Effect of graphene quantum dots on mechanical properties and microstructure of serpentine concrete
-
摘要: 为了考察石墨烯量子点(GQDs)作为外掺料改善蛇纹石混凝土性能的可行性,研究了25、150、300、450和600℃时GQDs掺量对蛇纹石混凝土强度、结晶水损失率和微结构的影响。结果表明:室温(25℃)下,蛇纹石混凝土强度随GQDs掺量的增加而提升,当掺量为0.12wt%时,改善效果最佳,其7天、28天抗压强度和28天劈裂抗拉强度分别较基准组提高了26.4%、20.9%和27.7%;加热期间,与未掺GQDs的蛇纹石混凝土相比,掺入0.12wt%的GQDs使蛇纹石混凝土结晶水损失率降低了1.8%~20.0%,抗压强度和劈裂抗拉强度分别增加了18.0%~34.0%和29.4%~39.8%;微观试验表明高温环境促使蛇纹石混凝土水化,而GQDs拥有较好的导热性和纳米填充性,在二者共同作用下显著提高了蛇纹石混凝土的微观致密度,且300℃时致密度最高。Abstract: In order to explore the feasibility of using graphene quantum dots (GQDs) as admixtures to improve the properties of serpentine concrete, effects of GQDs dosage on strength, crystal water loss rate, and microstructure of serpentine concrete were investigated at 25, 150, 300, 450, and 600℃. The results show that strength of serpentine concrete at room temperature (25℃) is enhanced with the increase in the dosage of GQDs, and the best enhancement is achieved when the dosage is 0.12wt%, and its 7 days and 28 days compressive strength and 28 days splitting tensile strength are increased by 26.4%, 20.9%, and 27.7%, respectively, compared with the baseline group. The addition of 0.12wt% GQDs reduces the crystal water loss rate of serpentine concrete by 1.8%~20.0%, and increases the compressive strength and splitting tensile strength by 18.0%~34.0% and 29.4%~39.8%, respectively, as compared to serpentine concrete without GQDs during the entire heating period. Microscopic tests show that high temperature environment promotes the hydration of serpentine concrete, as well as GQDs possess better thermal conductivity and nano-filling properties, which together significantly improve the micro-density of serpentine concrete, and the micro-density is highest at 300℃.
-
Key words:
- serpentine concrete /
- GQDs /
- crystal water /
- mechanical properties /
- high temperature stability /
- microstructure
-
表 1 水泥和蛇纹石的化学成分
Table 1. Chemical compositions of cement and serpentine
Material type Mass fraction/wt% MgO SiO2 Fe2O3 Al2O3 CaO Na2O SO3 Other LOI Cement 2.16 21.45 4.37 5.07 60.65 0.58 2.33 1.25 2.14 Serpentine 42.43 37.56 4.22 0.56 0.32 0.17 0.11 0.79 13.84 Note: LOI—Loss on ignition. 表 2 蛇纹石的物理性质
Table 2. Physical properties of serpentine
Aggregate type Apparent density/
(kg·m−3)Bulk density/
(kg·m−3)Voidage/wt% Water
absorption/wt%Moisture
content/wt%Crush
index/wt%Fineness
modulusFine serpentine 2 320 1 330 43 9.6 5.0 28.0 2.7 Coarse serpentine 2 600 1 490 43 2.8 1.3 11.7 — 表 3 蛇纹石混凝土配合比/(kg·m−3)
Table 3. Mix proportion of serpentine concrete/(kg·m−3)
Concrete type Cement Coarse serpentine Fine serpentine Water GQDs SG-0 375 1 039 637 195 0 SG-03 375 1 039 637 195 0.1125 SG-06 375 1 039 637 195 0.2250 SG-09 375 1 039 637 195 0.3375 SG-12 375 1 039 637 195 0.4500 -
[1] ZARITSKIY S M, EGOROV A L, KABAKCHI S A, et al. Evaluation of the water radiolysis in the serpentinite concrete of the VVER-1200 reactor shielding[J]. Physics of Atomic Nuclei, 2022, 85(8): 1411-1417. doi: 10.1134/S1063778822080154 [2] 石建军, 许新春, 张志恒, 等. 不同产地防中子辐射蛇纹石骨料混凝土比选[J]. 硅酸盐通报, 2023, 42(4): 1282-1290.SHI Jianjun, XU Xinchun, ZHANG Zhiheng, et al. Comparison and selection of anti-neutron radiation concrete with serpentine aggregate from different producing areas[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1282-1290(in Chinese). [3] MESBAHI A, AZARPEYVAND A A, SHIRAZI A. Photoneutron production and backscattering in high density concretes used for radiation therapy shielding[J]. Annals of Nuclear Energy, 2011, 38(12): 2752-2756. doi: 10.1016/j.anucene.2011.08.023 [4] ABREFAH R G, BIRIKORANG S A, NYARKO B J B, et al. Design of serpentine cask for Ghana research reactor-1 spent nuclear fuel[J]. Progress in Nuclear Energy, 2014, 77: 84-91. doi: 10.1016/j.pnucene.2014.06.011 [5] OUDA A S. Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding[J]. Progress in Nuclear Energy, 2015, 79: 48-55. doi: 10.1016/j.pnucene.2014.11.009 [6] CHEN F J, GAO C C, JIN L, et al. Dynamic responses of radiation-induced heavyweight concrete subjected to biaxial compression[J]. International Journal of Mechanical Sciences, 2023, 257: 108519. doi: 10.1016/j.ijmecsci.2023.108519 [7] AHMED R, SAAD HASSAN G, SCOTT T, et al. Assessment of five concrete types as candidate shielding materials for a compact radiation source based on the IECF[J]. Materials, 2023, 16(7): 2845. doi: 10.3390/ma16072845 [8] TEKIN I, KOTAN T, YURDAKUL M, et al. Mechanical properties of conventional concrete produced with different type of aggregates in Bayburt region[J]. Journal of Polytechnic-Politeknik Dergisi, 2017, 20(3): 513-518. [9] MASOUD M A, EL-KHAYATT A M, MAHMOUD K A, et al. Valorization of hazardous chrysotile by H3BO3 incorporation to produce an innovative eco-friendly radiation shielding concrete: Implications on physico-mechanical, hydration, microstructural, and shielding properties[J]. Cement and Concrete Composites, 2023, 141: 105120. doi: 10.1016/j.cemconcomp.2023.105120 [10] 王开华, 钱伏华. 蛇纹石混凝土在田湾核电站的实验与应用[J]. 中国核电, 2015, 8(1): 38-41.WANG Kaihua, QIAN Fuhua. Serpentine concrete in the experiment and application of tianwan nuclear power station[J]. China Nuclear Power, 2015, 8(1): 38-41(in Chinese). [11] 伍崇明. 核工程抗强辐射屏蔽混凝土试验研究[D]. 长沙: 中南大学, 2008.WU Chongming. The study on strong radiation shielding concrete test of nuclear engineering[D]. Changsha: Central South University, 2008(in Chinese). [12] SAYYADI A, MOHAMMADI Y, ADLPARVAR M R. Mechanical, durability, and gamma ray shielding characteristics of heavyweight concrete containing serpentine aggregates and lead waste slag[J]. Advances in Civil Engineering, 2023, 2023: 1-11. [13] PAUL M B, ANKAN A D, DEB H, et al. A Monte Carlo simulation model to determine the effective concrete materials for fast neutron shielding[J]. Radiation Physics and Chemistry, 2023, 202: 110476. doi: 10.1016/j.radphyschem.2022.110476 [14] ZAYED A M, MASOUD M A, RASHAD A M, et al. Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete[J]. Construction and Building Materials, 2020, 260: 120473. [15] LIU C J, HUNAG X C, WU Y Y, et al. Studies on mechanical properties and durability of steel fiber reinforced concrete incorporating graphene oxide[J]. Cement and Concrete Composites, 2022, 130: 104508. doi: 10.1016/j.cemconcomp.2022.104508 [16] FONSEKA I, MOHOTTI D, WIJESOORIYA K, et al. Influence of graphene oxide on abrasion resistance and strength of concrete[J]. Construction and Building Materials, 2023, 404: 133280. doi: 10.1016/j.conbuildmat.2023.133280 [17] LU D, WANG D Y, WANG Y, et al. Nano-engineering the interfacial transition zone between recycled concrete aggregates and fresh paste with graphene oxide[J]. Construction and Building Materials, 2023, 384: 131244. doi: 10.1016/j.conbuildmat.2023.131244 [18] 褚洪岩, 高李, 秦健健, 等. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 95-99.CHU Hongyan, GAO Li, QIN Jianjian, et al. Effects of graphene sulfonate nanosheets on mechanical properties and durability of ultra-high performance concrete produced by recycled sand[J]. Materials Reports, 2022, 36(5): 95-99(in Chinese). [19] 郑慧君. 石墨质改性混凝土高温性能的研究[J]. 硅酸盐通报, 2020, 39(12): 3851-3857.ZHENG Huijun. High temperature performance of graphite modified concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3851-3857(in Chinese). [20] MOHAMMED A, SANJAYAN J G, NAZARI A, et al. Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature[J]. Australian Journal of Civil Engineering, 2017, 15(1): 61-71. doi: 10.1080/14488353.2017.1372849 [21] CHU H, JIANG J, SUN W, et al. Mechanical and thermal properties of graphene sulfonate nanosheet reinforced sacrificial concrete at elevated temperatures[J]. Construction and Building Materials, 2017, 153: 682-694. doi: 10.1016/j.conbuildmat.2017.07.157 [22] IQBAL H W, KHUSHNOOD R A, BALOCH W L, et al. Influence of graphite nano/micro platelets on the residual performance of high strength concrete exposed to elevated temperature[J]. Construction and Building Materials, 2020, 253: 119029. doi: 10.1016/j.conbuildmat.2020.119029 [23] BAŞGÖZ Ö, GÜLER S H, GÜLER Ö, et al. Synergistic effect of boron nitride and graphene nanosheets on behavioural attitudes of polyester matrix: Synthesis, experimental and Monte Carlo simulation studies[J]. Diamond and Related Materials, 2022, 126: 109095. doi: 10.1016/j.diamond.2022.109095 [24] 张文博, 李莉, 李思纯, 等. 