留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基体改性对连续玻纤增强尼龙复合材料性能的影响

张鑫婷 尹洪峰 魏英 汤云 袁蝴蝶 任小虎 杨顺

张鑫婷, 尹洪峰, 魏英, 等. 基体改性对连续玻纤增强尼龙复合材料性能的影响[J]. 复合材料学报, 2024, 41(7): 3577-3586. doi: 10.13801/j.cnki.fhclxb.20231128.001
引用本文: 张鑫婷, 尹洪峰, 魏英, 等. 基体改性对连续玻纤增强尼龙复合材料性能的影响[J]. 复合材料学报, 2024, 41(7): 3577-3586. doi: 10.13801/j.cnki.fhclxb.20231128.001
ZHANG Xinting, YIN Hongfeng, WEI Ying, et al. Effect of matrix modification on the properties of continuous glass fiber reinforced nylon composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3577-3586. doi: 10.13801/j.cnki.fhclxb.20231128.001
Citation: ZHANG Xinting, YIN Hongfeng, WEI Ying, et al. Effect of matrix modification on the properties of continuous glass fiber reinforced nylon composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3577-3586. doi: 10.13801/j.cnki.fhclxb.20231128.001

基体改性对连续玻纤增强尼龙复合材料性能的影响

doi: 10.13801/j.cnki.fhclxb.20231128.001
详细信息
    通讯作者:

    魏英,博士,讲师,研究方向为聚合物基复合材料 E-mail: weiying@xauat.edu.cn

  • 中图分类号: TB332

Effect of matrix modification on the properties of continuous glass fiber reinforced nylon composites

  • 摘要: 提升连续玻璃纤维增强尼龙6复合材料(cGF/PA6)力学性能的重要途径之一是改善玻璃纤维与尼龙之间的界面结合。本文将星形支化聚酰胺6 (SPA6)应用于cGF/PA6复合材料体系,采用熔融挤出结合热压成型法制备了不同SPA6含量的cGF/PA6-SPA6复合材料。通过接触角实验测得SPA6与cGF 具有更相近的极性。DSC检测结果表明PA6与SPA6共混后基体熔融温度相差不大、结晶温度和结晶度有所提高。三点弯曲法测得PA6-SPA6基体的弯曲强度相对于PA6和 SPA6有所降低,但cGF/5wt%SPA6和cGF/10wt%SPA6复合材料的弯曲强度相对于cGF/PA6分别提高了4.9%和6.4%。短梁剪切试验测得cGF/5wt%SPA6和cGF/10wt%SPA6复合材料的层间剪切强度相对于cGF/PA6分别提高了16.7%和15.6%。悬臂梁摆锤冲击实验测得cGF/PA6和cGF/SPA6复合材料的冲击强度分别是PA6和 SPA6的12倍和26.3倍。结合冲击断口形貌观察,可以推断在cGF/PA6复合材料中加入5wt%或10wt%的SPA6可以提高复合材料的弯曲和剪切强度,而对其冲击强度影响不大,且成本较低,具有一定的应用价值。

     

  • 图  1  PA6-SPA6基体:(a) XRD曲线;(b) 二次升温熔融曲线;(c) 降温结晶曲线

    Figure  1.  PA6-SPA6 matrix: (a) XRD curves; (b) Second heating melting curves; (c) Cooling crystallization curves

    图  2  弯曲强度:(a) 连续GF (cGF)/PA6-SPA6复合材料;(c) PA6-SPA6基体;层间剪切强度:(b) cGF/PA6-SPA6复合材料;(d) PA6-SPA6基体;(e) cGF/PA6、cGF/5wt%SPA6复合材料载荷-位移曲线

    Figure  2.  Flexural strength: (a) Continuous GF (cGF)/PA6-SPA6 composites; (c) PA6-SPA6 matrices; Interlamellar shearing strength: (b) cGF/PA6-SPA6 composites; (d) PA6-SPA6 matrices; (e) Load-displacement curves of cGF/PA6 and cGF/5wt%SPA6 composites

