留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能

李仕友 乔记帅 杨宇彪 熊芷毓 王国华

李仕友, 乔记帅, 杨宇彪, 等. 木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能[J]. 复合材料学报, 2024, 41(10): 5361-5374. doi: 10.13801/j.cnki.fhclxb.20240003.007
引用本文: 李仕友, 乔记帅, 杨宇彪, 等. 木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能[J]. 复合材料学报, 2024, 41(10): 5361-5374. doi: 10.13801/j.cnki.fhclxb.20240003.007
LI Shiyou, QIAO Jishuai, YANG Yubiao, et al. Preparation of lignin surface-functionalized MXene nanosheets and its U(VI)adsorption properties[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5361-5374. doi: 10.13801/j.cnki.fhclxb.20240003.007
Citation: LI Shiyou, QIAO Jishuai, YANG Yubiao, et al. Preparation of lignin surface-functionalized MXene nanosheets and its U(VI)adsorption properties[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5361-5374. doi: 10.13801/j.cnki.fhclxb.20240003.007

木质素表面功能化MXene纳米片的制备及其对U(VI)的吸附性能

doi: 10.13801/j.cnki.fhclxb.20240003.007
基金项目: 湖南省自然科学基金项目(2022JJ30490);国家自然科学基金项目(51904155)
详细信息
    通讯作者:

    王国华,博士,副教授,硕士生导师,研究方向为放射性污染治理与资源化 E-mail: wghcsu@163.com

  • 中图分类号: TB333

Preparation of lignin surface-functionalized MXene nanosheets and its U(VI)adsorption properties

Funds: Natural Science Foundation of Hunan Province (2022JJ30490); National Natural Science Foundation of China (51904155)
  • 摘要: 为了进一步改善MXene纳米材料对模拟放射性废水中U(VI)的吸附性能,利用天然资源酶水解木质素(EHL)作为生物表面活性剂对MXene进行表面功能化处理,采用SEM-EDS、XRD及FTIR对改性前后的材料进行了表征分析,并在吸附实验中探究了pH、温度、反应时间、干扰离子及不同初始U(VI)浓度等因素对除U(VI)效果的影响。结果表明,EHL阻止了MXene纳米片的聚集堆叠,并且引入了大量活性官能团,提高了EHL功能化MXene纳米片的吸附性能。在MXene与EHL的质量比为1∶5、投加量为0.1 g·L−1、pH为5、温度为303 K时,对U(VI)的最大吸附容量为231.95 mg·g−1。此外,吸附动力学和等温线分析表明,拟二级动力学模型和Freundlich等温线模型能很好地拟合此吸附过程,热力学分析表明其吸附过程是自发吸热的。经历5次循环再生后,对U(VI)的去除率仍在80%以上。表征分析结果表明,MX/EHL与U(VI)之间相互作用机制包括离子交换、静电吸引以及与含氧官能团之间的络合作用。基于此研究,MX/EHL作为一种环境友好型吸附材料,对去除废水中的U(VI)具有巨大潜力。

     

  • 图  1  Ti3C2Tx (MX)/酶水解木质素(EHL)的主要制备步骤

    Figure  1.  Main preparation processes of Ti3C2Tx (MX)/enzymatically hydrolyzed lignin (EHL)

    图  2  MX ((a), (b))和MX/EHL ((c), (d))的SEM图像;MX (e)和MX/EHL (f)的EDS能谱

    Figure  2.  SEM images of MX ((a), (b)) and MX/EHL ((c), (d)); EDS patterns of MX (e) and MX/EHL (f)

    图  3  (a) MAX (Ti3AlC2)、MX和MX/EHL的XRD图谱;(b) MX和MX/EHL的N2吸脱附及孔径图

    Figure  3.  (a) XRD spectra of MAX (Ti3AlC2), MX and MX/EHL; (b) N2 adsorption-desorption and pore size of MX and MX/EHL

