留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙二醇基相变复合材料杂化网络结构的设计及其光-电-热转换性能

赵中国 王筹萱 薛嵘 申思扬

赵中国, 王筹萱, 薛嵘, 等. 聚乙二醇基相变复合材料杂化网络结构的设计及其光-电-热转换性能[J]. 复合材料学报, 2024, 41(7): 3609-3619. doi: 10.13801/j.cnki.fhclxb.20231120.004
引用本文: 赵中国, 王筹萱, 薛嵘, 等. 聚乙二醇基相变复合材料杂化网络结构的设计及其光-电-热转换性能[J]. 复合材料学报, 2024, 41(7): 3609-3619. doi: 10.13801/j.cnki.fhclxb.20231120.004
ZHAO Zhongguo, WANG Chouxuan, XUE Rong, et al. Design of hybridized network structure and photoelectric thermal conversion performance of polyethylene glycol-based phase change composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3609-3619. doi: 10.13801/j.cnki.fhclxb.20231120.004
Citation: ZHAO Zhongguo, WANG Chouxuan, XUE Rong, et al. Design of hybridized network structure and photoelectric thermal conversion performance of polyethylene glycol-based phase change composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3609-3619. doi: 10.13801/j.cnki.fhclxb.20231120.004

聚乙二醇基相变复合材料杂化网络结构的设计及其光-电-热转换性能

doi: 10.13801/j.cnki.fhclxb.20231120.004
基金项目: 陕西省教育厅项目(23JK0373);陕西理工大学博士启动人才项目(SLGRCQD2329)
详细信息
    通讯作者:

    赵中国,博士,副教授,硕士生导师,研究方向为功能化高分子纳米复合材料的制备及性能研究 E-mail: zhaozhongguo@snut.edu.cn

  • 中图分类号: TB332

Design of hybridized network structure and photoelectric thermal conversion performance of polyethylene glycol-based phase change composites

Funds: Fund of Education Department of Shaanxi Province (23JK0373); Talent Start-up Fund of Shaanxi University of Technology (SLGRCQD2329)
  • 摘要: 为了探究不同结构的纳米粒子对聚乙二醇(PEG)基相变复合材料形状稳定性及光电转换效率的影响,本文将碳纳米管(CNT)分别与BN、Al2O3以及铜粉(Cu)通过物理杂化的方式制备了PEG-聚乳酸(PLA)-CNT-X(y)相变储能复合材料。通过导电数据分析发现,Al2O3和Cu纳米填料的加入对PEG-PLA-CNT-X(y)复合材料的导电性能影响较小,使复合材料仍然具有较高的导电性能;而BN的引入使复合材料的导电性能急剧下降,当BN的质量含量比达到40%时,PEG60-PLA40-CNT0.6-BN(40)复合材料的电导率仅为8.71×10−7 S/m,呈现出明显的绝缘性。通过SEM和EDS能谱发现, Al2O3纳米粒子在复合材料内部均匀分布,当Al2O3质量含量比为40%时,PEG60-PLA40-CNT0.6-Al2O3(40)复合材料热导率和增强因子($ \varPhi $)值分别高达5.81 W/(m·K)和363.6%;相较于PEG60-PLA40-CNT0.6复合材料,PEG60-PLA40-CNT0.6-Al2O3(40)复合材料在160℃时仍具有较高的形状稳定性,没有出现PEG的泄露和塌陷现象。相比于其他纳米粒子,Al2O3的引入能够显著提高PEG60-PLA40-CNT0.6-Al2O3(40) 复合材料的光热转换效率($ \eta $),$ \eta $值从42.9%提升至79.9%。而且复合材料对光的响应灵敏度更高,响应速度更快,电流变化曲线更加平滑,具有优异的光电转换性能。

     

  • 图  1  添加不同导热粒子的PEG基复合材料的电导率曲线

    Figure  1.  Conductivity curves of PEG composites with different thermally conductive particles

    图  2  不同导热填料的PEG基复合材料的热导率图(a)和热协同效率(b)

    Figure  2.  Thermal conductivity maps (a) and thermal synergy efficiency (b) of PEG composites with different thermally conductive fillers

    图  3  PEG60-PLA40-CNT0.6-Al2O3(y)复合材料的SEM图像

    Figure  3.  SEM images of PEG60-PLA40-CNT0.6-Al2O3(y) composites

    图  4  PEG60-PLA40-CNT0.6-X(40)复合材料的SEM-EDS图像

    Figure  4.  SEM with EDS images of PEG60-PLA40-CNT0.6-X(40) composites

    图  5  PEG60-PLA40-CNT0.6-X(40)复合材料在150 mW/cm2光照强度下的温度变化曲线

    Figure  5.  Temperature profiles of PEG60-PLA40-CNT0.6-X(40) composites at 150 mW/cm2 light intensity

