留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米银/纳米纤维素复合抗菌应变响应性水凝胶

王钦雯 王雯君 陈玟锦 唐爱民

王钦雯, 王雯君, 陈玟锦, 等. 纳米银/纳米纤维素复合抗菌应变响应性水凝胶[J]. 复合材料学报, 2024, 41(10): 5549-5560. doi: 10.13801/j.cnki.fhclxb.20231125.001
引用本文: 王钦雯, 王雯君, 陈玟锦, 等. 纳米银/纳米纤维素复合抗菌应变响应性水凝胶[J]. 复合材料学报, 2024, 41(10): 5549-5560. doi: 10.13801/j.cnki.fhclxb.20231125.001
WANG Qinwen, WANG Wenjun, CHEN Wenjin, et al. Silver nanoparticle/nanocellulose composites antibacterial strain-responsive hydrogels[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5549-5560. doi: 10.13801/j.cnki.fhclxb.20231125.001
Citation: WANG Qinwen, WANG Wenjun, CHEN Wenjin, et al. Silver nanoparticle/nanocellulose composites antibacterial strain-responsive hydrogels[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5549-5560. doi: 10.13801/j.cnki.fhclxb.20231125.001

纳米银/纳米纤维素复合抗菌应变响应性水凝胶

doi: 10.13801/j.cnki.fhclxb.20231125.001
基金项目: 国家自然科学基金 (51875214)
详细信息
    通讯作者:

    王钦雯,博士,副教授,硕士生导师,研究方向为纸张及其他承印材料的印刷适性、适用于喷墨印刷的纳米纤维素油墨及环保型印刷油墨的开发及应用 E-mail: qwwang@scut.edu.cn

  • 中图分类号: TB332

Silver nanoparticle/nanocellulose composites antibacterial strain-responsive hydrogels

Funds: National Natural Science Foundation of China (51875214)
  • 摘要: 基于纳米银颗粒(AgNPs)的抗菌导电水凝胶在可穿戴设备、电子皮肤、生物传感器等领域有重要应用,其绿色制造是目前的研究热点之一。纳米纤维素(CNF)因其独特的物理化学性质,在智能水凝胶的制备与应用中得到越来越多的关注。将 AgNPs 与 CNF 复合并应用到水凝胶中,有望制备具有良好力学性能的抗菌水凝胶,对水凝胶在智能可穿戴领域中的应用具有重要的指导意义。本文首先以2, 2, 6, 6-四甲基哌啶氧化物(TEMPO)氧化纳米纤维素(TOCNF)为复合基材,AgNO3为银源,通过水热法原位复合制备Ag-CNF复合材料。随后,将 Ag-CNF 和 单宁酸(TA) 作为功能性添加剂引入聚丙烯酰胺(PAM)水凝胶中,制备了具有良好拉伸性能、粘附性、抗菌性和紫外屏蔽性的 Ag-CNF/PAM 水凝胶,并将Ag-CNF/PAM 水凝胶封装制备成应变响应传感设备,研究其电学和传感性能。Ag-CNF/PAM 水凝胶在 100% 的应变循环下能够保持稳定重复的电信号输出,也能够用于手腕动作和头部动作的动作检测,在应变响应传感领域具有良好的应用前景。

     

  • 图  1  AgNO3、TEMPO氧化纳米纤维素(TOCNF)、AgNO3-TOCNF和 Ag-CNF 的 UV-vis 吸收光谱

    Figure  1.  Absorption spectra of AgNO3 solution, TEMPO-oxidized nanocellulose (TOCNF), AgNO3-TOCNF and Ag-CNF

    TEMPO—2, 2, 6, 6-tetramethylpiperidoxyl

    图  2  TOCNF (a)和 Ag-CNF (b)的 AFM 图像以及 TOCNF 长度统计(c)和纳米银颗粒(AgNPs)的粒径统计(d)

    Figure  2.  AFM images of TOCNF (a) and Ag-CNF (b), the length statistic of TOCNF (c) and the particle size statistics of silver nanoparticles (AgNPs) (d)

    d10, d50, d90— TOCNF with length less than 87.6 nm, 150.0 nm and 218.6 nm accounted for 10%, 50% and 90% of the total amount in the sample

    图  3  聚丙烯酰胺(PAM)和Ag-CNF/PAM水凝胶的制备示意图

    Figure  3.  Schematic representation of the preparation of polyacrylamide (PAM) and Ag-CNF/PAM hydrogels

