中图分类号: TB332

Comparison of aging properties of starch/ PBAT degradable mulching film in different environments

Funds: Supported by the Fundamental Research Funds for the Central Universities (XUEKEN2022010); National Key Research and Development Program of China (2022YFD2300700)
  • 摘要: 为研制全生物降解地膜以减少传统塑料地膜的污染,以热塑性淀粉(TPS)和聚己二酸/对苯二甲酸丁二醇酯(PBAT)为原料,制备了两种原料配比的生物降解地膜TPS/PBAT-A和TPS/PBAT-B,研究其在热老化(60℃、80℃、100℃)和多因素老化(温度、湿度、光照强度分别为40℃-65%-310 W/m2、60℃-65%-310 W/m2和60℃-65%-648 W/m2)的综合性能。未老化前,两种地膜TPS/PBAT-A和TPS/PBAT-B的拉伸强度分别为16.3 MPa 和20.8 MPa,断裂伸长率分别为1222.7%和564.5%。高温热老化后两种地膜力学性能下降,经100℃热老化后,两种地膜TPS/PBAT-A和TPS/PBAT-B的拉伸强度分别降至11.2 MPa和18.2 MPa;TPS/PBAT-B地膜在热老化后表面缺陷相对较少,其性能保留较好。多因素老化下,光照强度对于两种地膜的力学性能的影响较大,在60℃-65%-310 W/m2和60℃-65%-648 W/m2的对比环境中,两种地膜在24天后拉伸强度分别下降23.0%和22.4%;两种地膜在老化时主要表现为地膜的非结晶区先分解,分子链结构遭到破坏,分子断裂后内部空隙的存在使结合质量下降,表面出现多处孔洞和裂纹。
    Abstract: In order to develop a biodegradable mulching film to reduce the pollution of traditional mulching film, thermoplastic starch (TPS) and polyadipate/butylene terephthalate (PBAT) were used as raw materials to prepare two biodegradable mulching films TPS/PBAT-A and TPS/PBAT-B with a ratio of raw materials, and study their thermal aging (60℃, 80℃, 100℃) and multi-factor aging (temperature, humidity, and light intensity are 40℃-65%-310 W/m2, 60℃-65%-310 W/m2 and 60℃-65%-648 W/m2). Before aging, the tensile strength of the two mulching films TPS/PBAT-A and TPS/PBAT-B are 16.3 MPa and 20.8 MPa, respectively, and the elongation at break is 1222.7% and 564.5%, respectively. After high temperature thermal aging, the mechanical properties of the two mulching films decreased. After thermal aging at 100℃, the tensile strength of the two mulching films TPS/PBAT-A and TPS/PBAT-B decreased to 11.2 MPa and 18.2 MPa, respectively; TPS/PBAT-B mulching films have relatively few surface defects after thermal aging, and their properties are well preserved. In the comparative environment of 60℃-65%-310 W/m2 and 60℃-65%-648 W/m2, the tensile strength of the two mulching films decreased by 23.0% and 22.4% after 24 days, respectively. When the two kinds of mulching films are aged, the amorphous area of the mulching films decomposes first, the molecular chain structure is destroyed, the existence of internal voids after molecular fracture reduces the bonding quality, and there are many holes and cracks on the surface.
  • 地膜覆盖技术在现代农业发展中发挥着重要作用,它可以提高土壤温度、保持水分、抑制杂草生长,从而有效提高农作物的产量和品质[1]。传统塑料地膜在使用后难以回收,农田土壤受塑料地膜污染日趋严重,用全生物降解地膜替代塑料地膜是大势所趋[2]。中央一号文件连续多年明确提出要加强研发和推广应用降解地膜。