    STP—Standard temperature and pressure; dV/dD—Pore volume per unit pore size

    图  4  MX、EHL和MX/EHL吸附前后的FTIR图谱

    Figure  4.  FTIR spectra of MX, EHL and MX/EHL before and after adsorption

    图  5  不同配比MX/EHL吸附剂对U(VI) 的吸附效率对比

    Figure  5.  Comparison of adsorption efficiency of different ratios of MX/EHL adsorbents on U(VI)

    图  6  不同MX/EHL投加量对吸附U(VI) 的影响

    Figure  6.  Effect of different MX/EHL dosage on adsorption of U(VI)

    图  7  (a)不同pH值下U(VI) 的形态分布曲线图;(b)不同pH值对MX/EHL吸附U(VI)性能的影响

    Figure  7.  (a) Morphological distribution curves of U(VI) at different pH values; (b) Effect of different pH values on the adsorption performance of U(VI) by MX/EHL

    图  8  (a)接触时间对MX/EHL吸附U(VI)的影响;(b) 拟一级动力学;(c) 拟二级动力学;(d) 颗粒内扩散模型

    Figure  8.  (a) Effect of contact time on U(VI) adsorption by MX/EHL; (b) Pseudo-first-order; (c) Pseudo-second-order; (d) Intraparticle diffusion model

    qe—Equilibrium adsorption capacity; qt—Adsorption capacity at time t

    图  9  MX/EHL吸附U(VI)的Langmuir (a)、Freundlich (b)和Dubinin-Radushkevich (c)等温吸附模型拟合曲线;(d) lnK0与1/T的线性拟合

    Figure  9.  Fitting curve of Langmuir (a), Freundlich (b) and Dubinin-Radushkevich (c) isothermal adsorption model of U(VI) adsorption by MX/EHL; (d) Linear fit of lnK0 versus 1/T

    Ce—U(VI) concentration at adsorption equilibrium; R—Universal gas constant; T—Temperature (K); K0—Equilibrium constant at different temperatures

    图  10  不同种类竞争离子对MX/EHL吸附U(VI)的影响

    Figure  10.  Effect of different competitive ions on adsorption of U(VI) on MX/EHL

    图  11  MX/EHL吸附剂循环再生试验

    Figure  11.  MX/EHL adsorbent cycle regeneration experiment

    图  12  (a)吸附前后MX/EHL全谱图;(b) U4f图谱;((c), (d)) O1s图谱;((e), (f)) C1s图谱

    Figure  12.  (a) Full spectrum of MX/EHL before and after adsorption; (b) U4f spectrum; ((c), (d)) O1s spectrum; ((e), (f)) C1s spectrum

    表  1  MX和MX/EHL的孔隙结构参数

    Table  1.   Pore structure parameters of MX and MX/EHL

    MaterialSurface area/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Pore diameter/
    nm
    MX3.82970.010010.4628
    MX/EHL8.77510.045520.7320
    下载: 导出CSV

    表  2  MX/EHL对U(VI)的吸附动力学参数

    Table  2.   The adsorption kinetic parameters of MX/EHL on U(VI)

    Name of
    sample
    Pseudo-first-order Pseudo-second-order Intraparticle diffusion
    qe,exp/
    (mg·g−1)
    k1/
    min−1
    qe,cal/
    (mg·g−1)
    R2 k2/
    min−1
    qe,cal/
    (mg·g−1)
    R2 kp1/
    (mg·(g·
    min0.5)−1)
    C1 $R_{1}^{2} $ kp2/
    (mg·(g·
    min0.5)−1)
    C2 $R_{2}^{2} $ kp3/
    (mg·(g·
    min0.5)−1)
    C3 $R_{3}^{2} $
    MX 35.22 0.017 3.487 0.882 0.021 35.51 0.999 0.688 29.782 0.973 0.406 31.266 0.989 0.015 35.029 0.804
    MX/EHL (1:4) 46.92 0.017 2.737 0.949 0.027 47.13 0.999 0.282 43.819 0.958 0.324 43.568 0.986 0.058 46.175 0.653
    MX/EHL (1:5) 48.24 0.018 2.502 0.930 0.030 48.43 0.999 0.338 45.002 0.981 0.303 45.243 0.994 0.035 47.794 0.615
    Notes: qe,exp—Actual adsorption capacity at adsorption equilibrium; qe,cal—Calculated adsorption capacity at adsorption equilibrium; k1 and k2—Adsorption rate constants of the pseudo-first and pseudo-second, respectively; R2—Correlation coefficient; kp1, kp2, kp3—Adsorption rate constants of intraparticle diffusion; C1, C2, C3—Adsorption constants of intraparticle diffusion.
    下载: 导出CSV

