Mechanical properties of concrete modified by graphene oxide grafted carbon fiber reinforcement
-
摘要: 为增强碳纤维/混凝土基体界面性能,探究氧化石墨烯接枝碳纤维增强体(CF-GO)对混凝土力学性能的影响规律,以氨基硅烷为桥接物,将碳纤维和氧化石墨烯通过化学键紧密结合,制备了CF-GO。利用扫描电子显微镜和红外光谱仪对CF-GO的微观形貌和官能团进行表征,确定了氧化石墨烯成功接枝到碳纤维表面,并测试了CF-GO的界面剪切强度。制备了CF-GO改性混凝土(CF-GO/C),测试了其力学性能,并与碳纤维改性混凝土进行了对比。此外,分析了CF-GO对混凝土力学性能的改性机制。结果表明:CF-GO的界面剪切强度较碳纤维增大了25.37%。随着CF-GO掺量的增大,CF-GO/C的抗折和抗压强度均先增大后减小。CF-GO的最佳掺量为0.3vol%,碳纤维的最佳掺量为0.2vol%。在最佳掺量下,CF-GO/C的抗折和抗压强度分别增大了33.21%、24.63%。CF-GO表面的氧化石墨烯通过提高CF-GO与混凝土基体的机械咬合力和促进水化产物在CF-GO表面的生成,从物理和化学两方面增强CF-GO/混凝土基体界面。Abstract: In order to enhance the interface properties of carbon fiber/concrete matrix, and investigate the effects of graphene oxide grafted carbon fiber reinforcement (CF-GO) on the mechanical properties of concrete, by using amino silane as bridge material, carbon fiber and graphene oxide were tightly bonded through chemical bonds and CF-GO was prepared. The microstructure and functional groups of CF-GO were characterized by scanning electron microscopy and infrared spectroscopy. Graphene oxide was successfully grafted to the surface of carbon fiber and the interfacial shear strength of CF-GO was tested. CF-GO modified concrete (CF-GO/C) was prepared, its mechanical properties were tested and compared with those of carbon fiber modified concrete. In addition, the modification mechanism of CF-GO on the mechanical properties of concrete was analyzed. The results show that the interfacial shear strength of CF-GO increases by 25.37% compared with that of carbon fiber. With the increase of CF-GO content, the flexural and compressive strength of CF-GO/C first increase and then decrease. The optimal content of CF-GO is 0.3vol%, and the optimal content of carbon fiber is 0.2vol%. The flexural and compressive strength of CF-GO/C increase by 33.21% and 24.63% respectively with the optimal CF-GO content. Graphene oxide on the surface of CF-GO enhances the interface of CF-GO/concrete matrix physically and chemically by improving the mechanical bite between CF-GO and concrete matrix and promoting the formation of hydration products on the surface of CF-GO.
-
Key words:
- concrete /
- carbon fiber /
- graphene oxide /
- chemical graft /
- mechanical property
-
表 1 CF-GO改性混凝土(CF-GO/C)与CF/C的配合比(kg/m3)
Table 1. Mix ratio of CF-GO modified concrete (CF-GO/C) and CF/C (kg/m3)
Specimen No. Cement Gravel Sand Water Water reducer Defoamer CF-GO CF PC 133 1364 642 340 1.46 0.27 — — 0.1%CF-GO/C 1.76 — 0.2%CF-GO/C 3.52 — 0.3%CF-GO/C 5.28 — 0.4%CF-GO/C 7.04 — 0.1%CF/C — 1.76 0.2%CF/C — 3.52 0.3%CF/C — 5.28 0.4%CF/C — 7.04 Notes: Since the density of CF-GO can not be measured effectively, the density of graphene oxide (0.013 g/cm3) is much smaller than that of carbon fiber (1.76 g/cm3). Therefore, for the convenience of calculation, the density of CF-GO is equivalent to that of carbon fiber when preparing CF-GO/C. PC—Plain concrete without fiber; 0.1%CF-GO/C-0.4%CF-GO/C—CF-GO/C with CF-GO volume content of 0.1vol%-0.4vol%; 0.1%CF/C-0.4%CF/C—CF/C with CF volume content of 0.1vol%-0.4vol%. -