    APS—Ammonium persulphate; MBA—N, N'-methylene diacrylamide; TA—Tannic acid; AgNPs—Ag nanoparticles

    图  4  Ag-CNF/PAM 水凝胶(a)、扭转(b)、打结(c)以及承重(d)的实物图

    Figure  4.  Real photos of Ag-CNF/PAM hydrogel (a), twisting (b), knotting (c), and bearing (d)

    图  5  TOCNF、AM、TA、PAM 和 Ag-CNF/PAM 水凝胶红外图谱

    Figure  5.  FTIR spectra of TOCNF, AM, TA, PAM and Ag-CNF/PAM hydrogels

    图  6  Ag-CNF/PAM 水凝胶的表面((a), (b))和横截面((c), (d))的 SEM 图像

    Figure  6.  SEM images of surface ((a), (b)) and cross-sections ((c), (d)) of Ag-CNF/PAM hydrogels

    图  7  Ag-CNF/PAM 水凝胶对不同基材的粘附图片

    Figure  7.  Photos of Ag-CNF/PAM hydrogel adhesion to different substrates

    图  8  不同AM含量和TA含量的 Ag-CNF/PAM 水凝胶对纸张的粘附剪切应力对比

    Figure  8.  Comparison of adhesive shear stress of Ag-CNF/PAM hydrogels with different AM and TA contents

    图  9  Ag-CNF/PAM 水凝胶对不同基底的重复粘附测试

    Figure  9.  Repeated adhesion test of Ag-CNF/PAM hydrogel to different substrates

    图  10  不同TA含量的 Ag-CNF/PAM 水凝胶的应力-应变曲线(a)和对应的性能参数(b)

    Figure  10.  Stress-strain curves (a) and corresponding performance parameters (b) of Ag-CNF/PAM hydrogels with different TA contents

    图  11  Ag-CNF/PAM 水凝胶对大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)的接触抗菌效果

    Figure  11.  Contact antibacterial effect of Ag-CNF/PAM hydrogels on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus)

    图  12  PAM 和 Ag-CNF/PAM 水凝胶的 UV-vis 透射率光谱

    Figure  12.  UV-vis transparent spectra of PAM and Ag-CNF/PAM hydrogels

    图  13  ((a), (b))基于Ag-CNF/PAM水凝胶的应变响应传感器在不同应变(0%~500%)下的相对电阻变化(ΔR/R0);(c) 应变响应传感器的应变系数(GF)

    Figure  13.  ((a), (b)) Changes in the relative resistance (ΔR/R0) of Ag-CNF/PAM hydrogel-based strain-responsive sensors at different strains (0%-500%); (c) Gauge factor (GF) of the strain-response sensors

    图  14  基于 Ag-CNF/PAM 水凝胶的应变响应传感器在 100%应变循环加载-卸载过程中的相对电阻变化

    Figure  14.  Changes in relative resistance of Ag-CNF/PAM hydrogel-based strain-responsive sensors during 100% strain cyclic loading-unloading

    图  15  基于Ag-CNF/PAM水凝胶的应变响应传感器在手指动作检测中的相对电阻变化

    Figure  15.  Changes in relative resistance of Ag-CNF/PAM hydrogel-based strain-responsive sensors during finger-action detection

  • [1] 齐钰, 鲁洋, 周青青, 等. 高性能水凝胶在可穿戴传感器中的应用进展[J]. 分析化学, 2022, 50(11): 1699-1711.

    QI Yu, LU Yang, ZHOU Qingqing, et al. Application of high performance hydrogels in wearable sensors[J]. Chinese Journal of Analytical Chemistry, 2022, 50(11): 1699-1711(in Chinese).
    [2] REN Y Z, ZHENG Z R, XU S B, et al. User identification leveraging whispered sound for wearable devices[J]. IEEE Transactions on Mobile Computing, 2023, 22(3): 1841-1855.
    [3] MEENA J S, CHOI S B, JUNG S B, et al. Electronic textiles: New age of wearable technology for healthcare and fitness solutions[J]. Materials Today Bio, 2023, 19: 100565. doi: 10.1016/j.mtbio.2023.100565
    [4] MARKSTEDT K, ESCALANTE A, TORIZ G, et al. Biomimetic inks based on cellulose nanofibrils and cross-linkable xylans for 3D printing[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40878-40886.
    [5] MENDOZA L, BATCHELOR W, TABOR R F, et al. Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective[J]. Journal of Colloid and Interface Science, 2018, 509: 39-46. doi: 10.1016/j.jcis.2017.08.101
    [6] 江文静, 廖静文, 张雪慧, 等. 导电复合水凝胶的分类及其在柔性可穿戴设备中的应用[J]. 复合材料学报, 2023, 40(4): 1879-1895.