    η—Photothermal conversion efficiency

    图  6  PEG60-PLA40-CNT0.6-Al2O3(40)复合材料在150 mW/cm2光照强度下的升降温热红外成像图

    Figure  6.  Lift-off thermal infrared imaging of PEG60-PLA40-CNT0.6-Al2O3(40) composite at 150 mW/cm2 light intensity

    图  7  复合材料降温结晶曲线(a)和升温熔融曲线(b)

    Figure  7.  Cooling crystallization curves (a) and heating melting curves (b) of composites

    图  8  PEG60-PLA40-CNT0.6-X(40)复合材料在不同光照强度下的电流变化曲线

    Figure  8.  Current variation curves of PEG60-PLA40-CNT0.6-X(40) composites under different light intensities

    图  9  PEG60-PLA40-CNT0.6-Al2O3(40)复合材料的循环DSC曲线(a)和循环前后的FTIR图谱(b)

    Figure  9.  Circular DSC curves (a) and FTIR spectra (b) of PEG60-PLA40-CNT0.6-Al2O3(40) composites

    图  10  PEG60-PLA40-CNT0.6-Al2O3(y)复合材料在不同温度下的形状稳定图(其中S1代表PEG,S2代表PEG60-PLA40-CNT0.6和S3代表PEG60-PLA40-CNT0.6-Al2O3(40))

    Figure  10.  Shape stabilization images of PEG60-PLA40-CNT0.6-Al2O3(y) composites (S1, S2 and S3 represent PEG, PEG60-PLA40-CNT0.6 and PEG60-PLA40-CNT0.6-Al2O3(40), respectively)

    表  1  聚乙二醇(PEG)60-聚乳酸(PLA)40-碳纳米管(CNT)0.6-X(y)复合材料质量配比表

    Table  1.   Mass ration of polyethylene glycol (PEG)60-polylactic acid (PLA)40-carbon nanotubes (CNT)0.6-X(y) composites

    Sample PLA/% CNT/% PEG/% y/%
    PEG60-PLA40-CNT0.6 40 0.6 60
    PEG60-PLA40-CNT0.6-X(5) 40 0.6 60 5
    PEG60-PLA40-CNT0.6-X(10) 40 0.6 60 10
    PEG60-PLA40-CNT0.6-X(20) 40 0.6 60 20
    PEG60-PLA40-CNT0.6-X(30) 40 0.6 60 30
    PEG60-PLA40-CNT0.6-X(40) 40 0.6 60 40
    Notes: "X" represents the thermally conductive particles; "y" represents the mass ratio of thermally conductive particles in PEG60-PLA40 composites.
    下载: 导出CSV

    表  2  复合材料中PEG相的DSC参数

    Table  2.   DSC parameters of PEG phase in composites

    Sample T0/℃ Tp/℃ ΔHm/(J·g−1)
    PEG60-PLA40-CNT0.6 43.4 41.9 100.5
    PEG60-PLA40-CNT0.6-Al2O3(5) 39.6 36.6 95.6
    PEG60-PLA40-CNT0.6-Al2O3(20) 43.4 40.6 88.9
    PEG60-PLA40-CNT0.6-Al2O3(40) 46.0 44.7 85.2
    Notes: T0—Onset crystalline temperature; Tp—Peak crystalline temperature; ΔHm—Melting enthalpy.
    下载: 导出CSV

    表  3  复合材料中PLA相的DSC参数

    Table  3.   DSC parameters of PLA phase in composites

    Sample T0/℃ Tp/℃ ΔHm/(J·g−1)
    PEG60-PLA40-CNT0.6 120.2 115.5 16.4
    PEG60-PLA40-CNT0.6-Al2O3(5) 119.3 112.7 17.1
    PEG60-PLA40-CNT0.6-Al2O3(20) 121.5 114.4 16.4
    PEG60-PLA40-CNT0.6-Al2O3(40) 127.1 122.5 16.7
    下载: 导出CSV
  • [1] JI R, WEI S, XIA Y, et al. Enhanced thermal performance of form-stable composite phase-change materials supported by novel porous carbon spheres for thermal energy storage[J]. Journal of Energy Storage, 2020, 27: 101134. doi: 10.1016/j.est.2019.101134
    [2] 王绪彬, 张昌海, 张天栋, 等. 三维多孔氮化铝/环氧树脂复合材料的导热与电性能[J]. 复合材料学报, 2023, 40(6): 3341-3349.