    聚己二酸/对苯二甲酸丁二醇酯(PBAT) 是一种新型可降解芳香族共聚酯,由刚性链段对苯二甲酸丁二醇酯 (BT)和柔性链段己二酸丁二醇酯 (BA)组成, PBAT既具有脂肪族聚酯的柔韧性和可降解性,又具有芳香族聚酯的耐热性和力学性能[3],可以应用于包装、地膜等领域,被认为是最有前途的可生物降解聚酯之一[4]。同时,PBAT可采用传统的PE薄膜加工设备进行吹膜成型,非常适合大规模生产制造,是目前十分热门的生物降解地膜材料。然而,PBAT自身也存在柔软、刚性较低等问题,通常采用添加适量的热塑性淀粉(TPS)与其共混进行改性[5]。Zhai等[6]采用挤出吹塑法制备了不同质量比PBAT和TPS可降解薄膜,在PBAT含量分别为30wt%和70wt%附近发现了两个相变点,复合膜的力学性能跃升。Garalde等[7]研究了共混比和储存时间对TPS/PBAT薄膜形貌、力学和热性能的影响,发现将TPS/PBAT质量比提高到40/60会改善聚合物组分的分布,并提高PBAT结晶温度,同时降低TPS/PBAT薄膜的熔融转变和拉伸性能,断裂伸长率则在低TPS/PBAT质量比(20/80)时下降,在高共混比(即60/40)时增加。此外,添加反应相容剂和扩链剂等可进一步提高TPS/PBAT地膜的性能[8-10]。苯乙烯-马来酸酐-甲基丙烯酸缩水甘油酯(SMG)、聚氨酯扩链剂(ADR)、亚硝酸钠等被证明可以改善共混物的均匀性及TPS和PBAT之间的相容性,而扩链剂的使用可使TPS/PBAT共混物具有更高的拉伸强度和断裂伸长率[11-12]

    可降解地膜在实际应用过程中,主要发生光降解、生物降解和水解,探索TPS/PBAT地膜在各种环境中的老化情况对于提高其性能具有重要的参考价值。Akhir等[13]研究了TPS/PBAT地膜在土壤埋藏和自然风化环境下的老化行为,通过9个月实验发现,随着TPS含量的增高,TPS/PBAT地膜的拉伸强度、断裂伸长率和水阻隔性能均降低,并发现在自然风化中地膜主要发生光降解和Norrish I型和II型,在土壤掩埋条件下,地膜主要发生水解和酶降解。然而,TPS/PBAT地膜在实际使用环境将直接覆盖于土壤表层,受热、紫外光、雨水等因素的影响,相较于土壤掩埋和自然风化等环境更为复杂,目前对于TPS/PBAT降解地膜在复杂环境下老化性能的研究较少,对其在老化的不同阶段性能分析也欠缺。通过选择综合性能较强的TPS/PBAT共混比例,添加ADR等助剂制备两种TPS/PBAT降解地膜,开展TPS/PBAT地膜在热老化、多因素老化等环境下的性能研究,既能了解TPS/PBAT地膜在不同环境不同阶段的老化性能,也为TPS/PBAT地膜的性能提升提供方向。

    制备两种TPS/PBAT白色地膜,配方如表1所示。将PBAT (FLEX-262,珠海金发生物材料有限公司)与塑化淀粉(大成集团)混合,加入ADR等助剂放置于双螺杆挤出机(TSE-20,南京创腾橡塑机械制造有限公司)中制造两种TPS/PBAT复合颗粒,各区加热温度分别为80℃、150℃、160℃、160℃、165℃、170℃、175℃、155℃、155℃、150℃、150℃、150℃、145℃,使用吹膜机(LB-16,杭州雷柏科技有限公司)将TPS/PBAT复合颗粒吹制成薄膜。

    表  1  热塑性淀粉(TPS)/聚己二酸/对苯二甲酸丁二醇酯(PBAT)地膜配方
    Table  1.  Thermoplastic starch (TPS)/polyadipate/butylene terephthalate (PBAT) mulching films formulation
    Sample film PBAT/wt% TPS/wt% Other/wt%
    TPS/PBAT-A 72.5 25 2.5
    TPS/PBAT-B 62.5 35 2.5
    下载: 导出CSV 
    | 显示表格

    使用CMT6104型SANS微机控制电子万能试验机(美斯特工业系统(中国)有限公司),将TPS/PBAT地膜裁剪成15 mm×200 mm的样条,参照GB/T 1040.3—2006[14]标准测定可降解地膜的拉伸强度和断裂伸长率。

    使用傅里叶红外光谱仪(Nicolet iS-10,杜美精密仪器有限公司(上海))分析TPS/PBAT地膜的官能团,波数范围为4000~400 cm−1,扫描次数为16次,分辨率为4 cm−1

    使用扫描电子显微镜(S-4800,日立高新科技那珂事业所(日本))对TPS/PBAT地膜进行表面微观形貌测试,在样品表面喷金处理,在15.0 kV下选择10 k倍观察地膜表面的微观结构。

    将TPS/PBAT地膜放入电热恒温鼓风干燥箱(DHC-9053A,南京东迈科技仪器有限公司),以60℃、80℃、100℃进行热老化性能测试试验,每隔8天为一个试验周期,连续测试3个周期,每个周期取出10个样品进行性能测试。

