Loading [MathJax]/jax/output/SVG/jax.js

石墨烯量子点对蛇纹石混凝土力学性能及微结构的影响

杨昭, 石建军, 张志恒, 陈磊

杨昭, 石建军, 张志恒, 等. 石墨烯量子点对蛇纹石混凝土力学性能及微结构的影响[J]. 复合材料学报, 2024, 41(10): 5540-5548. DOI: 10.13801/j.cnki.fhclxb.20240008.003
引用本文: 杨昭, 石建军, 张志恒, 等. 石墨烯量子点对蛇纹石混凝土力学性能及微结构的影响[J]. 复合材料学报, 2024, 41(10): 5540-5548. DOI: 10.13801/j.cnki.fhclxb.20240008.003
YANG Zhao, SHI Jianjun, ZHANG Zhiheng, et al. Effect of graphene quantum dots on mechanical properties and microstructure of serpentine concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5540-5548. DOI: 10.13801/j.cnki.fhclxb.20240008.003
Citation: YANG Zhao, SHI Jianjun, ZHANG Zhiheng, et al. Effect of graphene quantum dots on mechanical properties and microstructure of serpentine concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5540-5548. DOI: 10.13801/j.cnki.fhclxb.20240008.003

石墨烯量子点对蛇纹石混凝土力学性能及微结构的影响

基金项目: 湖南省自然科学基金(14JJ2083);湖南省科技厅重点研发计划项目(2015JC3090);湖南省研究生科研创新项目(CX20230973)
详细信息
    通讯作者:

    石建军,博士,教授,硕士生导师,研究方向为高性能混凝土及新型组合结构等 E-mail: sjj6621@163.com

  • 中图分类号: TU528.35;TB332

Effect of graphene quantum dots on mechanical properties and microstructure of serpentine concrete

Funds: Hunan Provincial Natural Science Foundation (14JJ2083); Key Research and Development Projects of Hunan Provincial Science and Technology Department (2015JC3090); Postgraduate Scientific Research Innovation Project of Hunan Province (CX20230973)
  • 摘要: 为了考察石墨烯量子点(GQDs)作为外掺料改善蛇纹石混凝土性能的可行性,研究了25、150、300、450和600℃时GQDs掺量对蛇纹石混凝土强度、结晶水损失率和微结构的影响。结果表明:室温(25℃)下,蛇纹石混凝土强度随GQDs掺量的增加而提升,当掺量为0.12wt%时,改善效果最佳,其7天、28天抗压强度和28天劈裂抗拉强度分别较基准组提高了26.4%、20.9%和27.7%;加热期间,与未掺GQDs的蛇纹石混凝土相比,掺入0.12wt%的GQDs使蛇纹石混凝土结晶水损失率降低了1.8%~20.0%,抗压强度和劈裂抗拉强度分别增加了18.0%~34.0%和29.4%~39.8%;微观试验表明高温环境促使蛇纹石混凝土水化,而GQDs拥有较好的导热性和纳米填充性,在二者共同作用下显著提高了蛇纹石混凝土的微观致密度,且300℃时致密度最高。

     

    Abstract: In order to explore the feasibility of using graphene quantum dots (GQDs) as admixtures to improve the properties of serpentine concrete, effects of GQDs dosage on strength, crystal water loss rate, and microstructure of serpentine concrete were investigated at 25, 150, 300, 450, and 600℃. The results show that strength of serpentine concrete at room temperature (25℃) is enhanced with the increase in the dosage of GQDs, and the best enhancement is achieved when the dosage is 0.12wt%, and its 7 days and 28 days compressive strength and 28 days splitting tensile strength are increased by 26.4%, 20.9%, and 27.7%, respectively, compared with the baseline group. The addition of 0.12wt% GQDs reduces the crystal water loss rate of serpentine concrete by 1.8%~20.0%, and increases the compressive strength and splitting tensile strength by 18.0%~34.0% and 29.4%~39.8%, respectively, as compared to serpentine concrete without GQDs during the entire heating period. Microscopic tests show that high temperature environment promotes the hydration of serpentine concrete, as well as GQDs possess better thermal conductivity and nano-filling properties, which together significantly improve the micro-density of serpentine concrete, and the micro-density is highest at 300℃.

     

  • 膜分离技术具有高能效、易操作、环境友好和占地面积小等优点,近年来在气体分离领域受到广泛关注[1-4]。传统气体分离膜多以聚合物膜为主,然而由于聚合物分离膜固有的选择性和渗透性的制约关系(Trade-off效应),使其性能很难再提升[5-6]。研究者发现将多孔材料与聚合物基体共混制成混合基质膜,通过结合两种材料的优点,能够同时提升膜的气体渗透性和选择性,从而突破聚合物膜的Trade-off效应[7-8]。因此,制备混合基质膜是改善膜气体分离性能的一种有效方法。

    对于混合基质膜,填料和聚合物基体材料的选择尤为重要。聚酰亚胺由于其优异的热稳定性、良好的力学性能以及可加工性,已经在气体分离膜领域发展多年,是混合基质膜聚合物基体候选材料之一[9-11]。对于填料材料的选择,共价有机框架材料(COFs)是一种由有机单元通过共价键构成的多孔材料,由于其具有优异的稳定性,易功能化、永久空隙率以及高比表面积等优点,在气体分离领域展现出不俗的潜力[12]。由于COFs全有机的性质,使其能够均匀地分散在聚合物基质中,减少了混合基质膜中由于界面缺陷产生的非选择性孔[13-14]。然而,大部分COFs的孔径很难做到2 nm以下,相对于气体分子动力学直径(N2:0.36 nm;O2:0.35 nm;CO2:0.33 nm)还是较大,难以实现对气体的高效分离,从而降低了气体选择性[15-16]。因此,需要对COFs的孔径大小调控或引入一些功能性吸附位点进行改善。研究表明,引入氟原子能够有效改善COFs的孔径大小且能够提供与气体相互作用的吸附位点。Alahakoon等[17]通过使用含氟单体制备出两种氟化COFs,将氟化COFs与未氟化的相比,发现氟化COFs具有更大的比表面积、更小且更明确的孔径。Gao等[18]报道了3种具有—H、—Me和—F取代基的同构三维共价有机骨架,对比不含氟的COFs,氟化COFs具有更高的CO2亲和力,对CO2/N2有着更高的IAST选择性。Yang等[19]制备了一种氟化CTF,通过氟原子的强静电作用以及C—F键与CO2的偶极-四极作用,使其具有优异的CO2吸附能力。

