留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag量子点协同四环素的抑菌及其机制

郭少波 陈惠惠 刘轲 胡瑞玲 王嘉伟 余凡 刘智峰 史娟 郭婷 季晓晖 张田雷

郭少波, 陈惠惠, 刘轲, 等. Ag量子点协同四环素的抑菌及其机制[J]. 复合材料学报, 2024, 41(10): 5561-5574. doi: 10.13801/j.cnki.fhclxb.20240008.002
引用本文: 郭少波, 陈惠惠, 刘轲, 等. Ag量子点协同四环素的抑菌及其机制[J]. 复合材料学报, 2024, 41(10): 5561-5574. doi: 10.13801/j.cnki.fhclxb.20240008.002
GUO Shaobo, CHEN Huihui, LIU Ke, et al. Bacteriostatic performance and mechanism of Ag quantum dots synergistic tetracycline[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5561-5574. doi: 10.13801/j.cnki.fhclxb.20240008.002
Citation: GUO Shaobo, CHEN Huihui, LIU Ke, et al. Bacteriostatic performance and mechanism of Ag quantum dots synergistic tetracycline[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5561-5574. doi: 10.13801/j.cnki.fhclxb.20240008.002

Ag量子点协同四环素的抑菌及其机制

doi: 10.13801/j.cnki.fhclxb.20240008.002
基金项目: 秦巴生物资源与生态环境国家重点实验室科研基金(SXS-2105);陕西省教育厅项目(22JK-0317);陕西省自然科学基金(2023-JC-QN-0162;2023-YBSF-334);陕西理工大学基础研究基金(SLGKYXM2208)
详细信息
    通讯作者:

    郭少波,博士,副教授,硕士生导师,研究方向为抑菌材料 E-mail: 545366954@qq.com

  • 中图分类号: X524;TB332

Bacteriostatic performance and mechanism of Ag quantum dots synergistic tetracycline

Funds: Scientific Research Fund of the State Key Laboratory of Biological Resources and Ecological Environment of Qinba (SXS-2105); Project of Shaanxi Provincial Department of Education (22JK-0317); Shaanxi Provincial Natural Science Foundation (2023-JC-QN-0162; 2023-YBSF-334); Fundamental Research Fund of Shaanxi University of Science and Technology (SLGKYXM2208)
  • 摘要: 四环素类抗生素因具有高效、低毒、广谱抑菌性等优点而被广泛使用,但随着抗生素的滥用致使大量的耐药菌出现,使四环素类抗生素的药用价值逐渐降低。超小粒径的纳米Ag虽可使细菌甚至耐药菌失活,但单独使用毒性较强,且易团聚。为此,本文利用Ag的d轨道为满电子结构,可与供电子基团配位的原理,设计了核壳型介孔Fe3O4@SiO2@mTiO2@Ag-四环素(FSmTA-T)复合材料用以解决抗生素耐药和纳米Ag团聚、强毒性问题。研究结果显示,制备的复合材料中纳米Ag量子点的粒径约为2.84 nm,可与四环素环3中的羰基键合,同时,相比四环素,复合材料对大肠杆菌、金黄色葡萄球菌、耐四环素沙门氏菌和白色念珠菌均具有较高的抑菌活性,并可有效破坏细菌细胞壁而使其死亡,且对哺乳细胞的毒性降低为原来的1/3。因此,其优越的抑菌活性可应用于污水处理领域。

     

  • 图  1  Fe3O4@SiO2@mTiO2@Ag-四环素(FSmTA-T)的制备原理示意图

    Figure  1.  Schematic diagram of the preparation principle of the Fe3O4@SiO2@mTiO2@Ag-tetracycline (FSmTA-T)

    APTES—3-aminopropyl(diethoxy)methylsilane; Ag NPs—Silver nanoparticles

    图  2  F (a)、FS (b)、FST (c)、FSmT (d)、FSmTA-T (e)和Ag (f)的TEM图像

    Figure  2.  TEM images of F (a), FS (b), FST (c), FSmT (d), FSmTA-T (e) and Ag (f)