    将TPS/PBAT地膜放入氙灯耐气候老化试验箱(KW-XD-100,东莞市科文试验设备有限公司)进行多因素老化性能测试试验,参照GB/T 16422—2006[15]标准,设置每2 h为一个循环周期,其中光照102 min、淋雨18 min。如表2所示,设置3组试验条件,每隔8天为一个试验周期,连续测试3个周期,每个周期取出10个样品进行性能测试。

    表  2  多因素老化试验条件
    Table  2.  Multi-factor aging test conditions
    Sample film Temperature/
    Humidity/
    %
    Strength of
    illumination/(W·m−2)
    TPS/PBAT-1 40 65 310
    TPS/PBAT-2 60 65 310
    TPS/PBAT-3 60 65 648
    下载: 导出CSV 
    | 显示表格

    表3为TPS/PBAT地膜力学性能数据。由表可知,随着淀粉含量的增加,TPS/PBAT地膜的拉伸强度从16.3 MPa上升为20.8 MPa,上升了27.7%, 这是因为PBAT的羰基可以和更多的淀粉羟基相互作用,导致聚酯相把应力转移给淀粉分子,从而提高了拉伸强度[16];而随着淀粉含量的增加,断裂伸长率从1222.7%下降为564.5%,下降了53.8%,这可能是由于随着淀粉含量的增加, PBAT和TPS共混物的相形态逐渐由海岛相结构转变为双连续相结构,两者的相容性变差,导致断裂伸长率降低[17];所制备TPS/PBAT降解地膜的拉伸强度和断裂伸长率符合国家标准《全生物降解农用地面覆盖薄膜》(GB/T 35795—2017)[18] ;同时,相较于商用的巴斯夫M2351地膜(拉伸强度25.0 MPa,断裂伸长率180.0%),TPS/PBAT-B地膜的断裂伸长率是M2351的3.1倍,具有更好的延展性。

    表  3  TPS/PBAT地膜力学性能数据
    Table  3.  Mechanical properties data of TPS/PBAT films
    Sample film Tensile strength/MPa Elongation at break/%
    TPS/PBAT-A 16.3±0.4 1222.7±10.5
    TPS/PBAT-B 20.8±0.5 564.5±10.6
    下载: 导出CSV 
    | 显示表格

    图1为TPS/PBAT地膜红外图谱。可知,两种地膜的特征吸收峰相似,但由于PBAT和TPS的含量不同,各自官能团的含量不同,吸收峰的振动强度有所差异。TPS/PBAT地膜主要在3000~3600 cm−1 (O—H伸缩)、2900~3000 cm−1 (C—H伸缩)、1650~1750 cm−1 (C=O伸缩)、1200~1300 cm−1 (C—O伸缩)、1100~1150 cm−1 (C—O、C—C和C—O—H伸缩)、900~1100 cm−1 (C—O—H弯曲)和720~740 cm−1 (芳香环的C—C弯曲)处有吸收峰[19-20]

    图  1  TPS/PBAT地膜红外图谱
    Figure  1.  FTIR spectra of TPS/PBAT mulching films

    图2图3为TPS/PBAT地膜热老化过程中拉伸强度和断裂伸长率对比。由图可知,TPS/PBAT-B在不同的热老化周期下拉伸强度均高于TPS/PBAT-A,断裂伸长率则相反,这与PBAT和TPS的含量有关。对于TPS/PBAT-A而言,随着热老化的进行,地膜的力学性能在逐渐下降,同时,其力学性能也随着老化温度的升高而逐渐下降,这是由于温度的作用,地膜中淀粉与PBAT的交联结构发生断裂,地膜韧性下降、易于断裂,从而导致地膜力学性能下降;对于TPS/PBAT-B,其在60℃环境中呈现随老化时间的增加力学性能在下降的现象,但在80℃和100℃之间,呈现力学性能先升后降的现象,这可能是因为淀粉的增加使得PBAT的熔融温度稍有降低,高温下淀粉与PBAT的连续性增强,从而提升了力学性能,但随着老化的进行,TPS/PBAT交联结构被破坏,力学性能下降。

    图  2  TPS/PBAT地膜热老化拉伸强度对比
    Figure  2.  Comparison of thermal aging tensile strength of TPS/PBAT mulching films
    图  3  TPS/PBAT地膜热老化断裂伸长率对比
    Figure  3.  Comparison of thermal aging elongation at break of TPS/PBAT mulching films