    图  3  PA6-SPA6基体相对黏度和熔融指数

    Figure  3.  Relative viscosity and melt flow rate of different PA6-SPA6 matrixes

    图  4  (a) 星形支化聚酰胺分子模型;(b) cGF/PA6-SPA6复合材料界面结合示意图

    Figure  4.  (a) Molecular model of star-branched polyamide; (b) Interface interactions diagram of cGF/PA6-SPA6 composites

    图  5  摆锤冲击强度:(a) cGF/PA6-SPA6复合材料;(b) PA6-SPA6基体

    Figure  5.  Pendulum impact strength: (a) cGF/PA6-SPA6 composites; (b) PA6-SPA6 matrices

    图  6  PA基复合材料宏观断口形貌:(a) cGF/PA6;(b) cGF/SPA6;PA基复合材料冲击断口形貌SEM图像:(c) cGF/PA6;(d) cGF/SPA6;(e) cGF/50wt%SPA6;(f) cGF/60wt%SPA6

    Figure  6.  Macroscopic fracture morphology of PA composites: (a) cGF/PA6; (b) cGF/SPA6; SEM images of impact fracture morphology of PA composites: (c) cGF/PA6; (d) cGF/SPA6; (e) cGF/50wt%SPA6; (f) cGF/60wt%SPA6

    表  1  探测液体表面能参数[32]

    Table  1.   Surface energy parameters of probe liquids[32]

    Probe liquid $ {\gamma }_{\mathrm{L}\mathrm{V}} /({\mathrm{mN}} \cdot {\mathrm{m}}^{-1}) $ $ {\gamma }_{\mathrm{L}\mathrm{V}}^{\mathrm{d}}/({\mathrm{mN}} \cdot {\mathrm{m}}^{-1}) $ $ {\gamma }_{\mathrm{L}\mathrm{V}}^{\mathrm{p}}/({\mathrm{mN}} \cdot {\mathrm{m}}^{-1}) $
    Water 72.8 21.8 51
    Ethylene glycol 48.3 29.3 19
    Note: γLV, $ {\gamma }_{\mathrm{L}\mathrm{V}}^{\mathrm{d}} $, $ {\gamma }_{\mathrm{L}\mathrm{V}}^{\mathrm{p}} $—Surface tension, dispersion component, and polarity component of the tested liquid.
    下载: 导出CSV

    表  2  玻璃纤维(GF)、尼龙6 (PA6)及星形支化聚酰胺6 (SPA6)固体表面能色散分量$ {\gamma }_{\mathrm{S}\mathrm{V}}^{\mathrm{d}} $、极性分量$ {\gamma }_{\mathrm{S}\mathrm{V}}^{\mathrm{p}} $及总表面能γSV

    Table  2.   Surface energy dispersion component $ {\gamma }_{\mathrm{S}\mathrm{V}}^{\mathrm{d}} $, polarity component $ {\gamma }_{\mathrm{S}\mathrm{V}}^{\mathrm{p}} $ and total surface energy γSV of glass fiber (GF), nylon 6 (PA6) and star branched polyamide 6 (SPA6) solids

    Material $ {\gamma }_{\mathrm{S}\mathrm{V}}^{\mathrm{d}}/({\mathrm{mN}} \cdot {\mathrm{m}}^{-1}) $ $ {\gamma }_{\mathrm{S}\mathrm{V}}^{\mathrm{p}}/({\mathrm{mN}} \cdot {\mathrm{m}}^{-1}) $ $ \gamma\mathrm{_{SV}}/({\mathrm{mN}} \cdot {\mathrm{m}}^{-1}) $
    GF 0.03 90.82 90.85
    PA6 1.74 35.05 36.79
    SPA6 0.85 39.56 40.41
    下载: 导出CSV