    基于上述讨论,本文合成出一种具有较小孔径、高比表面积的氟化共价有机框架材料(TpPa-CF3)。随后,以TpPa-CF3为填料,聚酰亚胺(6FDA-ODA)为基体,制备出不同负载量的TpPa-CF3/6FDA-ODA混合基质膜。表征了其结构和表面、截面的微观形貌,探究了其热性能、力学性能以及疏水性能,最后讨论了混合基质膜的气体渗透性以及在烟道气分离(CO2/N2)和空气分离(O2/N2)上的应用前景。

    4,4-二氨基二苯醚(ODA,98%)、4,4-(六氟异丙烯)二酞酸酐(6FDA,98%+)、2,4,6-三甲酰间苯三酚(Tp,98%)、2-三氟甲基-1,4-苯二胺(Pa-CF3,97%)、1,3,5-三甲基苯(99%+)、1,4-二氧六环(99%)均购自上海阿达玛斯试剂有限公司;乙酸(AR)、N,N-二甲基甲酰胺(DMF,AR)均购自西陇科学股份有限公司;间甲酚(m-Cresol,99%)、异喹啉(97%)均购自上海阿拉丁试剂有限公司;丙酮(Acetone,AR),成都市科隆化学品有限公司;工业酒精(95%),弘昊实验设备有限公司。

    将Tp (63.0 mg,0.30 mmol)、Pa-CF3 (79.0 mg,0.45 mmol)、1,3,5-三甲基苯(1.5 mL)、1,4-二氧六环(1.5 mL)依次加入到Pyrex管(25 mL)中。为使混合物均匀分散,超声处理0.5 h,再加入3 mol/L乙酸溶液(0.5 mL)。随后,用液氮将Pyrex管骤冻抽出空气,再在室温下解冻,此操作循环3次。密闭封管,将Pyrex管在120℃下油浴3天。反应完毕后冷却至室温,过滤收集产物,先用DMF溶液搅拌洗涤3次,再通过索氏提取法进行提纯(提纯溶剂采用丙酮)。随后,收集产物,在真空烘箱中120℃下干燥12 h后,得到橘红色粉末样品TpPa-CF3

    在N2氛围下,向装有机械搅拌、冷凝回流的150 mL三口烧瓶内依次加入ODA (2.00 g,9.99 mmol)、间甲酚(28 mL),待ODA完全溶解后再依次加入6FDA (4.44 g,9.99 mmol)、间甲酚(28 mL),随后将温度升到50℃待反应物完全溶解后,滴加5~6滴异喹啉后升温至80℃反应3 h,120℃反应3 h,180℃反应3 h,最后200℃反应12 h。反应结束冷却至室温后,将聚酰亚胺溶液缓慢倒入大量工业酒精中拉丝沉淀,过滤收集产物,在真空烘箱中150℃干燥8 h。随后,使用适量DMF重新溶解并进行二次沉淀以除去聚酰亚胺中残留杂质。

    取一定量的TpPa-CF3粉末分散在DMF (3 mL)中,使用细胞粉碎机,在300 W功率下超声0.5 h后再搅拌6 h,保证TpPa-CF3粉末在DMF溶液中分散均匀。同时,称取0.2 g 6FDA-ODA溶解在DMF (2 mL)中,用针式滤头(0.45 μm,尼龙)过滤除去杂质。随后,将TpPa-CF3的分散液滴加到6FDA-ODA溶液中搅拌12 h,确保TpPa-CF3和6FDA-ODA充分混合。最后,将混合溶液缓慢流延到光滑平整的玻璃板(5 cm×5 cm)上,在80℃下蒸发12 h除去溶剂,待冷却至室温后在温水中脱膜,最后在150℃的真空烘箱中干燥12 h以除去残留的溶剂分子。按以上步骤分别制备含量为0wt%、1wt%、3wt%、5wt%、7wt%的TpPa-CF3/6FDA-ODA混合基质膜。

    X射线衍射(XRD):采用荷兰帕纳科公司的X'Pert Pro型X射线衍射仪对制备的TpPa-CF3粉末与薄膜进行晶型及结构表征,扫描范围在3°~40°,扫描速度为2°/min。

    傅里叶变换红外光谱(FTIR):采用美国尼高力公司的Nicolette 6700-NXR型傅里叶变换红外光谱仪分析TpPa-CF3和薄膜的化学键组成及官能团。对于粉末样品通过溴化钾压片的方式测试,对于薄膜样品通过制成厚度约为20 μm的薄膜直接测试。扫描范围为400~4000 cm−1,扫描次数64次以上。

    固态核磁共振(ssNMR):通过德国布鲁克公司的Avance Neo 400 WB型固体核磁共振波谱仪测试TpPa-CF313C NMR,分析其化学键连接方式。所需样品压实后的体积应多于0.5 cm3

    X射线光电子能谱(XPS):采用美国热电公司的Escalab 250 Xi型X射线光电子能谱仪分析TpPa-CF3的化学元素及化学态。采用粉末压片的方式制样。

    扫描电子显微镜(SEM):通过日本日立公司的SU 4800型扫描电子显微镜表征TpPa-CF3和薄膜表面、截面的微观形貌。对于粉末样品,用牙签将少量样品涂在导电胶上制样;对于薄膜样品,膜表面直接粘在导电胶上,膜断面通过液氮脆断选取平整截面制样。全部样品在测试前通过喷金处理提高样品导电性。

    N2吸附-脱附测试:通过美国康塔公司的Autosorb IQ型比表面及孔隙度分析仪器表征TpPa-CF3的比表面积及孔径分布。采用BET (Brunauer-Emmett-Teller)法计算比表面积,密度泛函理论(DFT)计算孔径分布。

    热重分析(TGA):通过德国耐驰公司的STA 449C型综合热分析仪测试TpPa-CF3和薄膜的热稳定性。在N2氛围下测试,升温速率为10℃/min,测试范围在50~800℃。

    差示扫描量热分析(DSC):通过德国耐驰公司的DSC 214型差示扫描量热仪测试薄膜的玻璃化转变温度,在N2氛围下以10℃/min的速率升温,测试范围在30~350℃,所有结果均采用消除热历史后的二次升温曲线。

    力学性能:通过美国美特斯公司的CMT2103型万能试验机来表征薄膜的力学性能。薄膜样品尺寸为50 mm×10 mm,拉伸载荷为5 kN,拉伸速率为2 mm/min,标距为20 mm。