    图  3  (a) Ag量子点的粒径分布;(b) FSmTA-T的EDX图谱;((c), (d)) 不同样品的XRD和VSM图谱;(e)不同样品的紫外吸收图谱;(f) FSmTA-T的XPS全谱

    Figure  3.  (a) Particle size distribution of Ag quantum dots; (b) EDX spectrum of FSmTA-T; ((c), (d)) XRD and VSM patterns of different samples; (e) UV absorption spectra of different samples; (f) XPS spectrum of the FSmTA-T

    d—Particle size

    图  4  C1s (a)、Fe2p (b)、N1s (c)、O1s (d)、Si2p (e)和Ti2p (f)的XPS图谱

    Figure  4.  XPS spectra of C1s (a), Fe2p (b), N1s (c), O1s (d), Si2p (e) and Ti2p (f)

    图  5  (a) Ag3d的XPS图谱;((b), (c))各材料的Zeta和FTIR图谱;((d), (e)) Ag量子点结合T的MS计算和对应的数据分析

    Figure  5.  (a) XPS spectrum of Ag3d; ((b), (c)) Zeta and FTIR spectra of different materials; ((d), (e)) MS theoretical calculation results of the Ag quantum dot bonding T and corresponding data

    图  6  (a) MIC抑菌数据结果;((b)~(e)) 各材料对E. coliS. aureusT-SalmC. albicans滤纸片扩散分析结果数据;(f) FSmTA-T对菌的菌落计数分析结果

    Figure  6.  (a) Antibacterial data results of MIC; ((b)-(e)) Results of filter paper diffusion analysis of E. coli, S. aureus, T-Salm and C. albicans by different materials; (f) FSmTA-T on bacterial colony count analysis data results

    r—Antibacterial zone radius

    图  7  FSmTA-T对E. coli ((a1), (b1))、S. aureus ((a2), (b2))、T-Salm ((a3), (b3))和C. albicans ((a4), (b4))的碘化丙啶(PI)染色结果;(c) Zeta电势分析结果;(d) GDC-0941、T、Ag和FSmTA-T对人乳腺上皮细胞(MCF-7)活力的影响

    Figure  7.  Propidium iodide (PI) staining analysis of FSmTA-T on E. coli ((a1), (b1)), S. aureus ((a2), (b2)), T-Salm ((a3), (b3)) and C. albican ((a4), (b4)); (c) Zeta potential analysis results; (d) Viability of human breast cancer cell line (MCF-7) cells exposed to GDC-0941, T, Ag and FSmTA-T

    IC50—Half maximal inhibitory concentration

    图  8  FSmTA-T的抑菌机制

    Figure  8.  Bacterial inhibition mechanism of the FSmTA-T

    ROS—Reactive oxygen species

    图  9  FSmTA-T对E. coliS. aureusT-SalmC. albicans的核酸泄露分析结果

    Figure  9.  DNA leakage analysis of FSmTA-T on E. coli, S. aureus, T-Salm and C. albicans

    图  10  FSmTA-T对E. coliS. aureusT-SalmC. albicans的微量热分析

    Figure  10.  Microcalorimetric analysis of E. coli, S. aureus, T-Salm and C. albicans

    图  S1  FSmTA-T对大肠杆菌(E. coli)、金黄色葡萄球菌(S. aureus)、耐四环素沙门氏菌(T-Salm)和白色念珠菌(C. albicans)的最小抑菌浓度(MIC)测试照片

    Figure  S1.  Minimal inhibit concentration (MIC) test photos of FSmTA-T on E. coli, S. aureus, T-Salm and C. albicans

    图  S2  不同材料对E. coliS. aureusT-SalmC. albicans的滤纸片扩散照片(O为对照;A、B、C和D依次为Ag、T、FSmTA和FSmTA-T)

    Figure  S2.  Paper diffusion photos of of different samples on E. coli, S. aureus, T-Salm and C. albicans (O is the control, A, B, C and D are Ag, T, FSmTA and FSmTA-T, respectively)

    ((a1)-(e1)) 25 μg/mL; ((a2)-(e2)) 50 μg/mL; ((a3)-(e3)) 100 μg/mL; ((a4)-(e4)) 150 μg/mL; ((a5)-(e5)) 200 μg/mL