    表  3  Langmuir、Freundlich和Dubinin‒Radushkevich吸附等温线模型的相关参数

    Table  3.   Parameters associated with Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models

    T/K Langmuir Freundlich Dubinin‒Radushkevich
    qmax/(mg·g−1) KL/(L∙mg−1) R2 KF 1/n R2 qDR E/(kJ·mol−1) R2
    293 205.493 0.164 0.890 48.175 0.399 0.982 115.99 1.879 0.554
    298 217.057 0.221 0.925 58.802 0.378 0.989 129.09 2.077 0.607
    303 231.947 0.251 0.924 65.565 0.379 0.997 138.33 2.337 0.627
    Notes: qmax—Maximum adsorption capacity; KL—Langmuir adsorption equilibrium constant; KF and n—Constants that are related to the adsorption capacity and the adsorption intensity, respectively; qDR—Theoretical isotherm saturation capacity; E—Average free energy of adsorption.
    下载: 导出CSV

    表  4  不同吸附剂对U(VI)的吸附去除效果对比

    Table  4.   Comparison of adsorption and removal effects of different adsorbents on U(VI)

    Adsorbent pH T/K qmax/(mg·g−1) Ref.
    C-TC 5 308 165.43 [20]
    MXene/SA 4 298 126.82 [34]
    C-TC-CS 6 313 141.96 [36]
    PANI/Ti3C2Tx 5 298 102.80 [37]
    PAO/Ti3C2Tx 4 298 98.04 [38]
    Ti3C2-AO-PA 8.3 298 81.10 [41]
    MX/EHL 5 303 231.95 This work
    Notes: C-TC—Chloroacetic acid modified-Ti3C2Tx; MXene/SA—MXene composite sodium alginate gel microsphere; C-TC-CS—Chloroacetic acid-modified MXene-CS gel microspheres; PANI/Ti3C2Tx—Polyaniline modified MXene composites; PAO/Ti3C2Tx—Polyamidoxime functionalized MXene composite; Ti3C2-AO-PA—Polyamide enhanced amidoxime-functionalized Ti3C2 nanosheet.
    下载: 导出CSV

    表  5  MX/EHL吸附U(VI)的热力学参数

    Table  5.   Thermodynamic parameters of MX/EHL adsorption of U(VI)