    水接触角测试:通过中国承德优特仪器有限公司JY-PHb型接触角分析仪测定薄膜的亲疏水性能。薄膜样品尺寸为20 mm×20 mm,测试次数至少3次。

    气体渗透性测试:通过中国济南兰光公司的VAC-V1型气体渗透仪测试薄膜的气体渗透性能。测试方法为恒体积变压法,测试气体为高纯气体(CO2、O2、N2),测试条件为4 bar,35℃。测试过程如下,将厚度均匀的待测薄膜装入膜腔中,测试前将上下腔气压抽至20 Pa以下,随后下腔关闭,上腔通入待测纯气体形成压差。压差推动气体自上腔(高压侧)向下腔(低压侧)渗透,通过系统计算得到膜的气体渗透系数P

    通过粉末X射线衍射(PXRD)对合成的TpPa-CF3的晶体结构进行分析,图1(a)中2θ=4.79°处出现的强峰对应于COF的(100)晶面,其他峰也出现在2θ=7.81°、26.14°处,分别对应于(200)、(001)晶面,其中(001)晶面也是其π-π堆叠峰,通过布拉格方程计算得出其堆叠层间距为0.33 nm。将测试结果与模拟的晶体模型的衍射峰进行对比,结果表明二者衍射峰的位置与强度均匹配良好。TpPa-CF3在Pawley精修后得到的晶胞参数为a=2.290351 nm,b=2.236760 nm,c=0.423813 nm,α=89.56415β=89.73479γ=120.51471。实验结果与精修后的PXRD之间的残差值较小,Rwp=1.24%,Rp=0.91%。以上结果初步说明成功合成出了目标晶体结构,且具有良好的结晶性。

    为进一步说明TpPa-CF3成功合成,通过FTIR对TpPa-CF3以及其构筑单元测试,从图1(b)中可以看到,构筑单元2,4,6-三甲酰间苯三酚(Tp)在2894 cm−1处醛基的CH=O特征峰和构筑单元2-三氟甲基-1,4-苯二胺(Pa-CF3)在3318 cm−13210 cm−1处的—NH2特征峰在产物TpPa-CF3中消失,表明醛胺缩合反应完全。在1282 cm−1处的C—N的特征吸收峰表明烯醇-酮异构的发生。因为框架是以酮的形式存在,结构中有强的分子内氢键及共轭作用,所以在1592 cm−1处的C=C的特征峰和1610 cm−1处的C=O特征峰合并呈肩状[20]。在1128 cm−1处出现了C—F的特征峰。

    13C固体NMR分析如图1(c)所示,图中显示化学位移在184.2×10−6和108.1×10−6处有两个较明显的信号峰,分别对应于烯醇-酮异构反应所形成的C=O键和C—N键上的C原子,123.6×10−6处归属于C—F上的C原子。其余在119.0×10−6、134.1×10−6和146.5×10−6处的信号峰则归属于芳香单元上的C原子。

    图  1  TpPa-CF3的PXRD精修谱图(a)、FTIR谱图(b)、13C固体核磁谱图(c)
    Figure  1.  PXRD refined spectra (a), FTIR spectra (b), 13C solid-state NMR spectrum (c) of TpPa-CF3
    “*”标记的峰为测试仪器产生的旋转边带峰

    FTIR和固体核磁分析结果证实TpPa-CF3的成功合成且以稳定的β-酮胺形式存在。

    通过XPS测量TpPa-CF3的全谱和各个元素的光谱,由图2(a)的全谱可知TpPa-CF3是由C、N、O、F 4种元素组成的。图2(b)是C1s的高分辨率XPS光谱,其能够被卷积为4个峰,分别对应于TpPa-CF3中的C=C/C—C(284.8 eV)、C—N(286.2 eV)、C=O(288.9 eV)和C—F(292.9 eV)键,N1s的高分辨率XPS如图2(c)所示,其被卷积为2个峰,分别归属于N—C(400.2 eV)和N—H(403.9 eV)键,F1s的高分辨率XPS如图2(d)所示,其只有一个卷积峰归属于C—F(688.3 eV)。所有以上结果说明TpPa-CF3形成目标结构,由C1s和N1s证明该结构发生了烯醇-酮异构。

    图  2  TpPa-CF3的XPS图谱:(a)全谱;(b) C1s;(c) N1s;(d) F1s
    Figure  2.  XPS spectra of TpPa-CF3: (a) Survey spectrum; (b) C1s; (c) N1s; (d) F1s

    通过扫描电镜(SEM)观察TpPa-CF3的微观形貌。如图3(a)所示,TpPa-CF3具有均匀的微观形貌,呈现为“米粒”形颗粒堆积形成的团簇,每一颗“米粒”的尺寸在(100±30) nm。

    图  3  TpPa-CF3的微观形貌(a)、N2吸附-脱附曲线(b)、孔径分布图(c)、TGA和DTG曲线(d)
    Figure  3.  Microscopic morphology (a), N2 adsorption-desorption curves (b), pore size distribution (c), TGA and DTG curves (d) of TpPa-CF3
    dV/(dlogD)—; STP—

    为了解TpPa-CF3的多孔性,对其进行N2吸附-脱附测试。图3(b)中N2吸脱附曲线呈现出I型曲线特征,TpPa-CF3在相对压力较低的区域(p/p0<0.1),N2的吸附量快速增加,说明材料中存在丰富的微孔结构。通过计算分析得出TpPa-CF3具有较大的比表面积(791.83 m2·g−1),图3(c)显示TpPa-CF3具有较小的孔径(1.18 nm)。这归因于TpPa-CF3中氟原子的高电负性增强了框架中芳香环之间的相互作用力,这种相互作用力有助于COF形成较大的比表面积以及较小的孔径[17]

    通过热重分析TpPa-CF3的热性能。热重曲线如图3(d)所示,从图中看到热损失分为两个阶段,大约在400℃之前的损失可能为残留在孔道里的高沸点溶剂(DMF)的挥发。400℃后出现明显的质量损失,从DTG曲线上可以看到在416℃质量损失的速度最快,这主要归因于TpPa-CF3框架的分解。以上结果可以看出TpPa-CF3具有较好的热稳定性。

    通过XRD对膜结构表征,评价了填料对聚合物链排列的影响。从图4(a)中可以看到所有曲线在2θ=15°左右均出现典型的聚合物宽峰。通过布拉格方程计算,得到膜的分子链间距。纯6FDA-ODA膜的分子链间距为0.574 nm,随着填料TpPa-CF3负载量的增加,链间距呈现先增大后下降的趋势,7%TpPa-CF3/6FDA-ODA膜的链间距最小(0.566 nm)。分子链间距先增大主要是由于小负载量的掺入破坏了分子链的堆积,随着负载量的增大,填料与聚合物基质的相互作用逐渐增强,限制了分子链的迁移率,链间距减小有利于提高气体的选择性。同时,在TpPa-CF3/6FDA-ODA混合基质膜中没有观察到TpPa-CF3粉末的特征峰,这主要是由于在超声搅拌过程中COF填料的部分剥落[21]