    图  S3  FSmTA-T对E. coliS. aureusT-SalmC. albicans的菌落计数实验结果(O为对照;A、B、C和D依次为10、20、30和40 min)

    Figure  S3.  Photographs of the results of colony counting experiments of FSmTA-T on E. coli, S. aureus, T-Salm and C. albicans (O is the control; A, B, C and D are 10, 20, 30 and 40 min)

  • [1] WANG Y F, WANG C H, YAN S, et al. The removal of antibiotic, antibiotic resistant bacteria and genes in persulfate oxidation system via activating by antibiotic fermentation dregs derived biochar[J]. Journal of Cleaner Production, 2023, 394: 136328. doi: 10.1016/j.jclepro.2023.136328
    [2] WANG J Q, XU S Q, ZHAO K, et al. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review[J]. Science of The Total Environment, 2023, 877: 162772. doi: 10.1016/j.scitotenv.2023.162772
    [3] FANG H, LIU Y H, QIU P X, et al. Simultaneous removal of antibiotic resistant bacteria and antibiotic resistance genes by molybdenum carbide assisted electrochemical disinfection[J]. Journal of Hazardous Materials, 2022, 432: 128733. doi: 10.1016/j.jhazmat.2022.128733
    [4] ZHANG Z Q, XU Z N, WANG X G. The greenhouse effect of antibiotics: The influence pathways of antibiotics on methane release from freshwater sediment[J]. Environment International, 2023, 176: 107964. doi: 10.1016/j.envint.2023.107964
    [5] WANG S, HE L, ZHANG M Y, et al. Effects of antibiotic resistance genes and antibiotics on the transport and deposition behaviors of bacteria in porous media[J]. Environmental Science & Technology, 2023, 57(28): 10426-10437.
    [6] YA H B, ZHANG T, XING Y, et al. Co-existence of polyethylene microplastics and tetracycline on soil microbial community and ARGs[J]. Chemosphere, 2023, 335: 139082. doi: 10.1016/j.chemosphere.2023.139082
    [7] WANG Q D, XU Q Y, ZHAI S Y, et al. Understanding the coordination behavior of antibiotics: Take tetracycline as an example[J]. Journal of Hazardous Materials, 2023, 460: 132375. doi: 10.1016/j.jhazmat.2023.132375
    [8] WU X W, ZHAO X L, WANG X, et al. Bioaccessibility of polypropylene microfiber-associated tetracycline and ciprofloxacin in simulated human gastrointestinal fluids[J]. Environment International, 2023, 179: 108193. doi: 10.1016/j.envint.2023.108193
    [9] OSORIO V, MEZQUITA A S, BALCAZAR J L. Comparative metagenomics reveals poultry and swine farming are hotspots for multidrug and tetracycline resistance[J]. Environmental Pollution, 2023, 322: 121239. doi: 10.1016/j.envpol.2023.121239
    [10] MA X Q, WEN X, YANG D Q, et al. Collateral sensitivity between tetracyclines and aminoglycosides constrains resistance evolution in carbapenem-resistant Klebsiella pneumoniae[J]. Drug Resistance Updates, 2023, 68: 100961. doi: 10.1016/j.drup.2023.100961
    [11] LI H B, FAN Y F, SUN Z L, et al. Abrading-induced breakdown of Ag nanoparticles into atomically dispersed Ag for enhancing antimicrobial performance[J]. Environmental Science & Technology, 2023, 57(15): 6150-6158.
    [12] WANG C Y, ZHU S L, LIANG Y Q, et al. Flexible free-standing antibacterial nanoporous Ag ribbon[J]. Journal of Colloid and Interface Science, 2023, 645: 287-296. doi: 10.1016/j.jcis.2023.04.153
    [13] SUN X D, PAN W H, WANG G, et al. Ag nanoparticle and Ti-MOF cooperativity for efficient inactivation of E. coli in water[J]. ACS Applied Materials & Interfaces, 2023, 15(37): 43712-43723.
    [14] ZHANG J, SINGH P, CAO Z J, et al. Polydopamine/graphene oxide coatings loaded with tetracycline and green Ag nanoparticles for effective prevention of biofilms[J]. Applied Surface Science, 2023, 626: 157221. doi: 10.1016/j.apsusc.2023.157221
