留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑单向预浸料弯曲性能的有限元仿真

何靓 赵安安 徐小伟 王小凯 胡大豹 梁彪

何靓, 赵安安, 徐小伟, 等. 考虑单向预浸料弯曲性能的有限元仿真[J]. 复合材料学报, 2024, 41(7): 3822-3830. doi: 10.13801/j.cnki.fhclxb.20231124.001
引用本文: 何靓, 赵安安, 徐小伟, 等. 考虑单向预浸料弯曲性能的有限元仿真[J]. 复合材料学报, 2024, 41(7): 3822-3830. doi: 10.13801/j.cnki.fhclxb.20231124.001
HE Liang, ZHAO An'an, XU Xiaowei, et al. Finite element modelling considering the bending behavior of uncured unidirectional prepregs[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3822-3830. doi: 10.13801/j.cnki.fhclxb.20231124.001
Citation: HE Liang, ZHAO An'an, XU Xiaowei, et al. Finite element modelling considering the bending behavior of uncured unidirectional prepregs[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3822-3830. doi: 10.13801/j.cnki.fhclxb.20231124.001

考虑单向预浸料弯曲性能的有限元仿真

doi: 10.13801/j.cnki.fhclxb.20231124.001
基金项目: 国家重点研发计划 (2021YFB3401700)
详细信息
    通讯作者:

    赵安安,博士,研究员级高级工程师,研究方向为飞行器制造 E-mail: swuoip@163.com

  • 中图分类号: TB332

Finite element modelling considering the bending behavior of uncured unidirectional prepregs

Funds: National Key Research and Development Program of China (2021YFB3401700)
  • 摘要: 热固性树脂基预浸料沿纤维方向具有极高的拉伸模量和较小的弯曲刚度,准确描述预浸料的这种力学特性对于成型过程中褶皱等缺陷的预测与抑制、提升成型过程的有限元仿真精度具有重要意义。本文建立了基于纤维方向准确跟踪并考虑非线性剪切行为的单向预浸料本构模型,并通过共节点壳膜混合单元实现了预浸料高拉伸模量和低弯曲刚度的解耦。同时,以国产AC531/CCF800H单向预浸料为对象,系统测量了未固化预浸料的拉伸模量、剪切模量和弯曲刚度。最后,通过单向预浸料的偏轴拉伸试验和轴向压缩试验分别验证了本文所建立的有限元模型在膜单元和壳单元主导的受力条件下的有效性。

     

  • 图  1  单向预浸料本构模型中的不同坐标系

    Figure  1.  Coordinate systems used in the constitutive model of unidirectional prepregs

    图  2  壳膜共节点混合单元示意图

    Figure  2.  Schematics of the superimposed membrane-shell elements sharing the same nodes

    图  3  拉伸试验测量装置

    Figure  3.  Set-ups for the tensile test

    DIC—Digital image correlation

    图  4  拉伸试样尺寸

    Figure  4.  Dimensions of specimens for tensile test

    图  5  拉伸试验中AC531/CCF800H单向预浸料的应力-应变曲线

    Figure  5.  Stress-strain curves of the AC531/CCF800H unidirectional prepregs in tensile tests

    图  6  偏轴拉伸试样示意图

    Figure  6.  Schematics of the off axis tensile specimen

    F—Global applied load; Ft, Fτ—Normal and tangential components of the applied force along the fiber direction; θ—Off-axis angle

    图  7  面内剪切试验中AC531/CCF800H单向预浸料剪切应力与剪切应变的变化关系及其多项式拟合结果

    Figure  7.  Experimental in-plane shear response of the AC531/CCF800H unidirectional prepregs and its polynomial fitting results

    图  8  弯曲刚度测量装置

    Figure  8.  Test device for measuring bending stiffness

    图  9  偏轴拉伸过程中的试样形貌

    Figure  9.  Shape of the specimen during off axis tensile tests

    FEM—Finite element method; U, U3—Millimeter displacement in Z direction; W—Out-of-plane displacement obtained by experimental observation

    图  10  预浸料轴向压缩试验装置

    Figure  10.  Set up for the axial compression test of unidirectional prepregs

    图  11  不同压缩位移下AC531/CCF800H单向预浸料形貌的仿真结果

    Figure  11.  Simulated shapes of the AC531/CCF800H unidirectional prepreg under different compressive displacements

    图  12  不同压缩位移下AC531/CCF800H单向预浸料形貌的有限元仿真与实验结果对比

    Figure  12.  Comparisons of prepreg shapes obtained by simulations and experimental observations under different compressive displacements for AC531/CCF800H unidirectional prepreg

    表  1  仿真模型中壳膜混合单元属性

    Table  1.   Properties of membrane-shell elements used in FEM

    Element
    type
    Thickness/
    mm
    E1/
    MPa
    E2/
    MPa
    G12/MPa
    Membrane 0.16 73017 31.1 37400000γ4
    4440000γ3+181635γ2
    3140γ+26.76
    Shell 0.16 32 0.008 0
    Notes: E1 and E2—Longitudinal and transverse elastic moduli; G12 —In-plane shear modulus; γ—In-plane shear strain.
    下载: 导出CSV
  • [1] 何靓, 朱攀星, 俆小伟, 等. 复合材料残余应力与固化变形机理及控制研究进展[J]. 复合材料科学与工程, 2022(7): 121-128.