    图4为热老化后TPS/PBAT地膜的表面微观形貌。通过对比可以发现,TPS/PBAT-A-60℃随着老化时间的增加,表面白色的淀粉颗粒逐渐析出,颗粒变大,表面出现凹陷,进一步佐证了其拉伸强度与断裂伸长率逐渐降低;在TPS/PBAT-A-80℃和TPS/PBAT-A-100℃中也呈现出类似的情况,其在24天表面均出现明显裂纹,说明高温使淀粉开始分解,拉伸强度与断裂伸长率下降。TPS/PBAT-B-60℃呈现与TPS/PBAT-A-60℃相似的情况,而TPS/PBAT-B-80℃和TPS/PBAT-B-100℃在24天时的裂纹比TPS/PBAT-A-80℃和TPS/PBAT-A-100℃小,与两者在拉伸强度下存在的差异相类似,进一步验证了PBAT基体的羰基和淀粉的羟基之间的相互作用,从而缓解了淀粉与PBAT在高温下的分离。

    图  4  热老化后TPS/PBAT地膜的表面微观形貌(放大倍数×10 k)
    Figure  4.  Surface morphologies of the TPS/PBAT mulching films after thermal aging (Magnification×10 k)

    图5为TPS/PBAT地膜热老化红外图谱对比。可知,热老化前后同种地膜红外图谱吸收峰的形状趋势较为相似,但吸收峰的振动强度发生变化,这表明地膜各官能团含量有所变动;两种地膜的红外图谱中特征吸收峰的种类和位置没有发生明显变化,主要表现为原有特征吸收峰强度下降,表明在降解过程中没有新产物生成。随老化时间延长,两种地膜在3350 cm−1附近较宽的强峰波数逐渐向高频方向移动,峰的宽度变窄、强度变弱,说明地膜分子结构遭到破坏,分子间氢键作用力减小,羟基数量减少[21]2960 cm−1附近甲基(—CH3)和亚甲基(—CH2)的反对称伸缩振动峰和对称伸缩振动峰变尖、峰强减弱;1730 cm−1附近的羰基伸缩振动峰明显减弱,说明PBAT酯键被催化断裂[22];726 cm−1附近是苯环的C—H平面外弯曲振动,其强度反映了苯基的数量,也反映了地膜中PBAT的含量[23],强度下降说明PBAT在高温下趋向于分解。

    图  5  TPS/PBAT地膜热老化红外光谱对比
    Figure  5.  Comparison of thermal aging FTIR spectra of TPS/PBAT mulching films

    图6图7为多因素老化过程中TPS/PBAT地膜拉伸强度和断裂伸长率对比。可知,两种地膜在40℃-65%-310 W/m2、60℃-65%-310 W/m2和60℃-65%-648 W/m2环境下拉伸强度和断裂伸长率整体逐渐下降,但趋势不同,这是由于两种地膜的配比不同,导致在降解过程中,非晶区较多的TPS/PBAT-A更容易发生降解,非晶区与晶区之间的空隙增大,即表现为其断裂伸长率发生更大幅度的下降;TPS/PBAT-A-1和TPS/PBAT-A-2在不同温度下24天后拉伸强度和断裂伸长率分别下降2.5%和45.4%,TPS/PBAT-B-1和TPS/PBAT-B-2分别下降2.74%和6.71%;TPS/PBAT-A-2和TPS/PBAT-A-3在不同光照强度下24天后拉伸强度和断裂伸长率分别下降23.0%和59.8%,TPS/PBAT-B-2和TPS/PBAT-B-3分别下降22.4%和61.8%。因此可以推断,光照强度对TPS/PBAT地膜老化后的力学性能影响更大,这可能是由于PBAT在光氧化的作用下,活性羟基自由基的产生可以促进光氧化过程,从而诱导更多的自由基,进一步增强分子链的断裂和交联,伴随着 PBAT链的断裂,整个地膜的分子量降低,地膜的力学性能也随之下降[24-25]。 后期研究可以通过加入光稳定剂等方式[26],进一步提升TPS/PBAT地膜在强光照环境下的力学性能。

    图  6  TPS/PBAT地膜多因素老化拉伸强度对比
    Figure  6.  Comparison of multi-factor aging tensile strength of TPS/PBAT mulching films
    图  7  TPS/PBAT地膜多因素老化断裂伸长率对比
    Figure  7.  Comparison of multi-factor aging elongation at break of TPS/PBAT mulching films

