留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性可穿戴碲化铋基热电器件的研究进展

张彤 李杰 叶施莹 吴凯 任松 方剑

张彤, 李杰, 叶施莹, 等. 柔性可穿戴碲化铋基热电器件的研究进展[J]. 复合材料学报, 2024, 41(7): 3519-3528. doi: 10.13801/j.cnki.fhclxb.20240008.006
引用本文: 张彤, 李杰, 叶施莹, 等. 柔性可穿戴碲化铋基热电器件的研究进展[J]. 复合材料学报, 2024, 41(7): 3519-3528. doi: 10.13801/j.cnki.fhclxb.20240008.006
ZHANG Tong, LI Jie, YE Shiying, et al. Advances in flexible wearable bismuth telluride-based materials thermoelectric devices[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3519-3528. doi: 10.13801/j.cnki.fhclxb.20240008.006
Citation: ZHANG Tong, LI Jie, YE Shiying, et al. Advances in flexible wearable bismuth telluride-based materials thermoelectric devices[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3519-3528. doi: 10.13801/j.cnki.fhclxb.20240008.006

柔性可穿戴碲化铋基热电器件的研究进展

doi: 10.13801/j.cnki.fhclxb.20240008.006
基金项目: 江苏省市场监督管理局科技计划项目(KJ2023023);国家自然科学基金面上项目(52173059);江苏省高校自然科学研究项目重大项目(21KJA540002)
详细信息
    通讯作者:

    方剑,博士,教授,博士生导师,研究方向为电活性纤维材料和柔性智能可穿戴纺织品 E-mail: jian.fang@suda.edu.cn

  • 中图分类号: TB332

Advances in flexible wearable bismuth telluride-based materials thermoelectric devices

Funds: Science and Technology Program of Jiangsu Administration for Market Regulation (KJ2023023); National Natural Science Foundation of China (52173059); Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (21KJA540002)
  • 摘要: 随着全球能源的消耗加剧,热电器件的开发应用成为解决能源消耗问题的有效途径之一,其中,碲化铋(Bi2Te3)基柔性热电器件因在可穿戴领域逐步实现应用,得到了学界和业界的广泛关注。然而,受其材料成本较高、刚性结构等多方面因素的限制,Bi2Te3基柔性热电器件难以在保持高效热电性能的同时,实现柔性可穿戴化应用。本文系统地阐述了当前Bi2Te3基柔性热电器件在材料复合与柔性结构设计上的研究进展,特别是在柔性结构设计上,涵盖了块状、膜类及纱线型3种结构。最后,总结分析了Bi2Te3柔性热电器件未来可能面临的挑战与发展趋势,以期促进热电器件在可穿戴领域实现广泛应用。

     

  • 图  1  3种不同形态的Bi2Te3基柔性热电器件

    Figure  1.  Three different forms of Bi2Te3-based flexible thermoelectric devices

    图  2  (a) 热电发电机(TEG)结构图及其设备应用[30];(b) 完成的TEG器件结构图[6]

    Figure  2.  (a) Structure of thermoelectric generator (TEG) and its applications[30]; (b) Structure of the TEG[6]

    图  3  (a) 柔性热电发电机(f-TEG)的制造工艺[20];(b) TEG实样图[46];(c) 热电器件结构图[44];(d) 中空结构器件结构图[45];(e) 中空结构器件在手指表面的弯曲图[45]

    Figure  3.  (a) Manufacturing process of f-TEG[20]; (b) TEG sample drawing[46]; (c) Structure of the TEG[44]; (d) Structure of the hollow structure device[45]; (e) Bending diagram of a hollow structure device on the surface of a finger[45]

    RL—; WTEG—

    图  4  (a) 带有太阳能吸收器的热电器件示意图[56];(b) 可拉伸器件的设计图[57]

    Figure  4.  (a) Schematic diagram of a thermoelectric device with solar absorber[56]; (b) Design drawings of stretchable devices[57]

    图  5  (a) 锯齿形针迹;(b) 袜型针迹;(c) 平纹针迹[58];(d) 弯曲状态下的纱线型热电器件[59];(e) 1 m×15.5 cm的织物[60]

    Figure  5.  (a) Serrated stitch; (b) Sock needle; (c) Plain stitch[58]; (d) Yarn TEG in bent conditions[59]; (e) 1 m×15.5 cm fabric[60]