    JIANG Wenjing, LIAO Jingwen, ZHANG Xuehui, et al. Classification of conductive composite hydrogels and their application in flexible wearable devices[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1879-1895(in Chinese).
    [7] YANG P H, YANG J L, LIU K, et al. Hydrogels enable future smart batteries[J]. ACS Nano, 2022, 16(10): 15528-15536. doi: 10.1021/acsnano.2c07468
    [8] WANG Y L, LIU H, XIE H, et al. An autofluorescent hydrogel with water-dependent emission for dehydration-visualizable smart wearable electronics[J]. Advanced Functional Materials, 2023, 33(19): 2213545.
    [9] QIN M, YUAN W F, ZHANG X M, et al. Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor[J]. Colloids and Surfaces B: Biointerfaces, 2022, 214: 112482. doi: 10.1016/j.colsurfb.2022.112482
    [10] SHIN M, LIM J, AN J, et al. Nanomaterial-based biohybrid hydrogel in bioelectronics[J]. Nano Convergence, 2023, 10(1): 8. doi: 10.1186/s40580-023-00357-7
    [11] DENG Z X, GUO Y, ZHAO X, et al. Poly(N-isopropylacrylamide) based electrically conductive hydrogels and their applications[J]. Gels, 2022, 8(5): 280. doi: 10.3390/gels8050280
    [12] KAILASA S K, JOSHI D J, KATESHIYA M R, et al. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels[J]. Materials Today Chemistry, 2022, 23: 100746. doi: 10.1016/j.mtchem.2021.100746
    [13] LUO Q G, SHEN H M, ZHOU G F, et al. A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components[J]. Carbohydrate Polymers, 2023, 303: 120449. doi: 10.1016/j.carbpol.2022.120449
    [14] 杜宏, 程正柏, 刘莹莹, 等. 纳米纤维素复合导电水凝胶的制备及其在传感器方面应用的研究进展[J]. 中国造纸学报, 2023, 38(3): 30-38.

    DU Hong, CHENG Zhengbai, LIU Yingying, et al. Recent advances on the preparation of nanocellulose composite conductive hydrogels and their applications in sensors[J]. Transactions of China Pulp and Paper, 2023, 38(3): 30-38(in Chinese).
    [15] LIU W, LIU K, DU H S, et al. Cellulose nanopaper: Fabrication, functionalization, and applications[J]. Nano-Micro Letters, 2022, 14(1): 104. doi: 10.1007/s40820-022-00849-x
    [16] PUPPALA N V, DODDIPATLA P, MOHANNATH G. Use of nanocellulose in the intracellular delivery of biological and non-biological drugs: A review[J]. Cellulose, 2023, 30(3): 1335-1354. doi: 10.1007/s10570-022-04977-w
    [17] DENG Y Q, XI J F, MENG L C, et al. Stimuli-responsive nanocellulose hydrogels: An overview[J]. European Polymer Journal, 2022, 180: 111591. doi: 10.1016/j.eurpolymj.2022.111591
    [18] POURJAVADI A, AYYARI M, AMINI-FAZL M S. Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel[J]. European Polymer Journal, 2008, 44(4): 1209-1216.
    [19] ELKHOURY K, MORSINK M, SANCHEZ-GONZALEZ L, et al. Biofabrication of natural hydrogels for cardiac, neural, and bone tissue engineering applications[J]. Bioactive Materials, 2021, 6(11): 3904-3923. doi: 10.1016/j.bioactmat.2021.03.040
    [20] FAN H L, GONG J P. Fabrication of bioinspired hydrogels: Challenges and opportunities[J]. Macromolecules, 2020, 53(8): 2769-2782. doi: 10.1021/acs.macromol.0c00238
    [21] KALWAR K, XI J Q, REN C L, et al. Coating of Au@Ag on electrospun cellulose nanofibers for wound healing and antibacterial activity[J]. Korean Journal of Chemical Engineering, 2022, 39(8): 2165-2171. doi: 10.1007/s11814-021-1023-x
    [22] LI H, YOU Q X, FENG X Y, et al. Effective treatment of Staphylococcus aureus infection with silver nanoparticles and silver ions[J]. Journal of Drug Delivery Science and Technology, 2023, 80: 104165. doi: 10.1016/j.jddst.2023.104165
    [23] HUQ M A, ASHRAFUDOULLA M, RAHMAN M M, et al. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review[J]. Polymers (Basel), 2022, 14(4): 742. doi: 10.3390/polym14040742
    [24] 许雨芩, 张毅倩, 杨建军, 等. 还原氧化石墨烯负载纳米银/聚乙烯醇型抗菌水凝胶的制备与性能[J]. 精细化工, 2023, 40(1): 69-74.

