Preparation and properties of Zr-MOF-NH2 and doped Nafion composite proton exchange membranes synthesized by microwaves
-
摘要: 全钒液流电池要求质子交换膜具备优良的离子选择性和理化稳定性。本研究分别采用微波法和传统水热法制备UIO-66-NH2,利用浇筑法制备了UIO-66-NH2/Nafion复合质子交换膜,对膜的理化性质和电池性能进行系统研究。结果表明,UIO-66-NH2在复合膜内形成的氢键网络、酸碱对和自身孔道协同强化了膜的离子选择性。基于微波法(M/N)和传统水热法(T/N)的复合膜综合性能均优于纯树脂膜(P-N)。在掺杂量为3wt%时,M/N-3膜拉伸强度达到27 MPa,质子传导率和钒离子透过率分别为122.18 mS·cm−1和0.83×10−7 cm2·min−1,离子选择性为15.6×105 S·min·cm−3,约为P-N膜的30倍,且其电池能量效率达到83.8%~71.7% (100~200 mA·cm−2),优于T/N-3膜(82.7%~71.0%)和P-N膜(79.4%~69.0%)。同时,该电池也显示出更优的循环稳定性和容量保持率。因此,微波法合成的UIO-66-NH2可有效改善质子交换膜的综合性能,在提高钒液流电池性能方面前景较好。Abstract: Vanadium liquid flow batteries require proton exchange membranes with excellent ion selectivity and physicochemical stability. In this work, UIO-66-NH2 was prepared by microwave and traditional hydrothermal method, respectively, and UIO-66-NH2/Nafion composite proton exchange membranes were prepared by the casting method, and the physicochemical properties of the membranes and the cell performance were systematically characterized. The results show that the hydrogen bonding network formed by UIO-66-NH2 within the composite membrane, acid-base pairs and its own pore size synergistically strengthened the ion selectivity of the composite membrane. The comprehensive performance of the composite membranes base on both microwave (M/N) and traditional hydrothermal (T/N) methods is superior to that of the pure resin membrane (P-N). At the addition amount of 3wt%, the tensile strength of the M/N-3 membrane reaches 27 MPa, the proton conductivity and vanadium ion permeability are 122.18 mS·cm−1 and 0.83×10−7 cm2·min−1, respectively, and the ion selectivity is 15.6×105 S·min·cm−3, which is about 30 times of that of the P-N membrane, and the cell energy efficiency of this membrane reaches 83.8%-71.7% (100-200 mA·cm−2), which is superior to T/N-3 membrane (82.7%-71.0%) and P-N membrane (79.4%-69.0%). The cell also shows superior cycling stability and capacity retention. Therefore, UIO-66-NH2 synthesized by microwave method can effectively improve the comprehensive performance of proton exchange membranes, which is promising in optimizing the performance of vanadium liquid flow batteries.
-
图 1 微波合成氨基官能化的UIO-66 (UIO-66-NH2)及Nafion复合膜的制备过程示意图
Figure 1. Schematic diagram of the preparation process of UIO-66-NH2 and Nafion composite membrane
M-U66-NH2—UIO-66-NH2 prepared by microwave assisted method; UIO-66-NH2—Zr-MOF when the preparation method does not need to be distinguished; BDC-NH2—2-aminoterephthalic Acid; DMF—N, N-dimethylformamide; HAc—Acetic acid
图 3 P-N (a)、M/N-1 (b)、M/N-3 (c) 膜的表面SEM图像;P-N (d)、M/N-1 (e)、M/N-3 (f)膜的截面SEM图像;M/N-3膜的表面EDS元素分布图((g) N;(h) Zr;(i) F;(j) S)
Figure 3. Surface SEM images of P-N (a), M/N-1 (b) and M/N-3 (c); Cross-section SEM images of P-N (d), M/N-1 (e) and M/N-3 (f); EDS element images of M/N-3 ((g) N; (h) Zr; (i) F; (j) S)
图 9 150 mA·cm−2电流密度下复合膜所装配电池的循环效率(a)、容量保持率(b)以及与报道性能的对比(c)
Figure 9. Cycle efficiency (a) and capacity retention (b) of composite membranes at 150 mA·cm−2, and comparisons with reported performance (c)
PBI—Polybenzimidazole; PS—Polystyrene; GO—Graphene oxide; SPEEK—Sulfonated poly(ether ether ketone); 2D-ZMs—Two-dimensional zeolite
表 1 复合质子交换膜的命名
Table 1. Naming of composite proton exchange membranes