    TET—

    表  1  Bi2Te3基热电器件应用总结

    Table  1.   Summary of Bi2Te3-based thermoelectric device applications

    Device type Thermoelectric
    materials
    Substance* Input voltage/mV Power factor/
    (μW·m−1·K−2)
    Power density/
    (µW·cm−2)
    Seebeck
    coefficient/
    (μV·K−1)
    Ref.
    Flexible ingot-
    shaped thermoelectric devices
    SWCNT
    Bi2Te3
    23 (135 K) 891.6 (340 K) [16]
    Bi0.5Te1.5Te3
    (P-type)
    Bi2Te2.8Se0.2
    (N-type)
    PIF 2800-3300
    (Body temperature)
    3.5 [20]
    Bi0.5Sb1.5Te3
    (P-type)
    Bi2Se0.3Te2.7
    (N-type)
    FPCB 63 8.68 [44]
    Bi0.5Sb1.5Te3
    (P-type)
    Bi2Se0.5Te2.5
    (N-type)
    FPCB 5.35 4.75 [45]
    CNTs
    P, N Bi2Te3
    PDMS 920 570 [46]
    Flexible film-
    shaped thermoelectric devices
    Bi2Te3
    PVDF
    PET 2.3
    (Natural exhalation)
    133 (P)
    124 (N)
    [6]
    N bismuth telluride (Graphene)
    P bismuth telluride
    (SWCNT)
    Polyimide
    (PI)
    23 (135 K) 55 (P)
    108 (N)
    [30]
    Bi2Te3
    PEDOT:PSS
    DMSO
    45±2.1 [40]
    Bi2Te3 AIN 1130 [48]
    Bi2Te3 MASnI3 [49]
    Bi2Te3 PIF 155.1
    (46℃)
    2530 [55]
    Bi0.4Sb1.6Te3
    (P-type)
    Bi2Se0.3Te2
    (N-type)
    PIF 55.15
    (AM 1.5 G)
    166.37 (P)
    −116.38 (N)
    [56]
    Bi2Te3 Ecoflex 150 [57]
    Flexible yarn-
    shaped thermoelectric devices
    Bi2Te3
    PVP
    3062 [32]
    Bi2Te3-
    Sb2Te3-PAN
    15.8, 14.8,
    11.9
    62, 11, 9 [58]
    Bi0.4Sb1.3Te3
    (P-type)
    Bi2Te3.3Se0.2
    (N-type)
    Polyimide filament
    PDMS
    58 [59]
    Bi2Te3 Extreme filaments
    PEDOT
    613 (25 K) [60]
    Notes: Input voltage is the voltage produced by a device at a certain temperature; Power factor is the ratio of the power dissipated to the product of the input volts times amps; Power density is the power generated per square centimeter of the TEG; Seebeck coefficient is defined as follows: S=−ΔVT with S being the Seebeck coefficient, ΔT the temperature difference between the ends of the material, and ΔV the potential difference; PEDOT—Poly(3, 4-ethylenedioxythiophene; PVP—Polyvinyl pyrrolidone; DMSO—Dimethyl sulfoxide; SWCNT—Single-walledcarbon nanotubes; PDMS—Polydimethylsiloxane; PIF—Polyimide film; PVDF—Polyvinylidene fluoride; PET—Polyethyleneterephthalate; FPCB—Flexible printedcircuit board; CNTs—Carbon nanotubes; PAN—; PSS—; MASnI3—.
    下载: 导出CSV
  • [1] CHEN X, LI C, GRÄTZEL M, et al. Nanomaterials for renewable energy production and storage[J]. Chemistry Society Reviews, 2012, 41(23): 7909-7937. doi: 10.1039/c2cs35230c
    [2] CONTI J, HOLTBERG P, DIEFENDERFER J, et al. International energy outlook 2016 with projections to 2040[R]. Washington: USDOE Energy Information Administration (EIA), 2016.
    [3] ARISTOV Y I. Adsorptive conversion of ultralow-temperature heat: Thermodynamic issues[J]. Energy, 2021, 236: 121892. doi: 10.1016/j.energy.2021.121892
    [4] UCHIDA K, TAKAHASHI S, HARII K, et al. Observation of the spin Seebeck effect[J]. Nature, 2008, 455(7214): 778-781. doi: 10.1038/nature07321
    [5] DREBUSHCHAK V. The peltier effect[J]. Journal of Thermal Analysis and Calorimetry, 2008, 91: 311-315. doi: 10.1007/s10973-007-8336-9
    [6] NA Y, KIM S, MALLEM S P R, et al. Energy harvesting from human body heat using highly flexible thermoelectric generator based on Bi2Te3 particles and polymer composite[J]. Journal of Alloys and Compounds, 2022, 924: 166575. doi: 10.1016/j.jallcom.2022.166575
    [7] HOU W, NIE X, ZHAO W, et al. Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices[J]. Nano Energy, 2018, 50: 766-776.
    [8] DAI X, WANG Y, LI K, et al. Joint-free single-piece flexible thermoelectric devices with ultrahigh resolution p-n patterns toward energy harvesting and solid-state cooling[J]. ACS Energy Letters, 2021, 6(12): 4355-4364. doi: 10.1021/acsenergylett.1c02005
    [9] GAO F L, MIN P, GAO X Z, et al. Integrated temperature and pressure dual-mode sensors based on elastic PDMS foams decorated with thermoelectric PEDOT:PSS and carbon nanotubes for human energy harvesting and electronic-skin[J]. Journal of Materials Chemistry A, 2022, 10(35): 18256-18266. doi: 10.1039/D2TA04862K
    [10] LIU Y, YIN L, ZHANG W, et al. A wearable real-time power supply with a Mg3Bi2-based thermoelectric module[J]. Cell Reports Physical Science, 2021, 2(6): 100445. doi: 10.1016/j.xcrp.2021.100445
    [11] KONG D, ZHU W, GUO Z, et al. High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting[J]. Energy, 2019, 175: 292-299. doi: 10.1016/j.energy.2019.03.060
    [12] KIM S J, LEE H E, CHOI H, et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process[J]. ACS Nano, 2016, 10(12): 10851-10857. doi: 10.1021/acsnano.6b05004
    [13] LIU Z, TIAN B, LI Y, et al. Evolution of thermoelectric generators: From application to hybridization[J]. Nano Micro Small, 2023: 2304599.
    [14] HUANG L, LIN S, XU Z, et al. Fiber-based energy conversion devices for human-body energy harvesting[J]. Advanced in Materials, 2019, 32(5): 1902034.
    [15] 李佳. 石墨烯/碲化铋/PEDOT:PSS纳米复合热电材料的制备与性能探究[D]. 上海: 上海应用技术大学, 2020.