    T/K lnK0 ΔG0/(kJ·mol−1) ΔH0/(kJ·mol−1) ΔS0/(J·(mol·K)−1)
    293 4.69 −11.43 38.89 175.26
    298 5.00 −12.39
    303 5.23 −13.18
    Notes: ΔH0—Standard enthalpy change; ΔG0—Standard free energy change; ΔS0—Standard entropy change.
    下载: 导出CSV
  • [1] YUAN D, ZHANG S, XIANG Z, et al. Highly efficient removal of uranium from aqueous solution using a magnetic adsorbent bearing phosphine oxide ligand: A combined experimental and density functional theory study[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9619-9627.
    [2] HUANG S, JIANG S, PANG H, et al. Dual functional nanocomposites of magnetic MnFe2O4 and fluorescent carbon dots for efficient U(VI) removal[J]. Chemical Engineering Journal, 2019, 368: 941-950. doi: 10.1016/j.cej.2019.03.015
    [3] HE Z, HUANG D, YUE G, et al. Ca2+ induced 3D porous MXene gel for continuous removal of phosphate and uranium[J]. Applied Surface Science, 2021, 570: 150804. doi: 10.1016/j.apsusc.2021.150804
    [4] ZHANG S, YUAN D, ZHANG Q, et al. Highly efficient removal of uranium from highly acidic media achieved using a phosphine oxide and amino functionalized superparamagnetic composite polymer adsorbent[J]. Journal of Materials Chemistry A, 2020, 8(21): 10925-10934. doi: 10.1039/D0TA01633K
    [5] ZAHERI P, DAVARKHAH R. Selective separation of uranium from sulfuric acid media using a polymer inclusion membrane containing alamine 336[J]. Chemical Papers, 2020, 74(8): 2573-2581. doi: 10.1007/s11696-019-01029-9
    [6] ORREGO P, HERNÁNDEZ J, REYES A. Uranium and molybdenum recovery from copper leaching solutions using ion exchange[J]. Hydrometallurgy, 2019, 184: 116-122. doi: 10.1016/j.hydromet.2018.12.021
    [7] CHEN J, HUANG Q, HUANG H, et al. Recent progress and advances in the environmental applications of MXene related materials[J]. Nanoscale, 2020, 12(6): 3574-3592. doi: 10.1039/C9NR08542D
    [8] YU H, WANG Y, JING Y, et al. Surface modified MXene-based nanocomposites for electrochemical energy conversion and storage[J]. Small, 2019, 15(25): 1901503. doi: 10.1002/smll.201901503
    [9] ZHOU Z, LIU J, ZHANG X, et al. Ultrathin MXene/calcium alginate aerogel film for high performance electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2019, 6(6): 1802040. doi: 10.1002/admi.201802040
    [10] SINHA A, DHANJAI, ZHAO H, et al. MXene: An emerging material for sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 424-435. doi: 10.1016/j.trac.2018.05.021
    [11] ZHANG Y, WANG L, ZHANG N, et al. Adsorptive environmental applications of MXene nanomaterials: A review[J]. RSC Advances, 2018, 8(36): 19895-19905. doi: 10.1039/C8RA03077D
    [12] YING Y, LIU Y, WANG X, et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1795-1803. doi: 10.1021/am5074722
    [13] SHAHZAD A, RASOOL K, MIRAN W, et al. Two-dimensional Ti3C2T x MXene nanosheets for efficient copper removal from water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11481-11488.
    [14] ZHANG P, WANG L, DU K, et al. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets[J]. Journal of Hazardous Materials, 2020, 396: 122731. doi: 10.1016/j.jhazmat.2020.122731
    [15] ZHANG F, LI S, ZHANG Q, et al. Adsorption of different types of surfactants on graphene oxide[J]. Journal of Molecular Liquids, 2019, 276: 338-346. doi: 10.1016/j.molliq.2018.12.009
    [16] MENG Y, LU J, CHENG Y, et al. Lignin-based hydrogels: A review of preparation, properties, and application[J]. International Journal of Biological Macromolecules, 2019, 135: 1006-1019. doi: 10.1016/j.ijbiomac.2019.05.198