    图8为多因素老化后TPS/PBAT地膜的表面微观形貌。可知,TPS/PBAT-A在多因素老化8天时表面变得粗糙,凸起边缘出现层状剥离趋势;16天时表面开始塌陷,分层现象明显并且出现大量片状物质;24天时表面出现细小孔洞,分子链结构进一步断裂;TPS/PBAT-B在多因素老化8天时表面出现轻微凹凸现象,凸起部分较少,表面较为平整;16天时表面不规则起伏,伴有少量沟壑,出现细小孔洞;24天时片状凸起部分增多,孔洞进一步扩大且数量增多。随着老化时间的延长,TPS/PBAT-A先呈现降解趋势,表面粗糙程度、裂纹数量、片层状凸起数量和孔洞数量都比TPS/PBAT-B更多,与力学性能上的差异相对应,TPS/PBAT-B的耐老化性能整体优于TPS/PBAT-A。在地膜的老化过程中,先发生降解的部分是非晶区部分,由于非晶区与晶区结构的差异导致降解速率不同,加剧了地膜表面的粗糙程度[27]。相较于热老化而言,两种地膜经过多因素老化后破损速率加快,原因是光照、水解的作用下加剧了分子链的断裂,地膜表面均由初始状态的平整光滑逐渐粗糙,分子结构由结合紧密逐渐松散,同时由于淀粉水解,孔洞的数量逐渐增加,进一步加速了地膜的酶水解[28];相较于TPS/PBAT-1和TPS/PBAT-2、TPS/PBAT-2和TPS/PBAT-3而言,光照强度对于TPS/PBAT地膜的老化性能影响更大,具体表现为TPS/PBAT-A-3出现了大量的片状物质,TPS/PBAT-B-3在24天后表面形成了大块的凸起部分,与力学性能上的差异相互佐证。

    图  8  多因素老化后TPS/PBAT地膜的表面微观形貌(放大倍数×10 k)
    Figure  8.  Surface morphologies of the TPS/PBAT mulching films after multi-factor aging (Magnification×10 k)

    图9为TPS/PBAT地膜多因素老化红外图谱对比。可知,老化后两种地膜红外图谱中基本没有出现新的特征吸收峰,也没有明显发生特征吸收峰的位移,表明多因素老化过程中没有生成其他新的产物,但吸收峰的振动强度不同,这反映地膜各官能团含量不同。图中主要有以下特征峰:1730 cm−1附近是羰基(—C=O)伸缩振动峰,地膜发生水解反应后酯键断裂形成的大量小分子聚集在地膜内部,使内部聚酯小分子数量增加,羰基的含量可能会上升,表现为羰基吸收峰增强[29]1460 cm−11410 cm−1附近的峰减弱,说明地膜可能在水分子和微生物的作用下水解,最后导致分子链的断裂,发生降解[30]1283 cm−11033 cm−1和726 cm−1的吸收峰强度下降、面积减小,均表明地膜的表层发生水解;相较于TPS/PBAT-B-1和TPS/PBAT-B-2而言,TPS/PBAT-B-3在1283 cm−11033 cm−1的吸收峰强度下降趋势更为明显,发生的水解程度更为剧烈,验证了紫外光加剧了TPS/PBAT地膜中淀粉的分解。

    图  9  TPS/PBAT地膜多因素老化红外图谱对比
    Figure  9.  Comparison of multi-factor aging FTIR spectra of TPS/PBAT mulching films

    (1)所制备热塑性淀粉(TPS)/聚己二酸/对苯二甲酸丁二醇酯(PBAT)降解地膜的拉伸强度和断裂伸长率符合国家标准《全生物降解农用地面覆盖薄膜》(GB/T 35795—2017)[18]。未老化时,两种地膜力学性能较好,TPS/PBAT-B地膜的拉伸强度最大为20.8 MPa,TPS/PBAT-A地膜的断裂伸长率为1222.7%。

    (2)热老化试验表明:100℃热老化后,两种地膜的拉伸强度分别降至11.2 MPa和18.2 MPa,高温使得淀粉开始肢解,力学性能下降; TPS/PBAT-B地膜在热老化后表面缺陷相对较少,其性能保留较好。

    (3)多因素老化试验表明:两种地膜在多因素环境中各项性能均下降,相对于温度而言,光照强度对于TPS/PBAT地膜的力学性能的影响更大;在60℃-65%-310 W/m2和60℃-65%-648 W/m2的对比环境中,两种地膜24天后拉伸强度分别下降23.0%和22.4%,后期可以尝试添加光稳定剂等方式提升在强光照环境下的性能。两种地膜在多因素老化后均未生成新物质,老化过程主要表现为地膜的非结晶区先分解分子链结构遭到破坏,分子断裂后内部空隙的存在使结合质量下降,地膜的综合性能下降,表面出现多处孔洞和裂纹。