    HE Liang, ZHU Panxing, XU Xiaowei, et al. A review on mechanism and control methods of residual stress and cured deformation of composite materials[J]. Composites Science and Engineering, 2022(7): 121-128(in Chinese).
    [2] POTTER K, KHAN B, WISNOM M, et al. Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(9): 1343-1354. doi: 10.1016/j.compositesa.2008.04.016
    [3] LIANG B, BOISSE P. A review of numerical analyses and experimental characterization methods for forming of textile reinforcements[J]. Chinese Journal of Aeronautics, 2021, 34(8): 143-163. doi: 10.1016/j.cja.2020.09.027
    [4] LIANG B, HAMILA N, PEILLON M L, et al. Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 111-122.
    [5] BOISSE P, COLMARS J, HAMILA N, et al. Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations[J]. Composites Part B: Engineering, 2018, 141: 234-249.
    [6] HU H, CAO D, CAO Z, et al. Experimental and numerical investigations of wrinkle effect on failure behavior of curved composite laminates[J]. Composite Structures, 2021, 261: 113541. doi: 10.1016/j.compstruct.2021.113541
    [7] LONG A C, RUDD C D. Simulation of reinforcement deformation during the production of preforms for liquid moulding processes[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1994, 208(42): 269-278.
    [8] SKORDOS A A, MONROY ACEVES C, SUTCLIFFE M P F. A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(5): 1318-1330.
    [9] CHEROUAT A, BILLOËT J L. Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics[J]. Journal of Materials Processing Technology, 2001, 118(1): 460-471.
    [10] OROMIEHIE E, PRUSTY B G, COMPSTON P, et al. Automated fibre placement based composite structures: Review on the defects, impacts and inspections techniques[J]. Composite Structures, 2019, 224(15): 110987.
    [11] HAN M G, CHANG S H. Draping simulations of carbon/epoxy fabric prepregs using a non-orthogonal constitutive model considering bending behavior[J]. Composites Part A: Applied Science and Manufacturing, 2021, 148: 106483. doi: 10.1016/j.compositesa.2021.106483
    [12] YU F, CHEN S, VIISAINEN J V, et al. A macroscale finite element approach for simulating the bending behaviour of biaxial fabrics[J]. Composites Science and Technology, 2020, 191: 108078. doi: 10.1016/j.compscitech.2020.108078
    [13] THOMPSON A J, BELNOUE J P H, HALLETT S R. Modelling defect formation in textiles during the double diaphragm forming process[J]. Composites Part B: Engineering, 2020, 202: 108357. doi: 10.1016/j.compositesb.2020.108357
    [14] DÖRR D, SCHIRMAIER F J, HENNING F, et al. A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2017, 94: 113-123. doi: 10.1016/j.compositesa.2016.11.027
    [15] SREEHARI R, MICHAEL A S, SUBRAMANI S, et al. Simulations and experiments for automated fiber placement of prepreg slit tape: Wrinkle formation and fundamental observations[J]. Composites Part B: Engineering, 2020, 201: 108287.
    [16] ROPERS S, SACHS U, KARDOS M, et al. A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites—Part II[J]. Composites Part A: Applied Science and Manufacturing, 2017, 96: 67-76. doi: 10.1016/j.compositesa.2017.02.007
    [17] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11): 2700-2706.

    XING Liying, FENG Zhihai, BAO Jianwen, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2700-2706(in Chinese).
    [18] SASA G, ZHENG T Q, ZHANG Y, et al. An efficient hyper-elastic model for the preforming simulation of carbon-Kevlar hybrid woven reinforcement[J]. Chinese Journal of Aeronautics, 2022, 35(12): 321-335. doi: 10.1016/j.cja.2022.05.007
    [19] ZHAO Z, ZHANG K, CHENG H, et al. Experimental characterization and numerical modelling of bending behavior of carbon fiber unidirectional thermoset prepregs[J]. Journal of Reinforced Plastics and Composites, 2024, 43(5-6): 277-292.
    [20] 何靓, 俆小伟, 胡大豹, 等. 国产T800级高韧性环氧树脂基预浸料的TTT图绘制[J]. 复合材料科学与工程, 2023(5): 25-31.

    HE Liang, XU Xiaowei, HU Dabao, et al. Time-temperature-transformation (TTT) diagram of a domestic T800 carbon fiber epoxy prepreg[J]. Composites Science and Engineering, 2023(5): 25-31(in Chinese).
    [21] NIMA B, MEHDI H. An experimental and simulative study on the defects appeared during tow steering in automated fiber placement[J]. Composites Part A: Applied Science and Manufacturing, 2018, 113: 122-131. doi: 10.1016/j.compositesa.2018.07.031
    [22] American Society for Testing and Materials. Standard test method for stiffness of fabrics: ASTM D1388—23[S]. West Conshohocken: ASTM International, 2023.
    [23] DÖBRICH O, GEREKE T, DIESTEL O, et al. Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the mechanical behavior of textiles with a laminate formulation[J]. Journal of Industrial Textiles, 2013, 44(1): 70-84.
    [24] BELHAJ M, HOJJATI M. Wrinkle formation during steering in automated fiber placement: Modeling and experimental verification[J]. Journal of Reinforced Plastics and Composites, 2018, 37(6): 396-409. doi: 10.1177/0731684417752872
    [25] DODWELL T J, BUTLER R, HUNT G W. Out-of-plane ply wrinkling defects during consolidation over an external radius[J]. Composites Science & Technology, 2014, 105: 151-159.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  478
  • HTML全文浏览量:  447
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-26
  • 修回日期:  2023-11-07
  • 录用日期:  2023-11-16
  • 网络出版日期:  2023-11-27
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回