[1] 杨虹, 王海龙, 王红珊, 等. 碳纤维轻骨料混凝土力学性能试验研究[J]. 建筑结构, 2021, 51(11): 108-112, 46.YANG Hong, WANG Hailong, WANG Hongshan, et al. Experimental study on mechanical properties of carbon fiber lightweight aggregate concrete[J]. Building Structures, 2021, 51(11): 108-112, 46(in Chinese). [2] DANGWAL S, SINGH H. Seismic performance of corroded non-seismically and seismically detailed RC beam-column joints rehabilitated with high strength fiber reinforced concrete[J]. Engineering Structures, 2023, 291: 116481. doi: 10.1016/j.engstruct.2023.116481 [3] ZHAO C G, WANG Z Y, ZHU Z Y, et al. Research on different types of fiber reinforced concrete in recent years: An overview[J]. Construction and Building Materials, 2023, 365: 130075. doi: 10.1016/j.conbuildmat.2022.130075 [4] 王志航, 白二雷, 潘璐, 等. 纳米碳纤维增强混凝土动态劈拉破坏的能耗规律研究[J]. 工程爆破, 2023, 29(4): 10-17.WANG Zhihang, BAI Erlei, PAN Lu, et al. Study on energy consumption of nano-carbon fiber reinforced concrete in dynamic split-tensile failure[J]. Engineering Blasting, 2023, 29(4): 10-17(in Chinese). [5] HUANG H L, PENG C H, LUO J, et al. Micromechanical properties of interfacial transition zone between carbon fibers and UHPC matrix based on nano-scratching tests[J]. Cement and Concrete Composites, 2023, 139: 105014. doi: 10.1016/j.cemconcomp.2023.105014 [6] 马钢, 高松涛, 王卓然, 等. 低速冲击下纤维混凝土梁的动力学特征与断裂耗能研究[J]. 振动与冲击, 2022, 41(8): 208-216.MA Gang, GAO Songtao, WANG Zhuoran, et al. Study on dynamic characteristics and fracture energy consumption of fiber reinforced concrete beams under low speed impact[J]. Journal of Vibration and Shock, 2022, 41(8): 208-216(in Chinese). [7] DU Y H, LU S, XU J Y, et al. Experimental study of impact mechanical and microstructural properties of modified carbon fiber reinforced concrete[J]. Scientific Reports, 2022, 12(1): 12928. doi: 10.1038/s41598-022-17092-4 [8] 王志航, 白二雷, 许金余, 等. 聚合物改性碳纤维增强混凝土的动态压缩力学性能[J]. 复合材料学报, 2023, 40(3): 1586-1597.WANG Zhihang, BAI Erlei, XU Jinyu, et al. Dynamic compressive mechanical properties of polymer modified carbon fiber reinforced concrete[J]. Journal of Composite Materials, 2023, 40(3): 1586-1597(in Chinese). [9] DU Y H, LU S, XU J Y, et al. Study on dynamic constitutive relation and fiber pullout simulation of modified carbon fiber reinforcement concrete[J]. Case Studies in Construction Materials, 2023, 18: e01994. doi: 10.1016/j.cscm.2023.e01994 [10] LU S, XIA W, BAI E L, et al. Interfacial modification: The dynamic compression properties and enhancement mechanism of concrete added with micro-nano hierarchical carbon-based fiber[J]. Composites Part B: Engineering, 2022, 247: 110340. doi: 10.1016/j.compositesb.2022.110340 [11] 程健强. 表面涂层改性碳纤维增强水泥基复合材料的力学性能及微观结构研究[D]. 抚顺: 辽宁石油化工大学, 2020.CHENG Jianqiang. Study on mechanical properties and microstructure of cement-based composite reinforced by carbon fiber modified by surface coating[D]. Fushun: Liaoning Shihua University, 2020(in Chinese). [12] XIA W, LU S, BAI E L, et al. Strengthening and toughening behaviors and dynamic constitutive model of carbon-based hierarchical fiber modified concrete: Cross-scale synergistic effects of carbon nanotubes and carbon fiber[J]. Journal of Building Engineering, 2023, 63: 105482. doi: 10.1016/j.jobe.2022.105482 [13] WANG Q, QI G D, WANG Y, et al. Research progress on the effect of graphene oxide on the properties of cement-based composites[J]. New Carbon Materials, 2021, 36(4): 729-750. doi: 10.1016/S1872-5805(21)60071-9 [14] LU D, WANG D Y, WANG Y, et al. Nano-engineering the interfacial transition zone between recycled concrete aggregates and fresh paste with graphene oxide[J]. Construction and Building Materials, 2023, 384: 131244. doi: 10.1016/j.conbuildmat.2023.131244 [15] 刘秀影, 宋英, 李存梅, 等. 