    [15] YAN J H, WANG Q F, YANG J L, et al. Chemical synthesis of innovative silver nanohybrids with synergistically improved antimicrobial properties[J]. International Journal of Nanomedicine, 2023, 18: 2295-2305. doi: 10.2147/IJN.S405255
    [16] SHI J, ZHENG J L, LIANG B, et al. Silver-decorated amino-modified Fe3O4@SiO2@mTiO2 core-shell nanocomposites with catalytic and antimicrobial bifunctional activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 668: 131402. doi: 10.1016/j.colsurfa.2023.131402
    [17] JI X H, WU Y H, HAN Y Y, et al. Synergistic antibacterial study of nano-Cu2O/CuO@Ag-tetracycline composites[J]. Materials Chemistry and Physics, 2023, 306: 127904. doi: 10.1016/j.matchemphys.2023.127904
    [18] ZHOU Z B, XIAO J W, HUANG S, et al. A wet-adhesive carboxymethylated yeast β-glucan sponge with radical scavenging, bacteriostasis and anti-inflammatory functions for rapid hemostasis[J]. International Journal of Biological Macromolecules, 2023, 230: 123158. doi: 10.1016/j.ijbiomac.2023.123158
    [19] JIN Y Y, WANG C, XIA Z Y, et al. Photodynamic chitosan sponges with dual instant and enduring bactericidal potency for treating skin abscesses[J]. Carbohydrate Polymers, 2023, 306: 120589. doi: 10.1016/j.carbpol.2023.120589
    [20] CUI J Y, WAN M H, WANG Z H, et al. Preparation of PAN/SiO2/CTAB electrospun nanofibrous membranes for highly efficient air filtration and sterilization[J]. Separation and Purification Technology, 2023, 321: 124270. doi: 10.1016/j.seppur.2023.124270
    [21] ONG T H D, YU N, MEENASHISUNDARAM G K, et al. Insight into cytotoxicity of Mg nanocomposites using MTT assay technique[J]. Materials Science and Engineering: C, 2017, 78: 647-652. doi: 10.1016/j.msec.2017.04.129
    [22] LU J, ZHOU Y, ZHOU Y B. Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides[J]. Chemical Engineering Journal, 2021, 422: 130126. doi: 10.1016/j.cej.2021.130126
    [23] WANG L, SAGAGUCHI T, OKUHATA T, et al. Electron and phonon dynamics in hexagonal Pd nanosheets and Ag/Pd/Ag sandwich nanoplates[J]. ACS Nano, 2017, 11(2): 1180-1188. doi: 10.1021/acsnano.6b07082
    [24] WOOLSTON B M, STEPHANOPOULOS G. Engineering E. coli to grow on methanol[J]. Joule, 2020, 4(10): 2070-2072. doi: 10.1016/j.joule.2020.09.019
    [25] GREENHILL C. Role for S. aureus in insulin resistance[J]. Nature Reviews Endocrinology, 2018, 14: 381.
    [26] CHIN V, LEE T, RUSLIZA B, et al. Dissecting Candida albicans infection from the perspective of C. albicans virulence and omics approaches on host-pathogen interaction: A review[J]. International Journal of Molecular Sciences, 2016, 17(10): 1643. doi: 10.3390/ijms17101643
    [27] QIAN L W, LEI D, DUAN X, et al. Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity[J]. Carbohydrate Polymers, 2018, 192: 44-51. doi: 10.1016/j.carbpol.2018.03.049
    [28] XU X, LI Y L, WANG L X, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application[J]. Biomaterials, 2019, 212: 98-114. doi: 10.1016/j.biomaterials.2019.05.014
    [29] MALGORZATA O R, WALDEMAR P, AGNIESZKA O S. Tetracyclines-an important therapeutic tool for dermatologists[J]. International Journal of Environmental Research and Public Health, 2022, 19(12): 7246. doi: 10.3390/ijerph19127246
  • 加载中
图(13)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  168
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2023-12-10
  • 录用日期:  2023-12-23
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回