    表  3  PA6-SPA6试样名称和组成

    Table  3.   Name and composition of PA6-SPA6 samples

    Sample Sample composition/wt%
    SPA6 PA6
    7.1%SPA6 5 65
    14.3%SPA6 10 60
    28.6%SPA6 20 50
    42.9%SPA6 30 40
    57.1%SPA6 40 30
    71.4%SPA6 50 20
    85.7%SPA6 60 10
    下载: 导出CSV

    表  4  PA6-SPA6基体的XRD参数

    Table  4.   XRD parameters of PA6-SPA6 matrix

    Sample α1(2θ)/(°) α2(2θ)/(°) Crystallinity/%
    PA6 20.10 23.88 27.8
    7.1%SPA6 20.14 24.04 48.2
    14.3%SPA6 20.26 24.00 32.0
    28.6%SPA6 20.20 23.92 47.9
    42.9%SPA6 20.21 24.04 30.1
    57.1%SPA6 20.32 24.08 31.6
    71.4%SPA6 20.12 23.92 37.8
    85.7%SPA6 20.46 24.40 36.9
    SPA6 20.12 24.00 32.8
    Notes: α1 is the diffraction peak of PA6 (200) and (002) crystal planes; α2 is the diffraction peak of PA6 (202) crystal plane.
    下载: 导出CSV

