留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波合成Zr-MOF-NH2及Nafion复合质子交换膜的制备与性能

高倩 张柳杰 张辉 徐靖凯 肖伟 李莹

高倩, 张柳杰, 张辉, 等. 微波合成Zr-MOF-NH2及Nafion复合质子交换膜的制备与性能[J]. 复合材料学报, 2024, 41(10): 5468-5477. doi: 10.13801/j.cnki.fhclxb.20240003.002
引用本文: 高倩, 张柳杰, 张辉, 等. 微波合成Zr-MOF-NH2及Nafion复合质子交换膜的制备与性能[J]. 复合材料学报, 2024, 41(10): 5468-5477. doi: 10.13801/j.cnki.fhclxb.20240003.002
GAO Qian, ZHANG Liujie, ZHANG Hui, et al. Preparation and properties of Zr-MOF-NH2 and doped Nafion composite proton exchange membranes synthesized by microwaves[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5468-5477. doi: 10.13801/j.cnki.fhclxb.20240003.002
Citation: GAO Qian, ZHANG Liujie, ZHANG Hui, et al. Preparation and properties of Zr-MOF-NH2 and doped Nafion composite proton exchange membranes synthesized by microwaves[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5468-5477. doi: 10.13801/j.cnki.fhclxb.20240003.002

微波合成Zr-MOF-NH2及Nafion复合质子交换膜的制备与性能

doi: 10.13801/j.cnki.fhclxb.20240003.002
基金项目: 辽宁省自然科学基金(2022-KF-13-05);辽宁省教育厅面上项目(LJK0411);抚顺市“抚顺英才计划”项目(FSYC202107010)
详细信息
    通讯作者:

    肖伟,博士,教授,硕士生导师,研究方向为电池隔膜材料、分离纯化用膜材料 E-mail: nuaaxiaowei@163.com

  • 中图分类号: TB332;TQ340.64

Preparation and properties of Zr-MOF-NH2 and doped Nafion composite proton exchange membranes synthesized by microwaves

Funds: Natural Science Foundation of Liaoning Province (2022-KF-13-05); Liaoning Province Education Administration (LJK0411); Fushun Revitalization Talents Program (FSYC202107010)
  • 摘要: 全钒液流电池要求质子交换膜具备优良的离子选择性和理化稳定性。本研究分别采用微波法和传统水热法制备UIO-66-NH2,利用浇筑法制备了UIO-66-NH2/Nafion复合质子交换膜,对膜的理化性质和电池性能进行系统研究。结果表明,UIO-66-NH2在复合膜内形成的氢键网络、酸碱对和自身孔道协同强化了膜的离子选择性。基于微波法(M/N)和传统水热法(T/N)的复合膜综合性能均优于纯树脂膜(P-N)。在掺杂量为3wt%时,M/N-3膜拉伸强度达到27 MPa,质子传导率和钒离子透过率分别为122.18 mS·cm−1和0.83×10−7 cm2·min−1,离子选择性为15.6×105 S·min·cm−3,约为P-N膜的30倍,且其电池能量效率达到83.8%~71.7% (100~200 mA·cm−2),优于T/N-3膜(82.7%~71.0%)和P-N膜(79.4%~69.0%)。同时,该电池也显示出更优的循环稳定性和容量保持率。因此,微波法合成的UIO-66-NH2可有效改善质子交换膜的综合性能,在提高钒液流电池性能方面前景较好。

     

  • 图  1  微波合成氨基官能化的UIO-66 (UIO-66-NH2)及Nafion复合膜的制备过程示意图

    Figure  1.  Schematic diagram of the preparation process of UIO-66-NH2 and Nafion composite membrane

    M-U66-NH2—UIO-66-NH2 prepared by microwave assisted method; UIO-66-NH2—Zr-MOF when the preparation method does not need to be distinguished; BDC-NH2—2-aminoterephthalic Acid; DMF—N, N-dimethylformamide; HAc—Acetic acid

    图  2  不同温度下微波加热15 min ((a)~(d))、烘箱加热24 h (e)制备UIO-66-NH2的SEM图像及微波加热15 min样品的XRD图谱(f)

    Figure  2.  SEM images of UIO-66-NH2 by microwave heating for 15 min ((a)-(d)), oven heating for 24 h (e) and XRD patterns of UIO-66-NH2 by microwave heating for 15 min (f)

    图  3  P-N (a)、M/N-1 (b)、M/N-3 (c) 膜的表面SEM图像;P-N (d)、M/N-1 (e)、M/N-3 (f)膜的截面SEM图像;M/N-3膜的表面EDS元素分布图((g) N;(h) Zr;(i) F;(j) S)

    Figure  3.  Surface SEM images of P-N (a), M/N-1 (b) and M/N-3 (c); Cross-section SEM images of P-N (d), M/N-1 (e) and M/N-3 (f); EDS element images of M/N-3 ((g) N; (h) Zr; (i) F; (j) S)

    图  4  M/N-6 ((a), (c))和M/N-9 ((b), (d))膜的截面SEM图像

    Figure  4.  Cross-sectional SEM images of M/N-6 ((a), (c)) and M/N-9 ((b), (d))