    图  4  6FDA-ODA及TpPa-CF3/6FDA-ODA混合基质膜的XRD (a)和FTIR图谱(b)
    Figure  4.  XRD patterns (a) and FTIR spectra (b) of 6FDA-ODA and TpPa-CF3/6FDA-ODA mixed matrix membranes

    混合基质膜的FTIR图谱如图4(b)所示,所有膜都表现出6FDA-ODA的特征峰,包括C=O的对称(1783 cm−1)和不对称拉伸(1733 cm−1)、C—N的拉伸振动(1378 cm−1)、C—O—C的拉伸振动(1157 cm−1)、C—F键的吸收峰(1110 cm−1),以及酰亚胺环的弯曲振动(721 cm−1),值得注意的是在1597 cm−1处的特征峰,随着填料的增加而增强,这主要归因于TpPa-CF3和6FDA-ODA中芳香环上的C=C的吸收峰重叠[22]。以上结果说明聚酰亚胺基体和填料之间具有良好的相容性,填料的加入并没有破坏聚酰亚胺的结构。

    为分析TpPa-CF3的加入对混合基质膜热稳定性的影响,对6FDA-ODA及TpPa-CF3/6FDA-ODA混合基质膜进行了热重测试。如图5(a)所示,混合基质膜的分解分为两个阶段,第一阶段是400℃左右TpPa-CF3框架的分解,第二阶段是500℃左右6FDA-ODA基体膜的分解,填料的加入对膜的热稳定性影响不大。所有混合基质膜都表现出高达500℃的良好热稳定性,远高于工业中膜的操作温度,表明这些膜具有良好的适用性。DSC曲线用于分析膜的玻璃化转变温度(Tg)。如图5(b)所示,6FDA-ODA膜的Tg出现在297.5℃。随着TpPa-CF3负载量的增加,TpPa-CF3/6FDA-ODA膜的Tg从297.5℃逐渐增加到302.1℃,说明TpPa-CF3与6FDA-ODA之间具有良好的界面相互作用,这有利于提升混合基质膜的气体选择性[23]

    图  5  6FDA-ODA和TpPa-CF3/6FDA-ODA混合基质膜的TGA曲线(a)和DSC曲线(b)
    Figure  5.  TGA curves (a) and DSC curves (b) of 6FDA-ODA and TpPa-CF3/6FDA-ODA mixed matrix membranes

    膜表面、截面的扫描电镜表征能够反映出填料在膜内的分散情况。如图6(a1)~6(e1)所示,与表面光滑平整的纯膜相比,混合基质膜的表面随着填料负载量的增加逐渐变得粗糙,在负载量达到7wt%时可以看到膜表面出现不平整及大颗粒团聚的现象。图6(a2)~6(e2)为纯膜及其混合基质膜的截面扫描电镜图,纯膜的截面表现出均匀、致密的微观结构,在1wt%~5wt%混合基质膜的截面图中能够观察到随着负载量的增加其截面形貌逐渐变粗糙,同时在膜内能够观察到TpPa-CF3颗粒很好地被聚合物包裹且分散均匀。当填料负载量达到7wt%时膜内出现填料与聚合物基质相分离的现象,说明此时负载量已经达到聚合物基质所能承受的上限,5wt%为其最优负载量。

    图  6  膜表面((a1)~(e1))和膜截面((a2)~(e2))的SEM图像((a)~(e)分别代表不同TpPa-CF3的负载量:0wt%、1wt%、3wt%、5wt%、7wt%)
    Figure  6.  SEM images of membrane surface ((a1)-(e1)) and cross-section ((a2)-(e2)) ((a)-(e) represent different TpPa-CF3 loadings: 0wt%, 1wt%, 3wt%, 5wt%, 7wt%, respectively)

    通过接触角测试仪分析纯膜及其混合基质膜的水接触角(θw)。如图7(a)表1所示,6FDA-ODA膜的水接触角为79.9°,TpPa-CF3/6FDA-ODA混合基质膜的水接触角为81.4°~89.1°,呈现逐渐增大的趋势。这主要归因于TpPa-CF3框架中含有—CF3疏水基团,因此随着TpPa-CF3含量的增加相应负载量的混合基质膜水接触角也逐渐增加。提升膜的疏水性能有助于阻止水汽进入,提升其气体传输性能。

    图  7  不同负载量下TpPa-CF3/6FDA-ODA混合基质膜的接触角(a)和应力-应变曲线(b)
    Figure  7.  Contact angle (a) and stress-strain curves (b) of TpPa-CF3/6FDA-ODA mixed matrix membranes at different loadings
    表  1  不同负载量下TpPa-CF3/6FDA-ODA混合基质膜的力学性能
    Table  1.  Mechanical properties of TpPa-CF3/6FDA-ODA mixed matrix membranes at different loadings
    TpPa-CF3 loadings/wt% Tensile strength/MPa Elongation at break/% Young's modulus/GPa θw/(°)
    0 74.1 10.1 1.59 79.9
    1 79.6 9.7 1.63 81.4
    3 82.9 8.6 1.70 83.1
    5 93.0 7.8 1.82 84.1
    7 84.5 7.3 1.76 89.1
    Note: θw—Water contact angle.
    下载: 导出CSV 
    | 显示表格

    对混合基质膜进行拉伸实验以此来检验其力学性能。测试结果如图7(b)表1所示。从表中可以看出,TpPa-CF3/6FDA-ODA混合基质膜的抗拉强度和杨氏模量随着TpPa-CF3负载量的增加呈现出先增加后下降的趋势,而断裂伸长率呈现逐渐下降的趋势。这主要归因于,在混合基质膜中TpPa-CF3与6FDA-ODA之间较好的相互作用力使得填料与聚合物之间具有良好的界面相容性,增强了膜的刚性。然而,当负载量达到7wt%时,抗拉强度和杨氏模量略微下降,这主要是过量的TpPa-CF3颗粒之间发生团聚,使得界面出现缺陷导致应力集中,降低了膜的力学性能[24]

