Modification strategies of transition metal phosphide-based materials in electrocatalytic hydrogen evolution: Current status and prospect
-
摘要: 氢能作为一种零碳燃料,被认为是替代化石能源的理想能源。电催化析氢(HER)是一种绿色环保技术,可以裂解水分子制备氢气。因此开发低廉高效且稳定性好的非贵金属催化剂对于解决能源危机和可持续发展尤为重要。过渡金属磷化物(TMPs)具有良好的导电性、多变的化学组成、丰富的储量和稳定的理化性质,是HER反应重要的催化剂之一。本文首先介绍了HER反应机制及TMPs的结构特点,然后总结了TMPs的合成方法包括液相合成法和气-固合成法等,接着重点分析了现有TMPs的改性策略如形貌调控、缺陷调控、元素掺杂和界面复合,最后对未来TMPs的发展方向提出了展望。Abstract: Hydrogen, a zero-carbon fuel, is supposed to be the potential alternative for fossil energy. Electrocatalytic hydrogen evolution reaction (HER) is a green technology that could split water molecules to produce hydrogen. Therefore, exploring the low-cost, efficient and long-stable noble metal-free catalysts is particularly important for solving the problems of energy crisis and sustainable development. Transition metal phosphides (TMPs) possess excellent electrical conductivity, variable chemical composition, abundant reserves and stable physicochemical properties, which is one of the critical catalysts in HER. Herein, the HER mechanism and the structural characteristics of TMPs are introduced at first, then the fabrication approaches of TMPs like liquid phase formation, gas-solid synthesis, etc. are summarized. This paper are mainly focusing on the recent modification strategies for TMPs-based nanostructures, such as morphology regulation, vacancy creation, elemental doping and interface engineering. Finally, the future directions for the development of TMPs is proposed.
-
图 4 Fe-CoP (a)[39]和3D WP2 纳米线 (b)[42]的SEM图像;(c) FeP、Mg-FeP和Vc-FeP的(111)晶面的结合能图[43];(d) CoP的线性扫描伏安曲线[44]
Figure 4. SEM images of Fe-CoP (a)[39]and 3D WP2 nanowire (b)[42]; (c) Free energy diagram of FeP, Mg-FeP and Vc-FeP of (111) crystal plane[43]; (d) Liner sweep voltammetry curves of CoP[44]
Vc-FeP—Fe-vacancy-rich FeP; F-CoP-Vp—F doping and P vacancies CoP; U—Voltage; RHE—Reversible hydrogen electrode
图 5 (a) W-NiCoP/镍泡沫(NF)的HER机制图[49];(b) Cu-CoP材料不同位点的HER反应能垒图[50];(c) H和金属位之间态密度图[51];(d) 恒电位下C-Co2P的原位拉曼光谱及等值线图[72]
Figure 5. (a) HER mechanism for W-NiCoP/nickel foam (NF)[49]; (b) HER free energy diagrams for various sites on Cu-CoP[50]; (c) Partial density of states between H and active metallic site[51]; (d) In-situ Raman spectra and corresponding contour plots of C-Co2P at constant potentials[72]
OCP—Open circuit potential; DOS—Density of states
表 1 通过缺陷调控改善TMPs 基电催化剂的HER性能的总结
Table 1. Summary of the HER performance for TMPs-based electrocatalysts by vacancy creation
Catalyst Vacancy Substrate Current density/
(mA·cm−2)Overpotential/
mVTafel slope/
(mV·dec−1)Ref. WP Cationic vacancies Glassy carbon electrode 100 175 58 [18] Vc-FeP Cationic vacancy Ti foils 10 108 33 [43] F-CoP-Vp Anion vacancies Carbon fiber cloth 10 108 88.9 [44] V-Ni2P/NF Cationic vacancy Nickel foam (NF) 10 81 48 [45] WP Cationic vacancies Glassy carbon electrode 300 80.6 52 [46] S-CoP-p P vacancies Ti mesh 100 114 58.4 [47] 表 2 通过元素掺杂改善TMPs 基电催化剂的HER性能的总结
Table 2. Summary of the HER performance for TMPs-based electrocatalysts by elemental doping
Catalyst Substrate Current density/(mA·cm−2) Overpotential/mV Tafel slope/(mV·dec−1) Ref. MnCoP/CC Carbon cloth (CC) 10 65 46.16 [29] Fe-CoP@CC Carbon cloth 10 49 149 [39] W-NiCoP/NF Nickel foam (NF) 10 29.6 38 [49] Cu-CoP NAs/CP Carbon paper (CP) 10 81 83.5 [50] S-WP2 Carbon cloth 10 115 75 [51] Zn/F-NiCoP/NF Nickel foam 10 59 81.03 [52] V-CoxP@NC Carbon paper 10 106 93 [53] Mn-CoP Glassy carbon electrode 10 148 61 [54] CoP-N/Co foam Co foam 50 100 50.9 [55] W, Ru-NiP2 Nickel foam 10 17.8 67.5 [56] F0.25CP-G Graphene (G) 10 66 61 [57] O-CoP Glassy carbon electrode 10 98 59.9 [58] Mo-CoFeP/NC Glassy carbon electrode 10 145 68 [59] pCoMo-P/ NF Nickel foam 10 49 55.02 [60] O-CoP Glassy carbon electrode 10 116 59 [61] Mn-doped CoP/NF Nickel foam 10 60 56.7 [62] V-Ni5P4 Nickel foam 10 13 — [63] Co-Cu3P/CF Cu foam (CF) 100 250 75 [64] CoFeP/C Graphene 10 42.1 59 [65] V-CoP/CC Carbon cloth 10 71 67.6 [66] Mn-CoP PMFs/CC Carbon cloth 10 90 86.1 [67] V-doped CoP/NF Nickel foam 10 84.6 79.2 [68] CoFeP/NF Nickel foam 10 29.8 68.4 [69] Ga-CoP NSs/CFP Carbon fiber paper (CFP) 10 44 62 [70] Nb-CoP Glassy carbon electrode 10 99 59.4 [71] Notes: NAs—Nanosheet arrays; PMFs—Peony-like micro-flower; NSs—Nanosheets; NC—Nitrogen doped carbon. 表 3 界面复合调控TMPs 基电催化剂的HER性能的总结