  • 图  1   TPS/PBAT地膜红外图谱

    Figure  1.   FTIR spectra of TPS/PBAT mulching films

    图  2   TPS/PBAT地膜热老化拉伸强度对比

    Figure  2.   Comparison of thermal aging tensile strength of TPS/PBAT mulching films

    图  3   TPS/PBAT地膜热老化断裂伸长率对比

    Figure  3.   Comparison of thermal aging elongation at break of TPS/PBAT mulching films

    图  4   热老化后TPS/PBAT地膜的表面微观形貌(放大倍数×10 k)

    Figure  4.   Surface morphologies of the TPS/PBAT mulching films after thermal aging (Magnification×10 k)

    图  5   TPS/PBAT地膜热老化红外光谱对比

    Figure  5.   Comparison of thermal aging FTIR spectra of TPS/PBAT mulching films

    图  6   TPS/PBAT地膜多因素老化拉伸强度对比

    Figure  6.   Comparison of multi-factor aging tensile strength of TPS/PBAT mulching films

    图  7   TPS/PBAT地膜多因素老化断裂伸长率对比

    Figure  7.   Comparison of multi-factor aging elongation at break of TPS/PBAT mulching films

    图  8   多因素老化后TPS/PBAT地膜的表面微观形貌(放大倍数×10 k)

    Figure  8.   Surface morphologies of the TPS/PBAT mulching films after multi-factor aging (Magnification×10 k)

    图  9   TPS/PBAT地膜多因素老化红外图谱对比

    Figure  9.   Comparison of multi-factor aging FTIR spectra of TPS/PBAT mulching films

    表  1   热塑性淀粉(TPS)/聚己二酸/对苯二甲酸丁二醇酯(PBAT)地膜配方

    Table  1   Thermoplastic starch (TPS)/polyadipate/butylene terephthalate (PBAT) mulching films formulation

    Sample film PBAT/wt% TPS/wt% Other/wt%
    TPS/PBAT-A 72.5 25 2.5
    TPS/PBAT-B 62.5 35 2.5
    下载: 导出CSV

    表  2   多因素老化试验条件

    Table  2   Multi-factor aging test conditions

    Sample film Temperature/
    Humidity/
    %
    Strength of
    illumination/(W·m−2)
    TPS/PBAT-1 40 65 310
    TPS/PBAT-2 60 65 310
    TPS/PBAT-3 60 65 648
    下载: 导出CSV

    表  3   TPS/PBAT地膜力学性能数据

    Table  3   Mechanical properties data of TPS/PBAT films

    Sample film Tensile strength/MPa Elongation at break/%
    TPS/PBAT-A 16.3±0.4 1222.7±10.5
    TPS/PBAT-B 20.8±0.5 564.5±10.6
    下载: 导出CSV
  • [1] 刘婷婷, 侯丽君, 刘佳茜, 等. 基于文献计量的塑料地膜研究发展态势分析[J]. 中国农业大学学报, 2020, 25(9): 90-103.

    LIU Tingting, HOU Lijun, LIU Jiaxi, et al. Development trend analysis of plastic mulching film based on bibliometric analysis[J]. Journal of China Agricultural University, 2020, 25(9): 90-103(in Chinese).

    [2] 张芮, 李红霞, 高彦婷, 等. 基于熵权-TOPSIS模型的黄土高原半干旱区玉米覆膜类型综合评价[J]. 甘肃农业大学学报, 2024, 59(1): 74-85.

    ZHANG Rui, LI Hongxia, GAO Yanting, et al. Comprehensive evaluation of film mulching types of maize in semi-arid area of loess plateau based on entropy weight-TOPSIS model[J]. Journal of Gansu Agricultural University, 2024, 59(1): 74-85(in Chinese).

