Silver nanoparticle/nanocellulose composites antibacterial strain-responsive hydrogels
-
摘要: 基于纳米银颗粒(AgNPs)的抗菌导电水凝胶在可穿戴设备、电子皮肤、生物传感器等领域有重要应用,其绿色制造是目前的研究热点之一。纳米纤维素(CNF)因其独特的物理化学性质,在智能水凝胶的制备与应用中得到越来越多的关注。将 AgNPs 与 CNF 复合并应用到水凝胶中,有望制备具有良好力学性能的抗菌水凝胶,对水凝胶在智能可穿戴领域中的应用具有重要的指导意义。本文首先以2, 2, 6, 6-四甲基哌啶氧化物(TEMPO)氧化纳米纤维素(TOCNF)为复合基材,AgNO3为银源,通过水热法原位复合制备Ag-CNF复合材料。随后,将 Ag-CNF 和 单宁酸(TA) 作为功能性添加剂引入聚丙烯酰胺(PAM)水凝胶中,制备了具有良好拉伸性能、粘附性、抗菌性和紫外屏蔽性的 Ag-CNF/PAM 水凝胶,并将Ag-CNF/PAM 水凝胶封装制备成应变响应传感设备,研究其电学和传感性能。Ag-CNF/PAM 水凝胶在 100% 的应变循环下能够保持稳定重复的电信号输出,也能够用于手腕动作和头部动作的动作检测,在应变响应传感领域具有良好的应用前景。Abstract: The antibacterial and conductive hydrogels based on silver nanoparticles (AgNPs) have important applications in wearable devices, electronic skin, biosensors, and other areas, and their green manufacturing is currently the focus of much research. Nanocellulose (CNF) has attracted more attention relating to the preparation and application of the smart hydrogels due to its unique physico-chemical properties. When AgNPs are combined with CNF and applied to hydrogels, it is expected to lead to fabrication of antibacterial hydrogels with good mechanical properties, which has guiding significance for the application of hydrogels in the area of intelligent wearable systems. In the present study, Ag-CNF composites were in situ synthesized using 2, 2, 6, 6-tetramethylpiperidoxyl (TEMPO)-oxidized CNF (TOCNF) as a composite substrate and AgNO3 as a source of silver. Ag-CNF and tannic acid (TA) were introduced to polyacrylamide (PAM) hydrogels as functional additives to prepare the Ag-CNF/PAM hydrogel with good tensile properties, adhesion, antibacterial properties, and UV-shielding properties. The Ag-CNF/PAM hydrogels were then packaged into a strain-responsive sensor. The electrical and sensing properties were studied. Ag-CNF/PAM hydrogels can maintain stable and repeated electrical output under 100% strain cycle and can also be used for wrist motion and head motion detection, which has potential for use as a strain-responsive sensor.
-
Key words:
- CNF /
- AgNPs /
- hydrogel /
- antibacterial /
- strain-responsive sensor
-
图 2 TOCNF (a)和 Ag-CNF (b)的 AFM 图像以及 TOCNF 长度统计(c)和纳米银颗粒(AgNPs)的粒径统计(d)
Figure 2. AFM images of TOCNF (a) and Ag-CNF (b), the length statistic of TOCNF (c) and the particle size statistics of silver nanoparticles (AgNPs) (d)
d10, d50, d90— TOCNF with length less than 87.6 nm, 150.0 nm and 218.6 nm accounted for 10%, 50% and 90% of the total amount in the sample
-
[1] 齐钰, 鲁洋, 周青青, 等. 高性能水凝胶在可穿戴传感器中的应用进展[J]. 分析化学, 2022, 50(11): 1699-1711.QI Yu, LU Yang, ZHOU Qingqing, et al. Application of high performance hydrogels in wearable sensors[J]. Chinese Journal of Analytical Chemistry, 2022, 50(11): 1699-1711(in Chinese). [2] REN Y Z, ZHENG Z R, XU S B, et al. User identification leveraging whispered sound for wearable devices[J]. IEEE Transactions on Mobile Computing, 2023, 22(3): 1841-1855. [3] MEENA J S, CHOI S B, JUNG S B, et al. Electronic textiles: New age of wearable technology for healthcare and fitness solutions[J]. Materials Today Bio, 2023, 19: 100565. doi: 10.1016/j.mtbio.2023.100565 [4] MARKSTEDT K, ESCALANTE A, TORIZ G, et al. Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D printing[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40878-40886. [5] MENDOZA L, BATCHELOR W, TABOR R F, et al. Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective[J]. Journal of Colloid and Interface Science, 2018, 509: 39-46. doi: 10.1016/j.jcis.2017.08.101 [6] 江文静, 廖静文, 张雪慧, 等. 导电复合水凝胶的分类及其在柔性可穿戴设备中的应用[J]. 复合材料学报, 2023, 40(4): 1879-1895.JIANG Wenjing, LIAO Jingwen, ZHANG Xuehui, et al. Classification of conductive composite hydrogels and their application in flexible wearable devices[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1879-1895(in Chinese). [7] YANG P H, YANG J L, LIU K, et al. Hydrogels enable future smart batteries[J]. ACS Nano, 2022, 16(10): 15528-15536. doi: 10.1021/acsnano.2c07468 [8] WANG Y L, LIU H, XIE H, et al. An autofluorescent hydrogel with water-dependent emission for dehydration-visualizable smart wearable electronics[J]. Advanced Functional Materials, 2023, 33(19): 2213545. [9] QIN M, YUAN W F, ZHANG X M, et al. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor[J]. Colloids and Surfaces B: Biointerfaces, 2022, 214: 112482. doi: 10.1016/j.colsurfb.2022.112482 [10] SHIN M, LIM J, AN J, et al. Nanomaterial-based biohybrid hydrogel in bioelectronics[J]. Nano Convergence, 2023, 10(1): 8. doi: 10.1186/s40580-023-00357-7 [11] DENG Z X, GUO Y, ZHAO X, et al. Poly(N-isopropylacrylamide) based electrically conductive hydrogels and their applications[J]. Gels, 2022, 8(5): 280. doi: 10.3390/gels8050280 [12] KAILASA S K, JOSHI D J, KATESHIYA M R, et al. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels[J]. Materials Today Chemistry, 2022, 23: 100746. doi: 10.1016/j.mtchem.2021.100746 [13] LUO Q G, SHEN H M, ZHOU G F, et al. A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components[J]. Carbohydrate Polymers, 2023, 303: 120449. doi: 10.1016/j.carbpol.2022.120449 [14] 杜宏, 程正柏, 刘莹莹, 等. 纳米纤维素复合导电水凝胶的制备及其在传感器方面应用的研究进展[J]. 中国造纸学报, 2023, 38(3): 30-38.DU Hong, CHENG Zhengbai, LIU Yingying, et al. Recent advances on the preparation of nanocellulose composite conductive hydrogels and their applications in sensors[J]. Transactions of China Pulp and Paper, 2023, 38(3): 30-38(in Chinese). [15] LIU W, LIU K, DU H S, et al. Cellulose nanopaper: Fabrication, functionalization, and applications[J]. Nano-Micro Letters, 2022, 14(1): 104. doi: 10.1007/s40820-022-00849-x [16] PUPPALA N V, DODDIPATLA P, MOHANNATH G. Use of nanocellulose in the intracellular delivery of biological and non-biological drugs: A review[J]. Cellulose, 2023, 30(3): 1335-1354. doi: 10.1007/s10570-022-04977-w [17] DENG Y Q, XI J F, MENG L C, et al. Stimuli-responsive nanocellulose hydrogels: An overview[J]. European Polymer Journal, 2022, 180: 111591. doi: 10.1016/j.eurpolymj.2022.111591 [18] POURJAVADI A, AYYARI M, AMINI-FAZL M S. Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel[J]. European Polymer Journal, 2008, 44(4): 1209-1216. [19] ELKHOURY K, MORSINK M, SANCHEZ-GONZALEZ L, et al. Biofabrication of natural hydrogels for cardiac, neural, and bone tissue engineering applications[J]. Bioactive Materials, 2021, 6(11): 3904-3923. doi: 10.1016/j.bioactmat.2021.03.040 [20] FAN H L, GONG J P. Fabrication of bioinspired hydrogels: Challenges and opportunities[J]. Macromolecules, 2020, 53(8): 2769-2782. doi: 10.1021/acs.macromol.0c00238 [21] KALWAR K, XI J Q, REN C L, et al. Coating of Au@Ag on electrospun cellulose nanofibers for wound healing and antibacterial activity[J]. Korean Journal of Chemical Engineering, 2022, 39(8): 2165-2171. doi: 10.1007/s11814-021-1023-x [22] LI H, YOU Q X, FENG X Y, et al. Effective treatment of Staphylococcus aureus infection with silver nanoparticles and silver ions[J]. Journal of Drug Delivery Science and Technology, 2023, 80: 104165. doi: 10.1016/j.jddst.2023.104165 [23] HUQ M A, ASHRAFUDOULLA M, RAHMAN M M, et al. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review[J]. Polymers (Basel), 2022, 14(4): 742. doi: 10.3390/polym14040742 [24] 许雨芩, 张毅倩, 杨建军, 等. 还原氧化石墨烯负载纳米银/聚乙烯醇型抗菌水凝胶的制备与性能[J]. 精细化工, 2023, 40(1): 69-74.XU Yuqin, ZHANG Yiqian, YANG Jianjun, et al. Preparation and properties of nano silver-loaded reduced graphene oxide/polyvinyl alcohol antibacterial hydrogels[J]. Fine Chemicals, 2023, 40(1): 69-74(in Chinese). [25] SHIN J U, GWON J, LEE S Y, et al. Silver-incorporated nanocellulose fibers for antibacterial hydrogels[J]. ACS Omega, 2018, 3(11): 16150-16157. doi: 10.1021/acsomega.8b02180 [26] SHAHEEN T I, EL-GAMAL M S, DESOUKY S E, et al. Benign production of AgNPs/bacterial nanocellulose for wound healing dress: Antioxidant, cytotoxicity and in vitro studies[J]. Journal of Cluster Science, 2022, 33(6): 2735-2751. doi: 10.1007/s10876-021-02190-6 [27] SZYMAŃSKA-CHARGOT M, CHYLIŃSKA M, PIECZYWEK P M, et al. Evaluation of nanocomposite made of polylactic acid and nanocellulose from carrot pomace modified with silver nanoparticles[J]. Polymers, 2020, 12(4): 812. doi: 10.3390/polym12040812 [28] PAWCENIS D, CHLEBDA D K, JĘDRZEJCZYK R J, et al. Preparation of silver nanoparticles using different fractions of TEMPO-oxidized nanocellulose[J]. European Polymer Journal, 2019, 116: 242-255. [29] NAFICY S, BROWN H R, RAZAL J M, et al. Progress toward robust polymer hydrogels[J]. Australian Journal of Chemistry, 2011, 64: 1007-1025. doi: 10.1071/CH11156 [30] 中国国家标准化管理委员会. 微生物源抗生素类次生代谢产物抗细菌活性测定 抑菌圈法: GB/T 20944.3—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Textiles—Evaluation for antibacterial activity—Part 3: Shake flask method: GB/T 20944.3—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [31] FAN H L, WANG L, FENG X D, et al. Supramolecular hydrogel formation based on tannic acid[J]. Macromolecules, 2017, 50(2): 666-676. doi: 10.1021/acs.macromol.6b02106 [32] FAN H L, WANG J H, ZHANG Q Y, et al. Tannic acid-based multifunctional hydrogels with facile adjustable adhesion and cohesion contributed by polyphenol supramolecular chemistry[J]. ACS Omega, 2017, 2(10): 6668-6676. doi: 10.1021/acsomega.7b01067 [33] 蔡祥春. 海藻酸钠-壳聚糖-单宁酸复合水凝胶微球促进成骨分化的体内外实验研究[D]. 南昌: 南昌大学, 2023.CAI Xiangchun. Sodium alginate/chitosan/tannic acid composite hydrogel microspheres promote osteogenic differentiation in vitro and in vivo[D]. Nanchan: Nanchang University, 2023(in Chinese). [34] WEI J J, ZHANG X H, WANG F, et al. One-step preparation of highly viscoelastic, stretchable, antibacterial, biocompatible, wearable, conductive composite hydrogel with extensive adhesion[J]. Composites Science and Technology, 2023, 231: 109793. doi: 10.1016/j.compscitech.2022.109793