    利用3种纯气体(CO2、O2、N2)渗透测试来评估不同负载量下TpPa-CF3/6FDA-ODA混合基质膜的渗透性及CO2/N2和O2/N2的理想选择性。结果如表2所示,每一种膜气体渗透系数的大小均与气体分子动力学直径呈反比,即膜的3种气体渗透系数大小排列为P(CO2)>P(O2)>P(N2),3种气体分子动力学直径大小排列为N2(0.36 nm)>O2(0.35 nm)>CO2(0.33 nm)。同6FDA-ODA膜相比所有混合基质膜的气体渗透性都有所提升。由图8(a)中可得,随着TpPa-CF3含量的增加,膜的气体渗透性呈现出先增大后下降的趋势,其中5%TpPa-CF3/6FDA-ODA膜气体渗透性能最佳,P(CO2)提升了149%,P(O2)提升了138%,P(N2)提升了98%。这主要归因于TpPa-CF3的高孔隙率提高了TpPa-CF3/6FDA-ODA膜的比表面积及固有孔隙率,为气体传输提供了快速通道。TpPa-CF3负载量到7wt%时,气体的渗透性明显下降,但仍然比6FDA-ODA膜高。这主要是由于负载量过大,造成TpPa-CF3在膜内团聚堵塞了气体传输的孔道。

    表  2  6FDA-ODA及TpPa-CF3/6FDA-ODA混合基质膜的气体渗透系数P和理想选择性
    Table  2.  Gas permeability coefficient P and ideal selectivity of 6FDA-ODA and TpPa-CF3/6FDA-ODA mixed matrix membranes
    Membrane Permeability/Barrer Ideal selectivity α
    CO2 O2 N2 α(CO2/N2) α(O2/N2)
    6FDA-ODA 12.47 2.55 0.64 19.5 4.0
    1%TpPa-CF3/6FDA-ODA 16.91 3.76 0.98 17.2 3.8
    3%TpPa-CF3/6FDA-ODA 22.77 4.43 1.03 22.0 4.3
    5%TpPa-CF3/6FDA-ODA 31.08 6.08 1.27 24.5 4.8
    7%TpPa-CF3/6FDA-ODA 18.62 4.16 1.11 16.8 3.8
    Notes: 1 Barrer=10−10 cm3(STP)·cm·cm−2·s−1·cmHg−1; Ideal selectivity α=P(A)/P(B), A and B are two different pure gases.
    下载: 导出CSV 
    | 显示表格
    图  8  不同负载量下TpPa-CF3/6FDA-ODA混合基质膜的气体渗透性(a)、气体选择性(b)、72 h连续渗透性测试(c)
    Figure  8.  Gas permeability (a), gas selectivity (b), 72 h continuous permeability performance test (c) of TpPa-CF3/6FDA-ODA mixed matrix membranes at different loadings

    TpPa-CF3/6FDA-ODA膜的气体选择性变化趋势和气体渗透性变化趋势不同,如图8(b)所示,CO2/N2和O2/N2均呈现出先下降后上升再下降的趋势,CO2/N2及O2/N2的理想选择性范围分别在16.8~24.4和3.8~4.8。其中,当TpPa-CF3负载量为5wt%时,混合基质膜的CO2/N2和O2/N2选择性最好,分别是6FDA-ODA膜的125%和119%。理想选择性的提高主要归因于两个方面:一个方面是CO2和O2的分子动力学直径要小于N2的分子动力学直径,从而CO2和O2分子倾向于优先通过。另一个方面,TpPa-CF3中富含大量对CO2具有亲和力的N、O和F等电负性原子,同时框架内还存在能与CO2发生偶极-四极相互作用的强极性C—F键,因此CO2/N2选择性相较于O2/N2的提升更明显[25]。然而,当负载量到7wt%时,混合基质膜的CO2/N2和O2/N2选择性大幅下降,略低于6FDA-ODA膜,这主要归因于当TpPa-CF3的负载量增加一定程度时,其在膜内发生团聚,并和聚合物基质产生部分相分离,产生一些非选择的孔,从而造成CO2/N2和O2/N2理想选择性的大幅下降。

    对TpPa-CF3/6FDA-ODA混合基质膜进行72 h的连续气体渗透性测试,以验证膜的稳定性。如图8(c)所示,该膜在72 h的运行试验中P(CO2)下降了18%,CO2/N2的选择性下降了16%,总体表现出了良好的分离稳定性。

    为了评估混合基质膜的气体分离性能,图9显示了不同负载量的TpPa-CF3/6FDA-ODA混合基质膜的气体分离性能与Robeson上限的对比。当负载量为5wt%时,其气体分离性能更靠近Robeson上限,气体的渗透性与选择性同步提升。说明适量的引入TpPa-CF3能够改善聚合物膜的气体分离性能。此外,表3显示了文献[26-30]中报道的混合基质膜气体分离性能与本工作的对比,TpPa-CF3/6FDA-ODA混合基质膜显示出适中的气体渗透性以及适中的气体选择性,说明TpPa-CF3/6FDA-ODA混合基质膜还有进一步提升的潜力。

    图  9  不同负载量的TpPa-CF3/6FDA-ODA混合基质膜CO2/N2 (a)和O2/N2 (b)的Robeson上限图
    Figure  9.  Robeson upper bound plots of TpPa-CF3/6FDA-ODA mixed matrix membranes with different loadings CO2/N2 (a) and O2/N2 (b)
    表  3  文献中报道的混合基质膜气体分离性能与本工作的对比
    Table  3.  Comparison of gas separation performance of mixed matrix membranes reported in the literature with the present work
    Membrane type P(CO2)/Barrer P(O2)/Barrer α(CO2/N2) α(O2/N2) Ref.
    TpPa-1-nc/Pebax 21 72 [26]
    COFp-PVAm 270 86 [27]
    TpBD@PBI-BuI 14.8 23 [28]
    ZIF-7-I/(BPDA/6FDA-ODA) 2.9 0.19 [29]
    PBI-PI-based carbon 293.5 93.1 8.3 2.6 [30]
    5%TpPa-CF3/6FDA-ODA 31.08 6.08 24.4 4.8 This work
    Notes: TpPa-1-nc—; COFp—; TpBD—; BPDA—; Pebax—Poly(ether-block-amide); PVAm—Polyvinylamine; PBI-BuI—Tert-butylpolybenzimidazole; ZIF-7-I—Wide-pore ZIF-7; PBI—Polybenzimidazoles; PI—Polyimide.
    下载: 导出CSV 
    | 显示表格