    [3] 丁茜, 余佳, 蒋馨漫, 等. 生物降解地膜材料的研究进展[J]. 工程塑料应用, 2019, 47(12): 150-153. DOI: 10.3969/j.issn.1001-3539.2019.12.028

    DING Qian, YU Jia, Jiang Xinman, et al. Research progress on biodegradable mulching film materials[J]. Engineering Plastics Application, 2019, 47(12): 150-153(in Chinese). DOI: 10.3969/j.issn.1001-3539.2019.12.028

    [4]

    JIAO J, ZENG X B, HUANG X B. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)-PBAT[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(1): 19-26. DOI: 10.1016/j.aiepr.2020.01.001

    [5]

    ZHANG S, LIN Z, LI J, et al. Elevated ductility, optical, and air barrier properties of poly (butyleneadipate-co-terephthalate) bio-based films via novel thermoplastic starch feature[J]. Polymers for Advanced Technologies, 2019, 30(4): 852-862. DOI: 10.1002/pat.4518

    [6]

    ZHAI X, ZHANG R, WANG W, et al. Relationship between phase morphologies and mechanical properties of thermoplastic starch/poly(butylene adipate-co-terephthalate) composite films prepared by extrusion blowing[J]. International Journal of Biological Macromolecules, 2023, 224: 1356-1360. DOI: 10.1016/j.ijbiomac.2022.10.221

    [7]

    GARALDE R A, THIPMANEE R, JARIYASAKOOLROJ P, et al. The effects of blend ratio and storage time on thermoplastic starch/poly(butylene adipate-co-terephthalate) films[J]. Heliyon, 2019, 5(3): e01251. DOI: 10.1016/j.heliyon.2019.e01251

    [8]

    NAYAK S K. Biodegradable PBAT/starch nanocomposites[J]. Polymer-Plastics Technology and Engineering, 2010, 49(14): 1406-1418. DOI: 10.1080/03602559.2010.496397

    [9]

    OLIVATO J B, GROSSMANN M V E, YAMASHITA F, et al. Citric acid and maleic anhydride as compatibilizers in starch/poly(butylene adipate-co-terephthalate) blends by one-step reactive extrusion[J]. Carbohydrate Polymers, 2012, 87(4): 2614-2618. DOI: 10.1016/j.carbpol.2011.11.035

    [10]

    BAI J, PEI H, ZHOU X, et al. Reactive compatibilization and properties of low-cost and high-performance PBAT/thermoplastic starch blends[J]. European Polymer Journal, 2021, 143: 110198. DOI: 10.1016/j.eurpolymj.2020.110198

    [11]

    WEI D, WANG H, XIAO H, et al. Morphology and mechanical properties of poly( butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate)[J]. Carbohydrate Polymers, 2015, 123: 275-282.

    [12]

    TUNTIWORADET T, YOKSAN R. Property improvement of a thermoplastic starch/poly(butylene adipate-co-terephthalate) blown film by the addition of sodium nitrite[J]. International Journal of Biological Macromolecules, 2023, 242: 124991. DOI: 10.1016/j.ijbiomac.2023.124991

    [13]

    AKHIR M A M, ZUBIR S A, MARIATTI J. Effect of different starch contents on physical, morphological, mechanical, barrier, and biodegradation properties of tapioca starch and poly(butylene adipate-co-terephthalate) blend film[J]. Polymers for Advanced Technologies, 2023, 34(2): 717-730. DOI: 10.1002/pat.5922

    [14] 中国国家标准化管理委员会. 塑料拉伸性能测定第3部分: 薄膜/薄片试验条件: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics—Determination of tensile properties—Part 3: Test conditions for films and sheets: GB/T 1040.3—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).

    [15] 中国国家标准化管理委员会. 塑料实验室光源暴露试验方法: GB/T 16422—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics—Methods of exposure to laboratory light sources: GB/T 16422—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).

    [16] 王明明, 关二旗, 李萌萌, 等. 淀粉含量和直链与支链比例对淀粉基可降解薄膜的性能影响及土壤降解研究[J]. 河南工业大学学报(自然科学版), 2022, 43(5): 68-76, 101.

    WANG Mingming, GUAN Erqi, LI Mengmeng, et al. Effects of starch content and ratio of amylose to amylopectin on the performance of starch-based degradable film and its degradation in soil[J]. Journal of Henan University of Technology (Natural Science Edition), 2022, 43(5): 68-76, 101(in Chinese).

    [17]

    XU M, LI F, YAN X, et al. Low-cost and high-performance poly(butylene adipate-co-terephthalate)/thermoplastic starch blends prepared by an eccentric rotor extruder: Morphology, rheological behavior, thermal and mechanical properties[J]. Journal of Applied Polymer Science, 2023, 140(48): 124716. DOI: 10.1002/app.54715

    [18] 全国生物基材料及降解制品标准化技术委员会. 全生物降解农用地面覆盖薄膜: GB/T 35795—2017[S]. 北京: 中国标准出版社, 2017.

    Biobased Degradable Materials and Products. Biodegradable mulching film for agriculturaluses: GB/T 35795—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).