    表  5  DSC二次升温曲线所测PA6-SPA6基体热性能

    Table  5.   Thermal properties of PA6-SPA6 matrix from DSC second heating curves

    Sample Tm/℃ Tc/℃ Hm/(J·g−1) Crystallinity/%
    PA6 217.56 180.14 52.31 27.5
    7.1%SPA6 216.40 185.52 65.17 34.3
    14.3%SPA6 215.06 184.06 55.61 29.3
    28.6%SPA6 217.17 183.72 53.97 28.4
    42.9%SPA6 215.04 185.69 60.37 31.8
    57.1%SPA6 217.20 185.67 59.73 31.4
    71.4%SPA6 215.08 186.75 68.90 36.3
    85.7%SPA6 217.19 185.68 60.25 31.7
    SPA6 215.85 187.17 70.74 37.2
    Note: Tm, Tc, and ∆Hm—Melting temperature, crystallization temperature, and fusion enthalpy of each sample.
    下载: 导出CSV
  • [1] ZHENG J, SIEGEL R W, TONEY C G. Polymer crystalline structure and morphology changes in nylon-6/ZnO nanocomposites[J]. Journal of Polymer Science, 2003, 41(10): 1033-1050. doi: 10.1002/polb.10452
    [2] STEFAN N, STEFAN E, CHRISTIAN B, et al. Polymerization of ε-caprolactam by latent precatalysts based on protected n-heterocyclic carbenes[J]. ACS Macro Letters, 2013, 2(7): 609-612. doi: 10.1021/mz400199y
    [3] ZHANG C, TJIU W W, LIU T, et al. Dramatically enhanced mechanical performance of nylon-6 magnetic composites with nanostructured hybrid one-dimensional carbon nanotube two-dimensional clay nanoplatelet heterostructures[J]. Journal of Physical Chemistry B, 2011, 115(13): 3392-3399. doi: 10.1021/jp112284k
    [4] TUNA B, BENKREIRA H. Reactive extrusion of polyamide 6 using a novel chain extender[J]. Polymer Engineering and Science, 2019, 59(s2): E25-E31. doi: 10.1002/pen.24944
    [5] WANG Y, HOU D F, KE K, et al. Chemical-resistant polyamide 6/polyketone composites with gradient encapsulation structure: An insight into the formation mechanism[J]. Polymer, 2021, 212(1): 123173.
    [6] ZHANG T, KANG H J. Enhancement of the processability and properties of nylon 6 by blending with polyketone[J]. Polymers, 2021, 13(19): 3403-3418. doi: 10.3390/polym13193403
    [7] TUNA B, BENKREIRA H. Chain extension of recycled PA6[J]. Polymer Engineering and Science, 2017, 58(7): 1037-1042.
    [8] PRASHANTH S, SUBBAYA K M, NITHIN K, et al. Fiber reinforced composites—A review[J]. Journal of Material Science & Engineering, 2017, 6(3): 1000341.
    [9] DRYZEK E, WRÓBEL M, JUSZYŃSKA-GAŁĄZKA E. Free-volume and tensile properties of glass fibre reinforced polyamide 6 composites[J]. Acta Physica Polonica A, 2017, 132(5): 1501-1505. doi: 10.12693/APhysPolA.132.1501
    [10] LI X, WANG X, YANG L, et al. Synergistic effect of polyfunctional silane coupling agent and styrene acrylonitrile copolymer on the water-resistant and mechanical performances of glass fiber-reinforced polyamide 6[J]. Polymers for Advanced Technologies, 2019, 30(8): 1951-1958. doi: 10.1002/pat.4627
    [11] YÁÑEZ-MACÍAS R, RIVERA-SALINAS J E, SOLÍS-ROSALES S, et al. Mechanical behavior of glass fiber-reinforced nylon-6 syntactic foams and its Young's modulus numerical study[J]. Journal of Applied Polymer Science, 2021, 138(27): 50648. doi: 10.1002/app.50648
    [12] CHEN K, JIA M, SUN H, et al. Thermoplastic reaction injection pultrusion for continuous glass fiber-reinforced polyamide-6 composites[J]. Materials, 2019, 12(3): 463. doi: 10.3390/ma12030463
    [13] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing, 2018, 68: 415-423. doi: 10.1016/j.polymertesting.2018.04.038
    [14] LUKE S S, SOARES D, MARSHALL J V, et al. Effect of fiber content and fiber orientation on mechanical behavior of fused filament fabricated continuous-glass-fiber-reinforced nylon[J]. Rapid Prototyping Journal, 2021, 27(7): 1346-1354. doi: 10.1108/RPJ-01-2021-0003
    [15] WANG C, ZHANG Y, YI Y, et al. Thermal, morphological and mechanical properties of glass fiber reinforced star-branched polyamide 6[J]. Polymer Composites, 2022, 43(3): 1617-1625. doi: 10.1002/pc.26482
    [16] NÚÑEZ CARRERO K C, HERRERO M, ASENSIO M, et al. Star-branched polyamides as the matrix in thermoplastic composites[J]. Polymers, 2022, 14(5): 942. doi: 10.3390/polym14050942
    [17] REN J M, MCKENZIE T G, FU Q, et al. Star polymers[J]. Chemical Reviews, 2016, 116(12): 6743-6836. doi: 10.1021/acs.chemrev.6b00008
    [18] WAN J, LI C, FAN H, et al. Elucidating isothermal crystallization behaviors of nylon-11s. Influence of star-chain branching[J]. Thermochimica Acta, 2012, 544: 99-104. doi: 10.1016/j.tca.2012.06.023
    [19] MARTINO L, BASILISSI L, FARINA H, et al. Bio-based polyamide 11: Synthesis, rheology and solid-state properties of star structures[J]. European Polymer Journal, 2014, 59: 69-77. doi: 10.1016/j.eurpolymj.2014.07.012
    [20] STEEMAN P, NIJENHUIS A. The effect of random branching on the balance between flow and mechanical properties of polyamide-6[J]. Polymer, 2010, 51(12): 2700-2707. doi: 10.1016/j.polymer.2010.04.017
    [21] FU P, WANG M, LIU M, et al. Preparation and characterization of star-shaped nylon 6 with high flowability[J]. Journal of Polymer Research, 2010, 18(4): 651-657.
    [22] SCHAEFGEN J R, FLORY P J. Synthesis of multichain polymers and investigation of their viscosities1[J]. Journal of the American Chemical Society, 1948, 70(8): 2709-2718. doi: 10.1021/ja01188a026
    [23] ZHU N, GONG H, HAN W, et al. Synthesis and characterization of star-branched polyamide 6 via anionic ring-opening polymerization with N, N', N''-trimesoyltricaprolactam as a multifunctional activator[J]. Chinese Chemical Letters, 2015, 26(11): 1389-1392. doi: 10.1016/j.cclet.2015.06.005
    [24] WANG C, HU F, YANG K, et al. Synthesis and properties of star-branched nylon 6 with hexafunctional cyclotriphosphazene core[J]. RSC Advances, 2015, 5(107): 88382-88391. doi: 10.1039/C5RA15598C
    [25] American Society for Testing and Material. Standard test method for flexural properties of polymer matrix composite material: ASTM D7264—07[S]. West Conshohocken: ASTM International, 2007 .
    [26] American Society for Testing and Materials. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344—16[S]. West Conshohocken: ASTM International, 2016.
    [27] American Society for Testing and Materials. Standard test methods for determining the lzod pendulum impact resistance of plastics: ASTM D256—10[S]. West Conshohocken: ASTM International, 2010.
    [28] 中国国家标准化管理委员会. 热塑性塑料熔体质量流动速率和熔体体积流动速率的测定: GB/T 3682—2000[S]. 北京: 中国标准出版社, 2000.