氧化石墨烯接枝碳纤维新型增强体的制备与表征[J]. 无机化学学报, 2011, 27(11): 2128-2132.LIU Xiuying, SONG Ying, LI Cunmei, et al. Preparation and characterization of graphene oxide grafted carbon fiber reinforcement[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(11): 2128-2132(in Chinese). [16] 赵永华, 马兆昆, 宋怀河, 等. 碳纤维/氧化石墨烯多尺度增强体的制备与表征[J]. 材料研究学报, 2016, 30(3): 229-234.ZHAO Yonghua, MA Zhaokun, SONG Huaihe, et al. Preparation and characterization of carbon fiber/graphene oxide multi-scale reinforcement[J]. Journal of Materials Research, 2016, 30(3): 229-234(in Chinese). [17] 韩萍. 碳纤维表面多尺度结构调控及其环氧树脂复合材料界面性能研究[D]. 青岛: 青岛大学, 2019.HAN Ping. Study on surface multi-scale structure control of carbon fiber and its interfacial properties of epoxy resin composites[D]. Qingdao: Qingdao University, 2019(in Chinese). [18] GONG L Y, ZHANG F J, PENG X Q, et al. Improving the damping properties of carbon fiber reinforced polymer composites by interfacial sliding of oriented multilayer graphene oxide[J]. Composites Science and Technology, 2022, 224: 109309. doi: 10.1016/j.compscitech.2022.109309 [19] 和金茜. 碳纤维/GO增强体的制备及其环氧复合材料界面性能的研究[D]. 西安: 陕西科技大学, 2020.HE Jinxi. Preparation of carbon fiber/GO reinforcement and study on interfacial properties of epoxy composites[D]. Xi'an: Shaanxi University of Science and Technology, 2020(in Chinese). [20] LI J, YANG Z F, HUANG X F, et al. Interfacial reinforcement of composites by the electrostatic self-assembly of graphene oxide and NH3 plasma-treated carbon fiber[J]. Applied Surface Science, 2022, 585: 152717. doi: 10.1016/j.apsusc.2022.152717 [21] 刘高尚, 刘雅玄, 卞达, 等. 氧化石墨烯接枝碳纤维及其树脂涂层在不同载荷下的摩擦学性能[J]. 表面技术, 2021, 50(4): 62-69.LIU Gaoshang, LIU Yaxuan, BIAN Da, et al. Tribological properties of carbon fiber grafted with graphene oxide and its resin coating under different loads[J]. Surface Technology, 2021, 50(4): 62-69(in Chinese). [22] 夏伟, 陆松, 白二雷, 等. 碳纳米管-碳纤维复合改性混凝土力学性能研究[J]. 材料导报, 2023, 37(16): 110-118.XIA Wei, LU Song, BAI Erlei, et al. Study on mechanical properties of carbon nanotube-carbon fiber composite modified concrete[J]. Materials Review, 2023, 37(16): 110-118(in Chinese). [23] 刘曹锐, 石建军, 魏王程, 等. 短切碳纤维在混凝土中的分散性能评估与优化[J]. 高分子材料科学与工程, 2023, 39(7): 103-112.LIU Caorui, SHI Jianjun, WEI Wangcheng, et al. Evaluation and optimization of dispersion properties of chopped carbon fiber in concrete[J]. Polymer Materials Science and Engineering, 2023, 39(7): 103-112(in Chinese). [24] 李娜, 李晓屿, 刘丽, 等. 电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能[J]. 复合材料学报, 2020, 37(7): 1571-1580.LI Na, LI Xiaoyu, LIU Li, et al. Surface modification of carbon fiber by electrophoretic deposition of graphene oxide and its enhancement of interfacial properties of epoxy resin composites[J]. Journal of Composite Materials, 2020, 37(7): 1571-1580(in Chinese). [25] 王琴, 李时雨, 王健, 等. 氧化石墨烯对水泥水化进程及其主要水化产物的影响[J]. 硅酸盐学报, 2018, 46(2): 163-172.WANG Qin, LI Shiyu, WANG Jian, et al. Effects of graphene oxide on hydration process and main hydration products of cement[J]. Journal of the Chinese Ceramics, 2018, 46(2): 163-172(in Chinese). [26] LU C, HAO Z X, CHU H, et al. Investigation on performance of engineered cementitious composites (ECC) based on surface modification of PET fibers using graphene oxide (GO) and polydopamine (PDA)[J]. Construction and Building Materials, 2023, 368: 130343. doi: 10.1016/j.conbuildmat.2023.130343