    LI Jia. Preparation and thermoelectric properties of graphene/Bi2Te3/PEDOT:PSS nanocomposite thermoelectric materials[D]. Shanghai: Shanghai Institute of Technology, 2020(in Chinese).
    [16] LIU Y, DU Y, MENG Q, et al. Effects of preparation methods on the thermoelectric performance of SWCNT/Bi2Te3 bulk composites[J]. Materials, 2020, 13(11): 2636. doi: 10.3390/ma13112636
    [17] KIM J, BAE E J, KANG Y H, et al. Elastic thermoelectric sponge for pressure-induced enhancement of power generation[J]. Nano Energy, 2020, 74: 104824. doi: 10.1016/j.nanoen.2020.104824
    [18] JUNG K K, JUNG Y, CHOI C J, et al. Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate[J]. Current Applied Physics, 2016, 16(10): 1442-1448. doi: 10.1016/j.cap.2016.08.010
    [19] ZHANG Z, WANG B, QIU J, et al. Roll-to-roll printing of spatial wearable thermoelectrics[J]. Manufacturing Letters, 2019, 21: 28-34. doi: 10.1016/j.mfglet.2019.07.002
    [20] YUAN J, ZHU R. A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator[J]. Applied Energy, 2020, 271: 115250. doi: 10.1016/j.apenergy.2020.115250
    [21] BUBNOVA O, KHAN Z U, MALTI A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3, 4-ethylenedioxythiophene)[J]. Nature Materials, 2011, 10(6): 429-433. doi: 10.1038/nmat3012
    [22] 张洪银, 莫政宇. 热电材料ZT值的测量研究[J]. 内燃机与配件, 2023(4): 94-96. doi: 10.3969/j.issn.1674-957X.2023.04.030