    XU Yuqin, ZHANG Yiqian, YANG Jianjun, et al. Preparation and properties of nano silver-loaded reduced graphene oxide/polyvinyl alcohol antibacterial hydrogels[J]. Fine Chemicals, 2023, 40(1): 69-74(in Chinese).
    [25] SHIN J U, GWON J, LEE S Y, et al. Silver-incorporated nanocellulose fibers for antibacterial hydrogels[J]. ACS Omega, 2018, 3(11): 16150-16157. doi: 10.1021/acsomega.8b02180
    [26] SHAHEEN T I, EL-GAMAL M S, DESOUKY S E, et al. Benign production of AgNPs/bacterial nanocellulose for wound healing dress: Antioxidant, cytotoxicity and in vitro studies[J]. Journal of Cluster Science, 2022, 33(6): 2735-2751. doi: 10.1007/s10876-021-02190-6
    [27] SZYMAŃSKA-CHARGOT M, CHYLIŃSKA M, PIECZYWEK P M, et al. Evaluation of nanocomposite made of polylactic acid and nanocellulose from carrot pomace modified with silver nanoparticles[J]. Polymers, 2020, 12(4): 812. doi: 10.3390/polym12040812
    [28] PAWCENIS D, CHLEBDA D K, JĘDRZEJCZYK R J, et al. Preparation of silver nanoparticles using different fractions of TEMPO-oxidized nanocellulose[J]. European Polymer Journal, 2019, 116: 242-255.
    [29] NAFICY S, BROWN H R, RAZAL J M, et al. Progress toward robust polymer hydrogels[J]. Australian Journal of Chemistry, 2011, 64: 1007-1025. doi: 10.1071/CH11156
    [30] 中国国家标准化管理委员会. 微生物源抗生素类次生代谢产物抗细菌活性测定 抑菌圈法: GB/T 20944.3—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Textiles—Evaluation for antibacterial activity—Part 3: Shake flask method: GB/T 20944.3—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [31] FAN H L, WANG L, FENG X D, et al. Supramolecular hydrogel formation based on tannic acid[J]. Macromolecules, 2017, 50(2): 666-676. doi: 10.1021/acs.macromol.6b02106
    [32] FAN H L, WANG J H, ZHANG Q Y, et al. Tannic acid-based multifunctional hydrogels with facile adjustable adhesion and cohesion contributed by polyphenol supramolecular chemistry[J]. ACS Omega, 2017, 2(10): 6668-6676. doi: 10.1021/acsomega.7b01067
    [33] 蔡祥春. 海藻酸钠-壳聚糖-单宁酸复合水凝胶微球促进成骨分化的体内外实验研究[D]. 南昌: 南昌大学, 2023.

    CAI Xiangchun. Sodium alginate/chitosan/tannic acid composite hydrogel microspheres promote osteogenic differentiation in vitro and in vivo[D]. Nanchan: Nanchang University, 2023(in Chinese).
    [34] WEI J J, ZHANG X H, WANG F, et al. One-step preparation of highly viscoelastic, stretchable, antibacterial, biocompatible, wearable, conductive composite hydrogel with extensive adhesion[J]. Composites Science and Technology, 2023, 231: 109793. doi: 10.1016/j.compscitech.2022.109793
  • 加载中
图(15)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  255
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-14
  • 修回日期:  2023-12-11
  • 录用日期:  2023-12-18
  • 网络出版日期:  2023-12-26
  • 刊出日期:  2024-10-15

目录

    /

    返回文章
    返回