Sample name Instruction M-U66-NH2 "M" represents microwave heating; "U66" refers to the metal-organic framework material UIO-66; Overall, it indicates the UIO-66-NH2 sample prepared by microwave heating. T-U66-NH2 "T" represents traditional oven heating; Overall, it indicates the UIO-66-NH2 sample prepared by oven heating. M/N-X "M/N" represents the composite membrane with M-U66-NH2 and Nafion resin; "X" represents the percentage content of M-U66-NH2 in the membrane. T/N-X "T/N" represents the composite membrane with T-U66-NH2 and Nafion resin; "X" represents the percentage content of T-U66-NH2 added to the membrane. P-N A pure, unmodified Nafion membrane N212 Commercial Nafion 212 membrane from DuPont (USA) -
[1] LOU X, LU B, HE M, et al. Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery[J]. Journal of Membrane Science, 2022, 643: 120015. doi: 10.1016/j.memsci.2021.120015 [2] 韩光鲁, 陈哲, 蔡立芳, 等. 磺化来瓦希尔骨架(MIL-101(Cr)-SO3H)/磺化酚酞侧基聚芳醚砜杂化质子交换膜的制备及性能[J]. 复合材料学报, 2020, 37(3): 504-511.HAN Guanglu, CHEN Zhe, CAI Lifang, et al. Preparation and properties of sulfonated lavoisier framework (MIL-101(Cr)-SO3H)/sulfonated polyarylethersulfone with cardo hybrid proton exchange membranes[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 504-511(in Chinese). [3] LUO T, ABDU S, WESSLING M. Selectivity of ion exchange membranes: A review[J]. Journal of Membrane Science, 2018, 555: 429-454. doi: 10.1016/j.memsci.2018.03.051 [4] DAI Q, XING F, LIU X, et al. High-performance PBI membranes for flow batteries: From the transport mechanism to the pilot plant[J]. Energy & Environmental Science, 2022, 15(4): 1594-1600. [5] DONG Z, DI M, HU L, et al. Hydrophilic/hydrophobic-bi-comb-shaped amphoteric membrane for vanadium redox flow battery[J]. Journal of Membrane Science, 2020, 608: 118179. doi: 10.1016/j.memsci.2020.118179 [6] ZHAI S, JIA X, LU Z, et al. Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers[J]. Journal of Membrane Science, 2022, 662: 121003. doi: 10.1016/j.memsci.2022.121003 [7] ZHANG D, XIN L, XIA Y, et al. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery[J]. Journal of Membrane Science, 2021, 624: 119047. doi: 10.1016/j.memsci.2020.119047 [8] SHARMA P, SHAHI V K. Fabricating a partially fluorinated hybrid cation-exchange membrane for long durable performance of vanadium redox flow batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 9171-9181. [9] YE J, ZHENG C, LIU J, et al. In situ grown tungsten trioxide nanoparticles on graphene oxide nanosheet to regulate ion selectivity of membrane for high performance vanadium redox flow battery[J]. Advanced Functional Materials, 2022, 32(8): 2109427. doi: 10.1002/adfm.202109427 [10] CUI Y, HU Y, WANG Y, et al. Tertiary amino-modified GO/Nafion composite membrane with enhanced ion selectivity for vanadium redox flow batteries[J]. Radiation Physics and Chemistry, 2022, 195: 110081. doi: 10.1016/j.radphyschem.2022.110081 [11] YANG X B, ZHAO L, GOH K, et al. A phosphotungstic acid coupled silica-Nafion composite membrane with significantly enhanced ion selectivity for vanadium redox flow battery[J]. Journal of Energy Chemistry, 2020, 41: 177-184. doi: 10.1016/j.jechem.2019.05.022 [12] YANG Z, ZHANG J, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. doi: 10.1021/cr100290v [13] 贾儒, 李丽华, 宫晓杰. 改性UiO-66催化还原对硝基苯酚的研究[J]. 辽宁石油化工大学学报, 2023, 43(4): 14-18.JIA Ru, LI Lihua, GONG Xiaojie. Study on catalytic reduction of p-nitrophenol by modified UiO-66[J]. Journal of Liaoning Petrochemical University, 2023, 43(4): 14-18(in Chinese). [14] WAN L, ZHOU C, XU K, et al. Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination[J]. Microporous and Mesoporous Materials, 2017, 252: 207-213. doi: 10.1016/j.micromeso.2017.06.025 [15] TADDEI M, DAU P, COHEN S, et al. Efficient microwave assisted synthesis of metal-organic framework UiO-66: Optimization and scale up[J]. Dalton Transactions, 2015, 44(31): 14019-14026. doi: 10.1039/C5DT01838B [16] WANG F, XUE R, MA Y, et al. Study on the performance of a MOF-808-based photocatalyst prepared by a microwave-assisted method for the degradation of antibiotics[J]. RSC Advances, 2021, 11(52): 32955-32964. doi: 10.1039/D1RA05058C [17] LU Y, LIN S, CAO H, et al. Efficient proton-selective hybrid membrane embedded with polydopamine modified MOF-808 for vanadium flow battery[J]. Journal of Membrane Science, 2023, 671: 121347. doi: 10.1016/j.memsci.2023.121347 [18] HUANG A, WAN L, CARO J. Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity[J]. Materials Research Bulletin, 2018, 98: 308-313. doi: 10.1016/j.materresbull.2017.10.038 [19] GONG Y, GAO S, TIAN Y, et al. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination[J]. Journal of Membrane Science, 2020, 600: 117874. doi: 10.1016/j.memsci.2020.117874 [20] SHEARER G C, CHAVAN S, ETHIRAJ J, et al. Tuned to perfection: Ironing out the defects in metal-organic framework UiO-66[J]. Chemistry of Materials, 2014, 26(14): 4068-4071. doi: 10.1021/cm501859p [21] WANG H, ZHAO S, LIU Y, et al. Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations[J]. Nature Communications, 2019, 10(1): 4204. doi: 10.1038/s41467-019-12114-8 [22] BUTOVA V V, VETLITSYNA-NOVIKOVA K S, PANKIN I A, et al. Microwave synthesis and phase transition in UiO-66/MIL-140A system[J]. Microporous and Mesoporous Materials, 2020, 296: 109998. doi: 10.1016/j.micromeso.2020.109998 [23] FENG L, LAN J, CHEN F, et al. Strategically improving the intrinsic proton conductivity of UiO-66-NH2 by post-synthesis modification[J]. Dalton Transactions, 2021, 50(17): 5943-5950. doi: 10.1039/D1DT00400J [24] TEMPELMAN C H L, JACOBS J F, BALZER R M, et al. Membranes for all vanadium redox flow batteries[J]. Journal of Energy Storage, 2020, 32: 101754. doi: 10.1016/j.est.2020.101754 [25] ZHANG K, WEN G H, BAO S S, et al. Studying the proton conduction through the grain surface of UiO-66-NH2[J]. ACS Applied Energy Materials, 2020, 3(9): 8198-8204. doi: 10.1021/acsaem.0c00547 [26] SAVAGE J, TSE Y L S, VOTH G A. Proton transport mechanism of perfluorosulfonic acid membranes[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17436-17445. doi: 10.1021/jp504714d [27] ZAREI-JELYANI M, LOGHAVI M M, BABAIEE M, et al. The significance of charge and discharge current densities in the performance of vanadium redox flow battery[J]. Electrochimica Acta, 2023, 443: 141922. doi: 10.1016/j.electacta.2023.141922 [28] 苏晶. 基于Nafion膜的钒电池用新型阻钒离子膜制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.SU Jing. Preparation and performance study of a new type of vanadium-blocking ionomer membrane for vanadium batteries based on Nafion membrane[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese). [29] ZHANG D, HUANG K, XIA Y, et al. Two-dimensional MFI-type zeolite flow battery membranes[J]. Angewandte Chemie International Edition, 2023, 62(43): e202310945.