    ZHANG Hongyin, MO Zhengyu. Measurement of ZT values of thermoelectric materials[J]. Internal Combustion Engine & Parts, 2023(4): 94-96(in Chinese). doi: 10.3969/j.issn.1674-957X.2023.04.030
    [23] SINGH D, KUTBEE A T, GHONEIM M T, et al. Strain-induced rolled thin films for lightweight tubular thermoelectric generators[J]. Advanced Materials Technologies, 2018, 3(1): 1700192. doi: 10.1002/admt.201700192
    [24] PEI J, CAI B, ZHUANG H L, et al. Bi2Te3-based applied thermoelectric materials: Research advances and new challenges[J]. National Science Review, 2020, 7(12): 1856-1858. doi: 10.1093/nsr/nwaa259
    [25] TANG X, LI Z, LIU W, et al. A comprehensive review on Bi2Te3-based thin films: Thermoelectrics and beyond[J]. Interdisciplinary Materials, 2022, 1(1): 88-115. doi: 10.1002/idm2.12009
    [26] CHEN Y, HOU X, MA C, et al. Review of development status of Bi2Te3-based semiconductor thermoelectric power generation[J]. Advances in Materials Science and Engineering, 2018, 2018: 1-9.
    [27] HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances, 2019, 5(5): 0536.
    [28] WU B, GUO Y, HOU C, et al. From carbon nanotubes to highly adaptive and flexible high-performance thermoelectric generators[J]. Nano Energy, 2021, 89: 106487. doi: 10.1016/j.nanoen.2021.106487
    [29] GUO Z, YU Y, ZHU W, et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for BodyNET application[J]. Advanced Energy Materials, 2022, 12(5): 2102993. doi: 10.1002/aenm.202102993
    [30] WU B, GUO Y, HOU C, et al. High-performance flexible thermoelectric devices based on all-inorganic hybrid films for harvesting low-grade heat[J]. Advanced Functional Materials, 2019, 29(25): 1900304. doi: 10.1002/adfm.201900304
    [31] AWASTHI R, MANCHANDA S, DAS P, et al. Poly(vinylpyrrolidone)[M]. Engineering of Biomaterials for Drug Delivery Systems. 2018: 255-272.
    [32] AKRAM R, KHAN J S, QAMAR Z, et al. Ultra-low thermal conductivity and thermoelectric properties of polymer-mixed Bi2Te3 nanofibers by electrospinning[J]. Journal of Materials Science, 2022: 1-13.
    [33] WANG X, MENG F, WANG T, et al. High performance of PEDOT:PSS/SiC-NWs hybrid thermoelectric thin film for energy harvesting[J]. Journal of Alloys and Compounds, 2018, 734: 121-129. doi: 10.1016/j.jallcom.2017.11.013
    [34] FAN X, NIE W, TSAI H, et al. PEDOT:PSS for flexible and stretchable electronics: Modifications, strategies, and applications[J]. Advanced Science, 2019, 6(19): 1900813. doi: 10.1002/advs.201900813
    [35] DU Y, SHEN S Z, CAI K, et al. Research progress on polymer-inorganic thermoelectric nanocomposite materials[J]. Progress in Polymer Science, 2012, 37(6): 820-841. doi: 10.1016/j.progpolymsci.2011.11.003
    [36] CHEN Y, ZHAO Y, LIANG Z. Solution processed organic thermoelectrics: towards flexible thermoelectric modules[J]. Physics Energy and Environmental Science, 2015, 8(2): 401-422. doi: 10.1039/C4EE03297G
    [37] FAN Z, LI P, DU D, et al. Significantly enhanced thermoelectric properties of PEDOT:PSS films through sequential post-treatments with common acids and bases[J]. Advanced Energy Materials, 2017, 7(8): 1602116. doi: 10.1002/aenm.201602116
    [38] KIM G H, SHAO L, ZHANG K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 2013, 12(8): 719-723. doi: 10.1038/nmat3635
    [39] DU Y, CAI K, SHEN S Z, et al. Multifold enhancement of the output power of flexible thermoelectric generators made from cotton fabrics coated with conducting polymer[J]. RSC Advances, 2017, 7(69): 43737-43742. doi: 10.1039/C7RA08663F
    [40] KIM W S, ANOOP G, JEONG I S, et al. Feasible tuning of barrier energy in PEDOT:PSS/Bi2Te3 nanowires-based thermoelectric nanocomposite thin films through polar solvent vapor annealing[J]. Nano Energy, 2020, 67: 104207. doi: 10.1016/j.nanoen.2019.104207
    [41] ZHOU C, DUN C, GE B, et al. Highly robust and flexible n-type thermoelectric film based on Ag2Te nanoshuttle/polyvinylidene fluoride hybrids[J]. Nanoscale, 2018, 10(31): 14830-14834.
    [42] DUN C, HEWITT C A, HUANG H, et al. Layered Bi2Se3 nanoplate/polyvinylidene fluoride composite based n-type thermoelectric fabrics[J]. ACS Applied Materials & Interfaces, 2015, 7(13): 7054-7059.
    [43] ZHAO Y, FU X, LIU B, et al. Ultra-stretchable hydrogel thermocouples for intelligent wearables[J]. Science China Materials, 2023: 1-7.
    [44] KIM J, KHAN S, WU P, et al. Self-charging wearables for continuous health monitoring[J]. Nano Energy, 2021, 79: 105419. doi: 10.1016/j.nanoen.2020.105419
    [45] SHI Y, WANG Y, MEI D, et al. Design and fabrication of wearable thermoelectric generator device for heat harvesting[J]. IEEE Robotics and Automation Letters, 2017, 3(1): 373-378.
    [46] JUNG K K, JUNG Y, CHOI C J, et al. Flexible thermoelectric generator with polydimethyl siloxane in thermoelectric material and substrate[J]. Current Applied Physics, 2016, 16(10): 1442-1448. doi: 10.1016/j.cap.2016.08.010
    [47] YU Y, ZHU W, KONG X, et al. Recent development and application of thin-film thermoelectric cooler[J]. Frontiers of Chemical Science and Engineering, 2020, 14: 492-503.
    [48] AHMED A, HAN S J S R. Fabrication, micro-structure characteristics and transport properties of co-evaporated thin films of Bi2Te3 on AlN coated stainless steel foils[J]. Scientific Reports, 2021, 11(1): 4041. doi: 10.1038/s41598-021-83476-7
    [49] MORIMOTO M, KAWANO S, MIYAMOTO S, et al. Electronic structure and thermal conductance of the MASnI3/Bi2Te3 interface: A first-principles study[J]. Scientific Reports, 2022, 12(1): 217. doi: 10.1038/s41598-021-04234-3
    [50] GHASEMI A, KEPAPTSOGLOU D, GALINDO P L, et al. Van der Waals epitaxy between the highly lattice mismatched Cu-doped FeSe and Bi2Te3[J]. NPG Asia Materials, 2017, 9(7): e402. doi: 10.1038/am.2017.111
    [51] HE Q L, LIU H, HE M, et al. Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure[J]. Nature Communications, 2014, 5(1): 4247. doi: 10.1038/ncomms5247
    [52] NI Y, SUN B, LI J, et al. Thermal transport in Bi2Te3-PbTe segmented thermoelectric nanofilms[J]. Chinese Journal of Physics, 2022, 75: 199-205. doi: 10.1016/j.cjph.2021.11.032
    [53] HUANG C, LIU J, ZHAO L, et al. Advances in atomic oxygen resistant polyimide composite films[J]. Composites Part A: Applied Science and Manufacturing, 2023: 107459.
    [54] CAO Z, KOUKHARENKO E, TUDOR M, et al. Flexible screen printed thermoelectric generator with enhanced processes and materials[J]. Sensors and Actuators A: Physical, 2016, 238: 196-206. doi: 10.1016/j.sna.2015.12.016
    [55] 杨龙, 尤汉, 唐可琛, 等. Bi2Te3柔性热电器件的制备与发电性能研究[J]. 传感器与微系统, 2021, 40(10): 14-16, 20.