    图  5  M-U66-NH2、P-N膜和M/N-3膜的红外图谱

    Figure  5.  FTIR spectra of M-U66-NH2, P-N and M/N-3 membranes

    图  6  复合膜的吸水率和溶胀率(a)、面电阻和质子传导率(b)、力学性能(c)和应力-应变曲线(d)

    Figure  6.  Water uptake and swelling ratio (a), area resistance and conductivity (b), mechanical properties (c) and stress-strain curves of different membranes (d)

    N212—Nafion 212 commercial membrane, DuPont, USA

    图  7  复合膜的钒离子渗透浓度(a)、钒离子渗透率和离子选择性(b)

    Figure  7.  Vanadium ion permeation concentration (a), vanadium ion permeability and ion selectivity (b) of composite membranes

    图  8  不同膜所装配钒液流电池(VRBs)的库伦效率(CE) ((a), (d))、电压效率(VE) ((b), (e))和能量效率(EE) ((c), (f))

    Figure  8.  Coulombic efficiency (CE) ((a), (d)), voltage efficiency (VE) ((b), (e)) and energy efficiency (EE) ((c), (f)) of vanadium liquid flow battery (VRBs) assembled with different membranes

    图  9  150 mA·cm−2电流密度下复合膜所装配电池的循环效率(a)、容量保持率(b)以及与报道性能的对比(c)

    Figure  9.  Cycle efficiency (a) and capacity retention (b) of composite membranes at 150 mA·cm−2, and comparisons with reported performance (c)

    PBI—Polybenzimidazole; PS—Polystyrene; GO—Graphene oxide; SPEEK—Sulfonated poly(ether ether ketone); 2D-ZMs—Two-dimensional zeolite

    表  1  复合质子交换膜的命名

    Table  1.   Naming of composite proton exchange membranes

    Sample name Instruction
    M-U66-NH2 "M" represents microwave heating; "U66" refers to the metal-organic framework material UIO-66; Overall, it indicates the UIO-66-NH2 sample prepared by microwave heating.
    T-U66-NH2 "T" represents traditional oven heating; Overall, it indicates the UIO-66-NH2 sample prepared by oven heating.
    M/N-X "M/N" represents the composite membrane with M-U66-NH2 and Nafion resin; "X" represents the percentage content of M-U66-NH2 in the membrane.
    T/N-X "T/N" represents the composite membrane with T-U66-NH2 and Nafion resin; "X" represents the percentage content of T-U66-NH2 added to the membrane.
    P-N A pure, unmodified Nafion membrane
    N212 Commercial Nafion 212 membrane from DuPont (USA)
    下载: 导出CSV
  • [1] LOU X, LU B, HE M, et al. Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery[J]. Journal of Membrane Science, 2022, 643: 120015. doi: 10.1016/j.memsci.2021.120015
    [2] 韩光鲁, 陈哲, 蔡立芳, 等. 磺化来瓦希尔骨架(MIL-101(Cr)-SO3H)/磺化酚酞侧基聚芳醚砜杂化质子交换膜的制备及性能[J]. 复合材料学报, 2020, 37(3): 504-511.

    HAN Guanglu, CHEN Zhe, CAI Lifang, et al. Preparation and properties of sulfonated lavoisier framework (MIL-101(Cr)-SO3H)/sulfonated polyarylethersulfone with cardo hybrid proton exchange membranes[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 504-511(in Chinese).
    [3] LUO T, ABDU S, WESSLING M. Selectivity of ion exchange membranes: A review[J]. Journal of Membrane Science, 2018, 555: 429-454. doi: 10.1016/j.memsci.2018.03.051
    [4] DAI Q, XING F, LIU X, et al. High-performance PBI membranes for flow batteries: From the transport mechanism to the pilot plant[J]. Energy & Environmental Science, 2022, 15(4): 1594-1600.
    [5] DONG Z, DI M, HU L, et al. Hydrophilic/hydrophobic-bi-comb-shaped amphoteric membrane for vanadium redox flow battery[J]. Journal of Membrane Science, 2020, 608: 118179. doi: 10.1016/j.memsci.2020.118179
    [6] ZHAI S, JIA X, LU Z, et al. Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers[J]. Journal of Membrane Science, 2022, 662: 121003. doi: 10.1016/j.memsci.2022.121003
    [7] ZHANG D, XIN L, XIA Y, et al. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery[J]. Journal of Membrane Science, 2021, 624: 119047. doi: 10.1016/j.memsci.2020.119047
    [8] SHARMA P, SHAHI V K. Fabricating a partially fluorinated hybrid cation-exchange membrane for long durable performance of vanadium redox flow batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 9171-9181.
    [9] YE J, ZHENG C, LIU J, et al. In situ grown tungsten trioxide nanoparticles on graphene oxide nanosheet to regulate ion selectivity of membrane for high performance vanadium redox flow battery[J]. Advanced Functional Materials, 2022, 32(8): 2109427. doi: 10.1002/adfm.202109427
    [10] CUI Y, HU Y, WANG Y, et al. Tertiary amino-modified GO/Nafion composite membrane with enhanced ion selectivity for vanadium redox flow batteries[J]. Radiation Physics and Chemistry, 2022, 195: 110081. doi: 10.1016/j.radphyschem.2022.110081
    [11] YANG X B, ZHAO L, GOH K, et al. A phosphotungstic acid coupled silica-Nafion composite membrane with significantly enhanced ion selectivity for vanadium redox flow battery[J]. Journal of Energy Chemistry, 2020, 41: 177-184. doi: 10.1016/j.jechem.2019.05.022
    [12] YANG Z, ZHANG J, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. doi: 10.1021/cr100290v
    [13] 贾儒, 李丽华, 宫晓杰. 改性UiO-66催化还原对硝基苯酚的研究[J]. 辽宁石油化工大学学报, 2023, 43(4): 14-18.