    [17] LUO R, ZHANG W, HU X, et al. Preparation of sodium ligninsulfonate functionalized MXene using hexach-lorocyclotriphosphazene as linkage and its adsorption applications[J]. Applied Surface Science, 2022, 602: 154197. doi: 10.1016/j.apsusc.2022.154197
    [18] WANG S, LIU Y, LYU Q F, et al. Facile preparation of biosurfactant-functionalized Ti2CT x MXene nanosheets with an enhanced adsorption performance for Pb(II) ions[J]. Journal of Molecular Liquids, 2020, 297: 111810. doi: 10.1016/j.molliq.2019.111810
    [19] ZHANG K N, WANG C Z, LU Q F, et al. Enzymatic hydrolysis lignin functionalized Ti3C2Tx nanosheets for effective removal of MB and Cu2+ ions[J]. International Journal of Biological Macromolecules, 2022, 209: 680-691.
    [20] XIE L, YAN J, LIU Z, et al. Synthesis of a two-dimensional MXene modified by chloroacetic acid and its adsorption of uranium[J]. ChemistrySelect, 2022, 7(1): e202103583. doi: 10.1002/slct.202103583
    [21] LYU Q F, LUO J J, LIN T T, et al. Novel lignin-poly(n-methylaniline) composite sorbent for silver ion removal and recovery[J]. ACS Sustainable Chemistry & Engineering, 2013, 2(3): 465-471.
    [22] HU Y, ZHUO H, LUO Q, et al. Biomass polymerassisted fabrication of aerogels from MXenes with ultrahigh com-pression elasticity and pressure sensitivity[J]. Journal of Materials Chemistry A, 2019, 7(17): 10273-10281. doi: 10.1039/C9TA01448A
    [23] SALEH T A. Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrode-sulfurization of thiophenes[J]. Chemical Engineering Journal, 2021, 404: 126987. doi: 10.1016/j.cej.2020.126987
    [24] WANG Q M, LIU Z H, LYU Q F. Lignin modified Ti3C2T x assisted construction of functionalized interface for separation of oil/water mixture and dye wastewater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130371.
    [25] DING L, WEI Y, WANG Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie International Edition, 2017, 56(7): 1825-1829. doi: 10.1002/anie.201609306
    [26] HAN R, MA X, XIE Y, et al. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux[J]. RSC Advances, 2017, 7(89): 56204-56210. doi: 10.1039/C7RA10318B
    [27] LI S, WANG L, PENG J, et al. Efficient thorium(IV) removal by two-dimensional Ti2CT x MXene from aqueous solution[J]. Chemical Engineering Journal, 2019, 366: 192-199. doi: 10.1016/j.cej.2019.02.056
    [28] GUO Y, GONG Z, LI C, et al. Efficient removal of uranium (VI) by 3D hierarchical Mg/Fe-LDH supported nanoscale hydroxyapatite: A synthetic experimental and mechanism studies[J]. Chemical Engineering Journal, 2020, 392: 123682. doi: 10.1016/j.cej.2019.123682
    [29] DONG X, WANG Y, JIA M, et al. Sustainable and scalable insitu synthesis of hydrochar-wrapped Ti3AlC2-derived nanofibers as adsorbents to remove heavy metals[J]. Bioresource Technology, 2019, 282: 222-227. doi: 10.1016/j.biortech.2019.03.010
    [30] LEVITT A S, ALHABEB M, HATTER C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2019, 7(1): 269-277. doi: 10.1039/C8TA09810G
    [31] MA Z, LI S, FANG G, et al. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions[J]. International Journal of Biological Macromolecules, 2016, 93: 1279-1284.
    [32] AN L, WANG G, JIA H, et al. Fractionation of enzymatic hydrolysis lignin by sequential extraction for enhancing antioxidant performance[J]. International Journal of Biological Macromolecules, 2017, 99: 674-681. doi: 10.1016/j.ijbiomac.2017.03.015
    [33] KONG L, RUAN Y, ZHENG Q, et al. Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater[J]. Journal of Hazardous Materials, 2020, 382: 120784. doi: 10.1016/j.jhazmat.2019.120784
    [34] 李仕友, 胡俊毅, 贺俊钦, 等. MXene/SA凝胶微球的制备及对U(VI)的吸附性能[J]. 复合材料学报, 2022, 39(10): 4868-4878.