    [19]

    GONZÁLEZ SELIGRA P, ELOY MOURA L, FAMÁ L, et al. Influence of incorporation of starch nanoparticles in PBAT/TPS composite films[J]. Polymer International, 2016, 65(8): 938-945. DOI: 10.1002/pi.5127

    [20]

    WADAUGSORN K, PANRONG T, WONGPHAN P, et al. Plasticized hydroxypropyl cassava starch blended PBAT for improved clarity blown films: Morphology and properties[J]. Industrial Crops and Products, 2022, 176: 114311. DOI: 10.1016/j.indcrop.2021.114311

    [21] 李慧, 田家瑶, 庞姗姗, 等. 淀粉/聚乙烯醇/氧化石墨烯生物降解地膜的降解性能研究[J]. 塑料科技, 2022, 50(8): 77-82.

    LI Hui, TIAN Jiayao, PANG Shanshan, et al. Degradation performance of starch/polyvinyl alcohol/GO biodegradable mulch film[J]. Plastics Science and Technology, 2022, 50(8): 77-82(in Chinese).

    [22] 管彤晖, 付烨, 翁云宣. PBAT全生物降解地膜在土壤试验中的降解行为研究[J]. 中国塑料, 2022, 36(1): 67-72.

    GUAN Tonghui, FU Ye, WENG Yunxuan. Degradation behaviors of PBAT biodegradable mulch in soil[J]. China Plastics, 2022, 36(1): 67-72(in Chinese).

    [23]

    WONGPHAN P, PANRONG T, HARNKARNSUJARIT N. Effect of different modified starches on physical, morphological, thermomechanical, barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film[J]. Food Packaging and Shelf Life, 2022, 32: 100844. DOI: 10.1016/j.fpsl.2022.100844

    [24]

    QIAO R, WANG X, QIN G, et al. Degradation mode of PBAT mulching film and control methods duringits degradation induction period[J]. Mini-Reviews in Organic Chemistry, 2022, 19(5): 608-616. DOI: 10.2174/1570193X18666210813142022

    [25]

    WEI C, GUO P, LYU M, et al. High barrier poly(glycolic acid) modified poly(butylene adipate-co-terephthalate) blown films and accelerated ultraviolet degradability evaluation[J]. ACS Applied Polymer Materials, 2023, 5(5): 3457-3467. DOI: 10.1021/acsapm.3c00137

    [26]

    QIAO R M, ZHAO C P, LIU J L, et al. Synthesis of novel ultraviolet absorbers and preparation and field application of anti-ultraviolet aging PBAT/UVA films[J]. Polymers , 2022, 14(7): 1434.

    [27]

    KIJCHAVENGKUL T, AURAS R, RUBINO M, et al. Biodegradation and hydrolysis rate of aliphatic aromatic polyester[J]. Polymer Degradation and Stability, 2010, 95(12): 2641-2647. DOI: 10.1016/j.polymdegradstab.2010.07.018

    [28]

    WANG Z, TIAN H, WANG X, et al. Study on thermal, rheological, mechanical, morphological, and barrier properties of poly(butylene adipate-co-terephthalate)/thermoplastic starch/poly(propylene carbonate) biodegradable blown films[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(5): 1853-1865. DOI: 10.1007/s10973-022-11858-8

    [29]

    GUO M, JIN Y, HAN X, et al. Biodegradable poly(butylene adipate-co-terephthalate) and thermoplastic starch sustainable blends modified by epoxy-terminated hyperbranched polyester with excellent mechanical properties and high transparency[J]. Starch—Stärke, 2023, 75(3-4): 2200169. DOI: 10.1002/star.202200169

    [30] 吴思, 高维常, 蔡凯, 等. PBAT生物降解地膜降解特征对不同土壤水分的响应[J]. 灌溉排水学报, 2020, 39(6): 43-50.

    WU Si, GAO Weichang, CAI Kai, et al. The impact of soil moisture on degradation of biodegradable PBAT mulching films[J]. Journal of Irrigation and Drainage, 2020, 39(6): 43-50(in Chinese).

  • 期刊类型引用(1)

    1. 杨帆,吴宏,马双翼,彭江洪,姜天伟,孙闯闯. PBAT及其改性复合材料的研究进展与应用. 广东化工. 2024(21): 17-19+76 . 百度学术

    其他类型引用(2)

图(9)  /  表(3)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  222
  • PDF下载量:  35
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-11-19
  • 修回日期:  2023-12-11
  • 录用日期:  2023-12-28
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2024-10-14

目录

/

返回文章
返回