    (1)采用溶剂热法合成了一种氟化共价有机框架材料(TpPa-CF3),其具有高比表面积(791.83 m2·g−1),较小且均一的孔径(1.18 nm)以及良好的热稳定性。

    (2)采用共混法成功制备TpPa-CF3/聚酰亚胺(6FDA-ODA)混合基质膜。通过表征得出,所得膜具有良好的界面相容性以及较高的热稳定性(热分解温度在500℃左右)。水接触角的范围在81.4°~89.1°,且膜具有良好的力学性能,有利于膜在分离过程中的稳定性。

    (3) TpPa-CF3的掺入提高了混合基质膜的气体渗透性,随着膜中TpPa-CF3负载量的增加,混合基质膜的气体渗透性呈现先减小后增大再减小的趋势。其中,5%TpPa-CF3/6FDA-ODA膜的气体分离性能最好,其CO2和O2的渗透性能分别提高了149%和138%,CO2/N2和O2/N2的分离性能分别是6FDA-ODA基体膜的125%和119%。

  • 图  1   石墨烯量子点(GQDs)的微观表征结果

    Figure  1.   Results of graphene quantum dots (GQDs) microscopic characterization

    图  2   不同GQDs掺量对蛇纹石混凝土抗压强度的影响:(a)抗压强度值;(b)抗压强度增长率

    Figure  2.   Compressive strength of serpentine concrete with different dosages of GQDs: (a) Compressive strength value; (b) Compressive strength growth rate

    图  3   不同GQDs掺量对蛇纹石混凝土劈裂抗拉强度的影响

    Figure  3.   Splitting tensile strength of serpentine concrete with different dosages of GQDs

    图  4   蛇纹石混凝土的结晶水损失率

    Figure  4.   Crystal water loss rate of serpentine concrete

    图  5   高温后蛇纹石混凝土的抗压强度

    Figure  5.   Compressive strength of serpentine concrete exposed to high temperatures

    图  6   高温后蛇纹石混凝土的劈裂抗拉强度

    Figure  6.   Splitting tensile strength of serpentine concrete exposed to high temperatures

    图  7   高温后SG-12的XRD图谱

    Figure  7.   XRD patterns of SG-12 at elevated temperatures

    CH—Ca(OH)2; AFt—Ettringite; C3S—3CaO·SiO2

    图  8   高温后SG-12的SEM图像

    Figure  8.   SEM images of SG-12 at elevated temperature

    表  1   水泥和蛇纹石的化学成分

    Table  1   Chemical compositions of cement and serpentine

    Material type Mass fraction/wt%
    MgO SiO2 Fe2O3 Al2O3 CaO Na2O SO3 Other LOI
    Cement 2.16 21.45 4.37 5.07 60.65 0.58 2.33 1.25 2.14
    Serpentine 42.43 37.56 4.22 0.56 0.32 0.17 0.11 0.79 13.84
    Note: LOI—Loss on ignition.
    下载: 导出CSV

    表  2   蛇纹石的物理性质

    Table  2   Physical properties of serpentine

    Aggregate type Apparent density/
    (kg·m−3)
    Bulk density/
    (kg·m−3)
    Voidage/wt% Water
    absorption/wt%
    Moisture
    content/wt%
    Crush
    index/wt%
    Fineness
    modulus
    Fine serpentine 2 320 1 330 43 9.6 5.0 28.0 2.7
    Coarse serpentine 2 600 1 490 43 2.8 1.3 11.7
    下载: 导出CSV

    表  3   蛇纹石混凝土配合比/(kg·m−3)

    Table  3   Mix proportion of serpentine concrete/(kg·m−3)

    Concrete type Cement Coarse serpentine Fine serpentine Water GQDs
    SG-0 375 1 039 637 195 0
    SG-03 375 1 039 637 195 0.1125
    SG-06 375 1 039 637 195 0.2250
    SG-09 375 1 039 637 195 0.3375
    SG-12 375 1 039 637 195 0.4500
    下载: 导出CSV
  • [1]

    ZARITSKIY S M, EGOROV A L, KABAKCHI S A, et al. Evaluation of the water radiolysis in the serpentinite concrete of the VVER-1200 reactor shielding[J]. Physics of Atomic Nuclei, 2022, 85(8): 1411-1417. DOI: 10.1134/S1063778822080154

    [2] 石建军, 许新春, 张志恒, 等. 不同产地防中子辐射蛇纹石骨料混凝土比选[J]. 硅酸盐通报, 2023, 42(4): 1282-1290.

    SHI Jianjun, XU Xinchun, ZHANG Zhiheng, et al. Comparison and selection of anti-neutron radiation concrete with serpentine aggregate from different producing areas[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1282-1290(in Chinese).

    [3]

    MESBAHI A, AZARPEYVAND A A, SHIRAZI A. Photoneutron production and backscattering in high density concretes used for radiation therapy shielding[J]. Annals of Nuclear Energy, 2011, 38(12): 2752-2756. DOI: 10.1016/j.anucene.2011.08.023

    [4]

    ABREFAH R G, BIRIKORANG S A, NYARKO B J B, et al. Design of serpentine cask for Ghana research reactor-1 spent nuclear fuel[J]. Progress in Nuclear Energy, 2014, 77: 84-91. DOI: 10.1016/j.pnucene.2014.06.011

    [5]

    OUDA A S. Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding[J]. Progress in Nuclear Energy, 2015, 79: 48-55. DOI: 10.1016/j.pnucene.2014.11.009

    [6]

    CHEN F J, GAO C C, JIN L, et al. Dynamic responses of radiation-induced heavyweight concrete subjected to biaxial compression[J]. International Journal of Mechanical Sciences, 2023, 257: 108519. DOI: 10.1016/j.ijmecsci.2023.108519

    [7]

    AHMED R, SAAD HASSAN G, SCOTT T, et al. Assessment of five concrete types as candidate shielding materials for a compact radiation source based on the IECF[J]. Materials, 2023, 16(7): 2845. DOI: 10.3390/ma16072845

    [8]

    TEKIN I, KOTAN T, YURDAKUL M, et al. Mechanical properties of conventional concrete produced with different type of aggregates in Bayburt region[J]. Journal of Polytechnic-Politeknik Dergisi, 2017, 20(3): 513-518.

    [9]

    MASOUD M A, EL-KHAYATT A M, MAHMOUD K A, et al. Valorization of hazardous chrysotile by H3BO3 incorporation to produce an innovative eco-friendly radiation shielding concrete: Implications on physico-mechanical, hydration, microstructural, and shielding properties[J]. Cement and Concrete Composites, 2023, 141: 105120. DOI: 10.1016/j.cemconcomp.2023.105120

    [10] 王开华, 钱伏华. 蛇纹石混凝土在田湾核电站的实验与应用[J]. 中国核电, 2015, 8(1): 38-41.