    Standardization Administration of the People's Republic of China. Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics: GB/T 3682—2000[S]. Beijing: Standards Press of China, 2000(in Chinese).
    [29] 中国国家标准化管理委员会. 纤维级聚己内酰胺(PA6)切片试验方法: GB/T 38138—2019[S]. 北京: 中国标准出版社, 2019.

    Standardization Administration of the People's Republic of China. Test methods of fiber grade polycaprolactam (PA6) chip: GB/T 38138—2019[S]. Beijing: Standards Press of China, 2019(in Chinese).
    [30] CANTIN S, BOUTEAU M, BENHABIB F, et al. Surface free energy evaluation of well-ordered Langmuir-Blodgett surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 276(1-3): 107-115.
    [31] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005
    [32] 杨浩邈, 黄鹏, 吴鹏, 等. 玻璃纤维表面能及其与不同树脂体系的润湿特性[J]. 机械工程材料, 2014, 38(10): 50-53.

    YANG Haomiao, HUANG Peng, WU Peng, et al. Surface energy of glass fiber and its wetting properties with different resin systems[J]. Materials For Machanical Engineering, 2014, 38(10): 50-53(in Chinese).
    [33] ZISMAN W A. Relation of the equilibrium contact angle to liquid and solid constitution[J]. Advances in Chemistry, 1964, 43(1): 1-51.
    [34] 张永, 周华龙, 王丰, 等. 尼龙66与尼龙6及其共混物的熔融与结晶行为[J]. 工程塑料应用, 2015, 43(6): 86-89. doi: 10.3969/j.issn.1001-3539.2015.06.020

    ZHANG Yong, ZHOU Hualong, WANG Feng, et al. Melting and crystallization behavior of nylon 66 and nylon 6 and their blends[J]. Engineering Plastics Application, 2015, 43(6): 86-89(in Chinese). doi: 10.3969/j.issn.1001-3539.2015.06.020
    [35] 李向阳, 张鸿宇, 王晨, 等. 成核剂对尼龙6结晶与性能的影响[J]. 塑料, 2020, 49(6): 13-15.

    LI Xiangyang, ZHANG Hongyu, WANG Chen, et al. Effect of nucleating agent on crystallization and properties of nylon 6[J]. Plastics, 2020, 49(6): 13-15(in Chinese).
    [36] XIE W, JIANG N, GAN Z. Effects of multi-arm structure on crystallization and biodegradation of star-shaped poly(ε-caprolactone)[J]. Macromolecular Bioscience, 2008, 8(8): 775-784. doi: 10.1002/mabi.200800011
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  188
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-08
  • 修回日期:  2023-10-18
  • 录用日期:  2023-11-26
  • 网络出版日期:  2023-12-28
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回