    LI Shiyou, HU Junyi, HE Junqin, et al. Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4868-4878(in Chinese).
    [35] REN X, WANG S, YANG S, et al. Influence of contact time, pH, soil humic/fulvic acids, ionic strength and temperature on sorption of U(VI) onto MX-80 bentonite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2009, 283(1): 253-259.
    [36] LI S, HE J, WANG Y, et al. Adsorption characteristics of U(VI) in aqueous solution by chloroacetic acid-modified MXene-CS gel microspheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674: 131983. doi: 10.1016/j.colsurfa.2023.131983
    [37] 顾鹏程, 宋爽, 张塞, 等. 聚苯胺改性Mxene复合材料对U(VI)的高效富集及机理研究[J]. 化学学报, 2018, 76(9): 701-708.

    GU Pengcheng, SONG Shuang, ZHANG Sai, et al. Enrichment of U(VI) on polyaniline modified mxene composites studied by batch experiment and mechanism investigation[J]. Acta Chimica Sinica, 2018, 76(9): 701-708(in Chinese).
    [38] ZHOU Y, HAO H X, DONG T H, et al. Efficient enrichment of U(VI) by two-dimensional layered transition metal carbide composite[J]. Radiochimica Acta, 2022, 110(5): 311-322. doi: 10.1515/ract-2021-1130
    [39] SHAHZAD A, NAWAZ M, MOZTAHIDA M, et al. Ti3C2T x MXene core-shell spheres for ultrahigh removal of mercuric ions[J]. Chemical Engineering Journal, 2019, 368: 400-408. doi: 10.1016/j.cej.2019.02.160
    [40] FENG X, YU Z, LONG R, et al. Self-assembling 2D/2D (MXene/LDH) materials achieve ultra-high adsorption of heavy metals Ni2+ through terminal group modification[J]. Separation and Purification Technology, 2020, 253: 117525. doi: 10.1016/j.seppur.2020.117525
    [41] ZHANG D, LIU L, ZHAO B, et al. Highly efficient extraction of uranium from seawater by polyamide and amidoxime cofunctionalized MXene[J]. Environmental Pollution, 2023, 317: 120826. doi: 10.1016/j.envpol.2022.120826
    [42] ZAHAKIFAR F, KESHTKAR A R, TALEBI M. Performance evaluation of sodium alginate/polyvinyl alcohol/polyethylene oxide/ZSM5 zeolite hybrid adsorbent for ion uptake from aqueous solutions: A case study of thorium(IV)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 327(1): 65-72.
    [43] WU J, ZHENG Z, ZHU K, et al. Adsorption performance and mechanism of g-C3N4/UiO-66 composite for U(VI) from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(1): 469-481. doi: 10.1007/s10967-021-08116-w
    [44] WU L, LIN X, ZHOU X, et al. Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum[J]. Applied Surface Science, 2016, 384: 466-479. doi: 10.1016/j.apsusc.2016.05.056
    [45] 张鹏丽, 武莉娅, 杨宗政, 等. MXene改性材料的制备及其吸附除Sr2+性能[J]. 复合材料学报, 2023, 40(10): 5678-5691.

    ZHANG Pengli, WU Liya, YANG Zongzheng, et al. Preparation of modified MXene material and its adsorption performance for Sr2+[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5678-5691(in Chinese).
    [46] WANG L, SONG H, YUAN L, et al. Efficient U(VI) reduction and sequestration by Ti2CT x MXene[J]. Environmental Science & Technology, 2018, 52(18): 10748-10756. doi: 10.1021/acs.est.8b03711
    [47] ZHANG P, WANG L, HUANG Z, et al. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15579-15587.
    [48] HALIM J, COOK K M, NAGUIB M, et al. X-ray photoelectron spectroscopy of select multilayered tra-nsition metal carbides (MXenes)[J]. Applied Surface Science, 2016, 362: 406-417. doi: 10.1016/j.apsusc.2015.11.089
    [49] RETHINASABAPATHY M, HWANG S K, KANG S M, et al. Amino-functionalized POSS nanocage-intercalated titanium carbide (Ti3C2T x) MXene stacks for efficient cesium and strontium radionuclide sequestration[J]. Journal of Hazardous Materials, 2021, 418: 126315. doi: 10.1016/j.jhazmat.2021.126315
    [50] MISHRA V, SURESHKUMAR M K, GUPTA N, et al. Study on sorption characteristics of uranium onto biochar derived from eucalyptus wood[J]. Water, Air, & Soil Pollution, 2017, 228: 1-14.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  149
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 修回日期:  2023-12-20
  • 录用日期:  2023-12-23
  • 网络出版日期:  2024-01-04
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回