    WANG Kaihua, QIAN Fuhua. Serpentine concrete in the experiment and application of tianwan nuclear power station[J]. China Nuclear Power, 2015, 8(1): 38-41(in Chinese).

    [11] 伍崇明. 核工程抗强辐射屏蔽混凝土试验研究[D]. 长沙: 中南大学, 2008.

    WU Chongming. The study on strong radiation shielding concrete test of nuclear engineering[D]. Changsha: Central South University, 2008(in Chinese).

    [12]

    SAYYADI A, MOHAMMADI Y, ADLPARVAR M R. Mechanical, durability, and gamma ray shielding characteristics of heavyweight concrete containing serpentine aggregates and lead waste slag[J]. Advances in Civil Engineering, 2023, 2023: 1-11.

    [13]

    PAUL M B, ANKAN A D, DEB H, et al. A Monte Carlo simulation model to determine the effective concrete materials for fast neutron shielding[J]. Radiation Physics and Chemistry, 2023, 202: 110476. DOI: 10.1016/j.radphyschem.2022.110476

    [14]

    ZAYED A M, MASOUD M A, RASHAD A M, et al. Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete[J]. Construction and Building Materials, 2020, 260: 120473.

    [15]

    LIU C J, HUNAG X C, WU Y Y, et al. Studies on mechanical properties and durability of steel fiber reinforced concrete incorporating graphene oxide[J]. Cement and Concrete Composites, 2022, 130: 104508. DOI: 10.1016/j.cemconcomp.2022.104508

    [16]

    FONSEKA I, MOHOTTI D, WIJESOORIYA K, et al. Influence of graphene oxide on abrasion resistance and strength of concrete[J]. Construction and Building Materials, 2023, 404: 133280. DOI: 10.1016/j.conbuildmat.2023.133280

    [17]

    LU D, WANG D Y, WANG Y, et al. Nano-engineering the interfacial transition zone between recycled concrete aggregates and fresh paste with graphene oxide[J]. Construction and Building Materials, 2023, 384: 131244. DOI: 10.1016/j.conbuildmat.2023.131244

    [18] 褚洪岩, 高李, 秦健健, 等. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 95-99.

    CHU Hongyan, GAO Li, QIN Jianjian, et al. Effects of graphene sulfonate nanosheets on mechanical properties and durability of ultra-high performance concrete produced by recycled sand[J]. Materials Reports, 2022, 36(5): 95-99(in Chinese).

    [19] 郑慧君. 石墨质改性混凝土高温性能的研究[J]. 硅酸盐通报, 2020, 39(12): 3851-3857.

    ZHENG Huijun. High temperature performance of graphite modified concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3851-3857(in Chinese).

    [20]

    MOHAMMED A, SANJAYAN J G, NAZARI A, et al. Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature[J]. Australian Journal of Civil Engineering, 2017, 15(1): 61-71. DOI: 10.1080/14488353.2017.1372849

    [21]

    CHU H, JIANG J, SUN W, et al. Mechanical and thermal properties of graphene sulfonate nanosheet reinforced sacrificial concrete at elevated temperatures[J]. Construction and Building Materials, 2017, 153: 682-694. DOI: 10.1016/j.conbuildmat.2017.07.157

    [22]

    IQBAL H W, KHUSHNOOD R A, BALOCH W L, et al. Influence of graphite nano/micro platelets on the residual performance of high strength concrete exposed to elevated temperature[J]. Construction and Building Materials, 2020, 253: 119029. DOI: 10.1016/j.conbuildmat.2020.119029

    [23]

    BAŞGÖZ Ö, GÜLER S H, GÜLER Ö, et al. Synergistic effect of boron nitride and graphene nanosheets on behavioural attitudes of polyester matrix: Synthesis, experimental and Monte Carlo simulation studies[J]. Diamond and Related Materials, 2022, 126: 109095. DOI: 10.1016/j.diamond.2022.109095

    [24] 张文博, 李莉, 李思纯, 等. 石墨烯量子点的改性及应用[J]. 复合材料学报, 2022, 39(7): 3104-3120.

    ZHANG Wenbo, LI Li, LI Sichun, et al. Modification and application of graphene quantum dots[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3104-3120(in Chinese).

    [25]

    LONG W J, XU P, YU Y, et al. Scalable preparation of high-dispersion g-C3N4 via GQDs-assisted ultrasonic exfoliation for accelerating cement hydration[J]. Cement and Concrete Composites, 2022, 134: 104782. DOI: 10.1016/j.cemconcomp.2022.104782

    [26]

    LONG W J, LIU J W, HE C. A facile approach to disperse metakaolin for promoting compressive strength of cement composites[J]. Construction and Building Materials, 2023, 404: 133268. DOI: 10.1016/j.conbuildmat.2023.133268

    [27]

    HE H J, SHUANG E, WEN T D, et al. Employing novel N-doped graphene quantum dots to improve chloride binding of cement[J]. Construction and Building Materials, 2023, 401: 132944. DOI: 10.1016/j.conbuildmat.2023.132944

    [28]

    LU L Q, ZHANG Y, YIN B. Structure evolution of the interface between graphene oxide-reinforced calcium silicate hydrate gel particles exposed to high temperature[J]. Computational Materials Science, 2020, 173: 109440. DOI: 10.1016/j.commatsci.2019.109440

    [29] 国家能源局. 核电厂屏蔽混凝土配合比设计规程: NB/T 20378—2016[S]. 北京: 核工业标准化研究所, 2016.

    National Energy Administration. Design specification for mix design of shielding concrete used in nuclear power plant: NB/T 20378—2016[S]. Beijing: Nuclear Industry Standardization Research Institute, 2016(in Chinese).

    [30] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).

    [31]

    CUI K, CHANG J. Hydration, reinforcing mechanism, and macro performance of multi-layer graphene-modified cement composites[J]. Journal of Building Engineering, 2022, 57: 104880. DOI: 10.1016/j.jobe.2022.104880

    [32] 吴磊, 吕生华, 李泽雄, 等. 超低掺量氧化石墨烯的分散行为及其对水泥基材料结构与性能的影响[J]. 复合材料学报, 2023, 40(4): 2296-2307.

    WU Lei, LYU Shenghua, LI Zexiong, et al. Dispersion behavior of ultra-low dosage graphene oxide and its effect on structure and performances of cement-based materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2296-2307(in Chinese).