    JIA Ru, LI Lihua, GONG Xiaojie. Study on catalytic reduction of p-nitrophenol by modified UiO-66[J]. Journal of Liaoning Petrochemical University, 2023, 43(4): 14-18(in Chinese).
    [14] WAN L, ZHOU C, XU K, et al. Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination[J]. Microporous and Mesoporous Materials, 2017, 252: 207-213. doi: 10.1016/j.micromeso.2017.06.025
    [15] TADDEI M, DAU P, COHEN S, et al. Efficient microwave assisted synthesis of metal-organic framework UiO-66: Optimization and scale up[J]. Dalton Transactions, 2015, 44(31): 14019-14026. doi: 10.1039/C5DT01838B
    [16] WANG F, XUE R, MA Y, et al. Study on the performance of a MOF-808-based photocatalyst prepared by a microwave-assisted method for the degradation of antibiotics[J]. RSC Advances, 2021, 11(52): 32955-32964. doi: 10.1039/D1RA05058C
    [17] LU Y, LIN S, CAO H, et al. Efficient proton-selective hybrid membrane embedded with polydopamine modified MOF-808 for vanadium flow battery[J]. Journal of Membrane Science, 2023, 671: 121347. doi: 10.1016/j.memsci.2023.121347
    [18] HUANG A, WAN L, CARO J. Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity[J]. Materials Research Bulletin, 2018, 98: 308-313. doi: 10.1016/j.materresbull.2017.10.038
    [19] GONG Y, GAO S, TIAN Y, et al. Thin-film nanocomposite nanofiltration membrane with an ultrathin polyamide/UIO-66-NH2 active layer for high-performance desalination[J]. Journal of Membrane Science, 2020, 600: 117874. doi: 10.1016/j.memsci.2020.117874
    [20] SHEARER G C, CHAVAN S, ETHIRAJ J, et al. Tuned to perfection: Ironing out the defects in metal-organic framework UiO-66[J]. Chemistry of Materials, 2014, 26(14): 4068-4071. doi: 10.1021/cm501859p
    [21] WANG H, ZHAO S, LIU Y, et al. Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations[J]. Nature Communications, 2019, 10(1): 4204. doi: 10.1038/s41467-019-12114-8
    [22] BUTOVA V V, VETLITSYNA-NOVIKOVA K S, PANKIN I A, et al. Microwave synthesis and phase transition in UiO-66/MIL-140A system[J]. Microporous and Mesoporous Materials, 2020, 296: 109998. doi: 10.1016/j.micromeso.2020.109998
    [23] FENG L, LAN J, CHEN F, et al. Strategically improving the intrinsic proton conductivity of UiO-66-NH2 by post-synthesis modification[J]. Dalton Transactions, 2021, 50(17): 5943-5950. doi: 10.1039/D1DT00400J
    [24] TEMPELMAN C H L, JACOBS J F, BALZER R M, et al. Membranes for all vanadium redox flow batteries[J]. Journal of Energy Storage, 2020, 32: 101754. doi: 10.1016/j.est.2020.101754
    [25] ZHANG K, WEN G H, BAO S S, et al. Studying the proton conduction through the grain surface of UiO-66-NH2[J]. ACS Applied Energy Materials, 2020, 3(9): 8198-8204. doi: 10.1021/acsaem.0c00547
    [26] SAVAGE J, TSE Y L S, VOTH G A. Proton transport mechanism of perfluorosulfonic acid membranes[J]. The Journal of Physical Chemistry C, 2014, 118(31): 17436-17445. doi: 10.1021/jp504714d
    [27] ZAREI-JELYANI M, LOGHAVI M M, BABAIEE M, et al. The significance of charge and discharge current densities in the performance of vanadium redox flow battery[J]. Electrochimica Acta, 2023, 443: 141922. doi: 10.1016/j.electacta.2023.141922
    [28] 苏晶. 基于Nafion膜的钒电池用新型阻钒离子膜制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    SU Jing. Preparation and performance study of a new type of vanadium-blocking ionomer membrane for vanadium batteries based on Nafion membrane[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
    [29] ZHANG D, HUANG K, XIA Y, et al. Two-dimensional MFI-type zeolite flow battery membranes[J]. Angewandte Chemie International Edition, 2023, 62(43): e202310945.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  233
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 修回日期:  2023-12-22
  • 录用日期:  2023-12-23
  • 网络出版日期:  2024-01-04
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回