石墨烯量子点的改性及应用[J]. 复合材料学报, 2022, 39(7): 3104-3120.ZHANG Wenbo, LI Li, LI Sichun, et al. Modification and application of graphene quantum dots[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3104-3120(in Chinese). [25] LONG W J, XU P, YU Y, et al. Scalable preparation of high-dispersion g-C3N4 via GQDs-assisted ultrasonic exfoliation for accelerating cement hydration[J]. Cement and Concrete Composites, 2022, 134: 104782. doi: 10.1016/j.cemconcomp.2022.104782 [26] LONG W J, LIU J W, HE C. A facile approach to disperse metakaolin for promoting compressive strength of cement composites[J]. Construction and Building Materials, 2023, 404: 133268. doi: 10.1016/j.conbuildmat.2023.133268 [27] HE H J, SHUANG E, WEN T D, et al. Employing novel N-doped graphene quantum dots to improve chloride binding of cement[J]. Construction and Building Materials, 2023, 401: 132944. doi: 10.1016/j.conbuildmat.2023.132944 [28] LU L Q, ZHANG Y, YIN B. Structure evolution of the interface between graphene oxide-reinforced calcium silicate hydrate gel particles exposed to high temperature[J]. Computational Materials Science, 2020, 173: 109440. doi: 10.1016/j.commatsci.2019.109440 [29] 国家能源局. 核电厂屏蔽混凝土配合比设计规程: NB/T 20378—2016[S]. 北京: 核工业标准化研究所, 2016.National Energy Administration. Design specification for mix design of shielding concrete used in nuclear power plant: NB/T 20378—2016[S]. Beijing: Nuclear Industry Standardization Research Institute, 2016(in Chinese). [30] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese). [31] CUI K, CHANG J. Hydration, reinforcing mechanism, and macro performance of multi-layer graphene-modified cement composites[J]. Journal of Building Engineering, 2022, 57: 104880. doi: 10.1016/j.jobe.2022.104880 [32] 吴磊, 吕生华, 李泽雄, 等. 超低掺量氧化石墨烯的分散行为及其对水泥基材料结构与性能的影响[J]. 复合材料学报, 2023, 40(4): 2296-2307.WU Lei, LYU Shenghua, LI Zexiong, et al. Dispersion behavior of ultra-low dosage graphene oxide and its effect on structure and performances of cement-based materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2296-2307(in Chinese). [33] LIN C Q, WEI W, HU Y H. Catalytic behavior of graphene oxide for cement hydration process[J]. Journal of Physics and Chemistry of Solids, 2016, 89: 128-133. doi: 10.1016/j.jpcs.2015.11.002 [34] 芦永红, 吴瑞, 周泉竹, 等. 石墨烯量子点在化学溶剂中的分散性能研究[J]. 化工新型材料, 2018, 46(6): 202-205, 209.LU Yonghong, WU Rui, ZHOU Quanzhu, et al. Dispersion behavior of graphene quantum dots in chemical solvent[J]. New Chemical Materials, 2018, 46(6): 202-205, 209(in Chinese). [35] LYU S H, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction and Building Materials, 2013, 49: 121-127. doi: 10.1016/j.conbuildmat.2013.08.022 [36] CHEN Y, LI X Y, DONG B Q, et al. High-temperature properties of cement paste with graphene oxide agglomerates[J]. Construction and Building Materials, 2022, 320: 126286. doi: 10.1016/j.conbuildmat.2021.126286 [37] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述[J]. 材料导报, 2017, 31(23): 17-23. doi: 10.11896/j.issn.1005-023X.2017.023.002PENG Gaifei, NIU Xujing, CHENG Kai. Research on fire resistance of ultra-high-performance concrete: A review[J]. Materials Reports, 2017, 31(23): 17-23(in Chinese). doi: 10.11896/j.issn.1005-023X.2017.023.002 [38] LI G, ZHANG L W. Microstructure and phase transformation of graphene-cement composites under high temperature[J]. Composites Part B: Engineering, 2019, 166: 86-94. doi: 10.1016/j.compositesb.2018.11.127 [39] 章钰桢, 姜兆霞, 李三忠, 等. 大洋橄榄岩的蛇纹石化过程: 从海底水化到俯冲脱水[J]. 岩石学报, 2022, 38(4): 1063-1080. doi: 10.18654/1000-0569/2022.04.07ZHANG Yuzhen, JIANG Zhaoxia, LI Sanzhong, et al. The process of oceanic peridotite serpentinization: From seafloor hydration to subduction dehydration[J]. Acta Petrologica Sinica, 2022, 38(4): 1063-1080 (in Chinese). doi: 10.18654/1000-0569/2022.04.07 [40] MASOUD M A, RASHAD A M, SAKR K, et al. Possibility of using different types of Egyptian serpentine as fine and coarse aggregates for concrete production[J]. Materials and Structures, 2020, 53(4): 1-17. doi: 10.1617/s11527-020-01525-5