    YANG Long, YOU Han, TANG Kechen, et al. Research on preparation and power generation performance of Bi2Te3 flexible thermoelectric device[J]. Transducer and Microsystem Technologies, 2021, 40(10): 14-16, 20(in Chinese).
    [56] JUNG Y S, JEONG D H, KANG S B, et al. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference[J]. Nano Energy, 2017, 40: 663-672. doi: 10.1016/j.nanoen.2017.08.061
    [57] YANG Y, HU H, CHEN Z, et al. Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces[J]. Nano Letters, 2020, 20(6): 4445-4453. doi: 10.1021/acs.nanolett.0c01225
    [58] LEE J A, ALIEV A E, BYKOVA J S, et al. Woven-yarn thermoelectric textiles[J]. Advanced Materials, 2016, 28(25): 5038-5044. doi: 10.1002/adma.201600709
    [59] ZHENG Y, HAN X, YANG J, et al. Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling[J]. Energy & Environmental Science, 2022, 15(6): 2374-2385.
    [60] JING Y, LUO J, HAN X, et al. Scalable manufacturing durable, tailorable and recyclable multifunctional woven thermoelectric textile system[J]. Energy & Environmental Science, 2023, 16(10): 4334-4344.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  404
  • HTML全文浏览量:  239
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 修回日期:  2023-12-05
  • 录用日期:  2024-01-02
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回