    [33]

    LIN C Q, WEI W, HU Y H. Catalytic behavior of graphene oxide for cement hydration process[J]. Journal of Physics and Chemistry of Solids, 2016, 89: 128-133. DOI: 10.1016/j.jpcs.2015.11.002

    [34] 芦永红, 吴瑞, 周泉竹, 等. 石墨烯量子点在化学溶剂中的分散性能研究[J]. 化工新型材料, 2018, 46(6): 202-205, 209.

    LU Yonghong, WU Rui, ZHOU Quanzhu, et al. Dispersion behavior of graphene quantum dots in chemical solvent[J]. New Chemical Materials, 2018, 46(6): 202-205, 209(in Chinese).

    [35]

    LYU S H, MA Y J, QIU C C, et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J]. Construction and Building Materials, 2013, 49: 121-127. DOI: 10.1016/j.conbuildmat.2013.08.022

    [36]

    CHEN Y, LI X Y, DONG B Q, et al. High-temperature properties of cement paste with graphene oxide agglomerates[J]. Construction and Building Materials, 2022, 320: 126286. DOI: 10.1016/j.conbuildmat.2021.126286

    [37] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述[J]. 材料导报, 2017, 31(23): 17-23. DOI: 10.11896/j.issn.1005-023X.2017.023.002

    PENG Gaifei, NIU Xujing, CHENG Kai. Research on fire resistance of ultra-high-performance concrete: A review[J]. Materials Reports, 2017, 31(23): 17-23(in Chinese). DOI: 10.11896/j.issn.1005-023X.2017.023.002

    [38]

    LI G, ZHANG L W. Microstructure and phase transformation of graphene-cement composites under high temperature[J]. Composites Part B: Engineering, 2019, 166: 86-94. DOI: 10.1016/j.compositesb.2018.11.127

    [39] 章钰桢, 姜兆霞, 李三忠, 等. 大洋橄榄岩的蛇纹石化过程: 从海底水化到俯冲脱水[J]. 岩石学报, 2022, 38(4): 1063-1080. DOI: 10.18654/1000-0569/2022.04.07

    ZHANG Yuzhen, JIANG Zhaoxia, LI Sanzhong, et al. The process of oceanic peridotite serpentinization: From seafloor hydration to subduction dehydration[J]. Acta Petrologica Sinica, 2022, 38(4): 1063-1080 (in Chinese). DOI: 10.18654/1000-0569/2022.04.07

    [40]

    MASOUD M A, RASHAD A M, SAKR K, et al. Possibility of using different types of Egyptian serpentine as fine and coarse aggregates for concrete production[J]. Materials and Structures, 2020, 53(4): 1-17. DOI: 10.1617/s11527-020-01525-5

  • 目的 

    蛇纹石混凝土因具有良好的中子屏蔽性和耐高温性,被广泛应用于核反应堆的堆芯部位,充当高温辐照屏蔽材料。但随核技术的发展,蛇纹石混凝土已不再局限于屏蔽高温辐照,而是要兼顾力学性能,但蛇纹石混凝土力学性能普遍较差,同时当前对蛇纹石混凝土力学性能的改善未能及时考虑其基本服役要求:中子屏蔽和热屏蔽,所以即便蛇纹石混凝土力学性能有所改善,也不具备实用价值。石墨烯量子点(graphene quantum dots, GQDs)是一种以石墨为母体制备的、可量化生产的准零维石墨烯材料,不仅具有石墨烯优异的力学性质和石墨的高温辐照屏蔽性,还因其小尺寸表现出卓越的水溶性,但以往研究多注重GQDs在水泥浆体中的应用,未见对混凝土的公开研究报道。因此,本工作将GQDs掺入蛇纹石混凝土,研究不同温度下GQDs掺量对蛇纹石混凝土力学性能和结晶水损失率的影响,并开展微观试验,探究其作用机制。

    方法 

    本工作分室温(25 ℃)和高温(150~600 ℃)两组试验。室温试验时,参照《核电厂屏蔽混凝土配合比设计规程》(NB/T 20378-2016)进行蛇纹石混凝土配合比设计, GQDs掺量分别占水泥质量的0wt%、0.03wt%、0.06wt%、0.09wt%和0.12wt%,当不同GQDs掺量的蛇纹石混凝土养护完成后开展抗压强度和劈裂抗拉强度试验,并从中选择出力学性能较优的一组进行后续的高温试验。高温试验开始前,先将试验试件置于105 ℃的烘箱中烘干自由水,然后移入高温加热炉,加热至150、300、450和600 ℃,测试试件在不同温度后的结晶水损失率、抗压强度、劈裂抗拉强度和微结构变化,并由结晶水损失情况评估蛇纹石混凝土的中子屏蔽性。

    结果 

    (1)室温下,相较未掺GQDs的试件,0.12wt%的GQDs对蛇纹石混凝土力学性能改善效果最明显,可使7、28 d抗压强度和28 d劈裂抗拉强度分别提高26.4%、20.9%和27.7%,且在合理掺量范围内,GQDs越多,越能促进蛇纹石混凝土水化,即早期强度增长越快。(2)经过150~600 ℃的煅烧,掺杂0.12wt%GQDs的蛇纹石混凝土较未掺GQDs的蛇纹石混凝土结晶水损失率降低了1.8%~20.0%。(3)随温度从150 ℃升高到600 ℃,掺杂0.12wt%的GQDs可使蛇纹石混凝土抗压强度和劈裂抗拉强度分别增加18.0%~34.0%和29.4%~39.8%。(4)在高温水化和GQDs改善基体的联合作用下,蛇纹石混凝土在300 ℃时出现了连续且致密的C-S-H凝胶,有效降低了基体的孔隙率。而600 ℃时,虽然基体还有凝胶状物质和一定强度储备,但混凝土内部已经出现粗大的贯穿裂缝和大量碳化产物,同时骨料纤维化严重,安全隐患增加,不建议继续承载。

    结论 

    GQDs可大幅提升蛇纹石混凝土在25~600 ℃下的强度,同时对结晶水损失率也有一定抑制作用,说明GQDs可在不损害蛇纹石混凝土高温辐照屏蔽性的前提下改善其力学性能,因此GQDs在屏蔽工程中有一定应用前景。

图(8)  /  表(3)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  152
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-12
  • 修回日期:  2023-12-17
  • 录用日期:  2023-12-27
  • 网络出版日期:  2024-01-07
  • 刊出日期:  2024-10-14

目录

/

返回文章
返回