    WANG Xubin, ZHANG Changhai, ZHANG Tiandong, et al. Thermal conductivity and electrical properties of three-dimensional porous aluminum nitride/epoxy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3341-3349(in Chinese).
    [3] JIANG Y, WANG Z, SHANG M, et al. Heat collection and supply of interconnected netlike graphene/polyethyleneglycol composites for thermoelectric devices[J]. Nanoscale, 2015, 7(25): 10950-10953. doi: 10.1039/C5NR02051D
    [4] SONG N, HOU X, CHEN L, et al. A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17914-17922. doi: 10.1021/acsami.7b02675
    [5] SONG N, JIAO D, CUI S, et al. Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2924-2932. doi: 10.1021/acsami.6b11979
    [6] CUI S, JIANG F, SONG N, et al. Flexible films for smart thermal management: Influence of structure construction of a two-dimensional graphene network on active heat dissipation response behavior[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 30352-30359.
    [7] MADHULATHA G, KUMAR M M J, SATEESH P. Optimization of tube arrangement and phase change material for enhanced performance of solar air heater—A numerical analysis[J]. Journal of Energy Storage, 2021, 41: 102876. doi: 10.1016/j.est.2021.102876
    [8] ALI H. Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: A recent review[J]. Journal of Energy Storage, 2019, 26: 100986.
    [9] VELMURUGAN K, KARTHIKEYAN V, KUMATASAMY S, et al. Thermal mapping of photovoltaic module cooling via radiation-based phase change material matrix: A case study of a large-scale solar farm in Thailand[J]. Journal of Energy Storage, 2022, 55: 651-668.
    [10] FENG D, NAN J, FENG Y, et al. Numerical investigation on improving the heat storage and transfer performance of ceramic/D-mannitol composite phase change materials by bionic graded pores and nanoparticle additives[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121748. doi: 10.1016/j.ijheatmasstransfer.2021.121748
    [11] LI G, ZHANG X, WANG J, et al. From anisotropic graphene aerogels to electron- and photo-driven phase change composites[J]. Journal of Material Chemistry A, 2016, 4(43): 17042-17049. doi: 10.1039/C6TA07587H
    [12] ZENG X, SUN J, YAO Y, et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity[J]. ACS Nano, 2017, 11(5): 5167-5178. doi: 10.1021/acsnano.7b02359
    [13] XIN G, SUN H, HU T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials, 2014, 26(26): 4521-4526.
    [14] HAN Y, YANG Y, MALLICK T, et al. Nanoparticles to enhance melting performance of phase change materials for thermal energy storage[J]. Nanomaterials, 2022, 12(11): 1864. doi: 10.3390/nano12111864
    [15] JIA X, LI Q, AO C, et al. High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105710 .
    [16] WANG Z, ZHANG H, DOU B, et al. Effect of copper metal foam proportion on heat transfer enhancement in the melting process of phase change materials[J]. Applied Thermal Engineering, 2022, 201: 117778.
    [17] 赵中国, 薛嵘, 王筹萱, 等. 石墨烯-碳纳米管-聚乳酸/聚乙二醇相变储能复合材料的制备与温敏响应行为[J]. 复合材料学报, 2024, 41(1): 250-260.

    ZHAO Zhongguo, XUE Rong, WANG Chouxuan, et al. Preparation and temperature sensitive response behavior of graphene carbon nanotubes/polylactic acid/polyethylene glycol phase change energy storage composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 250-260(in Chinese).
    [18] 申思扬, 赵中国, 苏巨桥, 等. 导电复合相变储能材料的制备及温敏响应性能[J]. 高分子材料科学与工程, 2023, 39(1): 151-159.

    SHEN Siyang, ZHAO Zhongguo, SU Juqiao, et al. Preparation and temperature sensitive response performance of conductive composite phase change energy storage materials[J]. Polymer Material Science and Engineering, 2023, 39(1): 151-159(in Chinese).
    [19] ZHAN Y, ZHENG X, NAN B, et al. Flexible MXene/aramid nanofiber nanocomposite film with high thermal conductivity and flame retardancy[J]. European Polymer Journal, 2023, 186: 111847. doi: 10.1016/j.eurpolymj.2023.111847
    [20] ZHAO Z, XUE R, MI D, et al. Regulating the temperature-sensing behavior of poly(lactic acid) by incorporating multiwalled carbon nanotubes and graphene nanoplatelets[J]. Polymer Composites, 2023, 44(10): 6379-6392. doi: 10.1002/pc.27565
    [21] FENG C, WEI F, SUN K, et al. Emerging flexible thermally conductive films: Mechanism, fabrication, application[J]. Nano-Micro Letters, 2022, 14(8): 1-34.
    [22] DING D, HUANG R, WANG X, et al. Thermally conductive silicone rubber composites with vertically oriented carbon fibers: A new perspective on the heat conduction mechanism[J]. Chemical Engineering Journal, 2022, 441: 136104. doi: 10.1016/j.cej.2022.136104
    [23] YU J, SUNDQVIST B, TONPHENG B, et al. Thermal conductivity of highly crystallized polyethylene[J]. Polymer, 2014, 55(1): 195-200.
    [24] ZHANG W, ZHANG Z, YANG J, et al. Largely enhanced thermal conductivity of poly (vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide[J]. Carbon, 2015, 90: 242-254. doi: 10.1016/j.carbon.2015.04.040
    [25] YANG J, TANG L, BAO R, et al. Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability[J]. Solar Energy Materials and Solar Cells, 2018, 174: 56-64. doi: 10.1016/j.solmat.2017.08.025
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  172
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-12
  • 修回日期:  2023-10-30
  • 录用日期:  2023-11-09
  • 网络出版日期:  2023-11-22
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回