Table 3. Summary of the HER performance for TMPs-based catalysts by interface engineering
Catalyst Substrate Current density/(mA·cm−2) Overpotential/mV Tafel slope/(mV·dec−1) Ref. NiCoP@FePx – 10 82.5 69.1 [17] CoP3/Fe2P@NF Nickel foam 10 81 104.4 [23] Co2P&CoP@NC Nickel foam 10 62.8 60 [33] NiP-Pt/Co(OH)2 Nickel foam 10 40 49.85 [30] CoFeP/rGO Glassy carbon electrode 10 101 169 [32] CoFeP NS@Fe-CoP Nickel foam 10 78 73 [73] NiFe LDH/CoFeP/NF Nickel foam 50 198 75.2 [74] CoP/NiCoP N-doped carbon 10 75 64 [75] Cu3P/NiCoP Nickel-cobalt foam 10 51 89 [76] CoP-WP/rGO Nickel foam 10 138 62 [77] g-C3N4/Cu3P Cu foil 10 67 45 [78] W2C/WP@NC Glassy carbon electrode 10 116.37 59.07 [79] NiP/Wood Pristine wood 10 83 73.2 [80] Cu3P@NPC Copper foam 10 81.94 81.25 [81] CoFeP NFs/NPCNT Glassy carbon electrode 10 132 62.9 [82] CoP/Mo2CTx Glassy carbon electrode 10 78 66 [83] N-CoO@CoP Nickel foam 100 201 37 [84] Fe2O3-TiO2/rGO Reduced graphene oxide 10 96 98 [85] Ni2P@NPCNFs Carbon cloth 10 63.2 56.7 [86] CoFeP NS@NCNF Nickel foam 10 113 108 [87] CoFeOH/CoFeP/IF Iron foam (IF) 100 114.9 128.37 [88] Notes: NPC—Nitrogen and phosphorus co-doped carbon; NPCNT—Nitrogen and phosphorus co-doped carbon nanotubes; NPCNFs—Nitrogen-doped porous carbon nanofibers; NCNF—Nitrogen-doped carbon nanofiber; NFs—Nanoframes; MoCT—Molybdenum carbide (T is the surface terminal group). -
[1] GUO X, LI M G, QIU L Y, et al. Engineering electron redistribution of bimetallic phosphates with CeO2 enables high-performance overall water splitting[J]. Chemical Engineering Journal, 2023, 453: 139796. doi: 10.1016/j.cej.2022.139796 [2] SHAN A X, TENG X A, ZHANG Y, et al. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction[J]. Nano Energy, 2022, 94: 106913. doi: 10.1016/j.nanoen.2021.106913 [3] WANG C S, ZHANG Q, YAN B, et al. Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions[J]. Nano-Micro Letters, 2023, 15: 52. doi: 10.1007/s40820-023-01024-6 [4] WANG L, GONG N, ZHOU Z, et al. Electronic modulation of multi-element transition metal phosphide by V-doping for high-efficiency and pH-universal hydrogen evolution reactio[J]. International Journal of Hydrogen Energy, 2022, 47: 18305-18313. doi: 10.1016/j.ijhydene.2022.04.024 [5] CHEN Z J, DUAN X G, WEI W, et al. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution[J]. Journal of Materials Chemistry A, 2019, 7: 14971-15005. doi: 10.1039/C9TA03220G [6] WANG J J, YUE X Y, YANG Y Y, et al. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review[J]. Journal of Alloys and Compounds, 2020, 819: 153346. doi: 10.1016/j.jallcom.2019.153346 [7] 姜金池, 金彪, 孟龙月. 基于电催化析氧反应的非贵金属催化剂研究进展[J]. 复合材料学报, 2023, 40(3): 1365-1380. doi: 10.13801/j.cnki.fhclxb.20220819.001JIANG Jinchi, JIN Biao, MENG Longyue. Research progress of non-noble metal catalysts based on electrocatalytic oxygen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1365-1380(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220819.001 [8] GAO Y Y, QIAN S, WANG H J, et al. Boron-doping on the surface mediated low-valence Co centers in cobalt phosphide for improved electrocatalytic hydrogen evolution[J]. Applied Catalysis B-Environmental, 2023, 320: 122014. doi: 10.1016/j.apcatb.2022.122014 [9] 姚素薇, 李贺, 张卫国, 等. AC/Ni-Co复合电极材料的制备及其催化析氢性能[J]. 复合材料学报, 2006, 23(3): 77-81.YAO Suwei, LI He, ZHANG Weiguo, et al. Preparation and property for hydrogen evolution of AC (activated char)/Ni-Co composite electrode materials[J]. Acta Materiae Compositae Sinica, 2006, 23(3): 77-81(in Chinese). [10] YANG S F, YANG X B, WANG Q, et al. Facet-selective hydrogen evolution on Rh2P electrocatalysts in pH-universal media[J]. Chemical Engineering Journal, 2022, 449: 137790. doi: 10.1016/j.cej.2022.137790 [11] DU H T, KONG R M, GUO X X, et al. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution[J]. Nanoscale, 2018, 10: 21617-21624. doi: 10.1039/C8NR07891B [12] LI W F, JIANG Y, LI Y R, et al. Electronic modulation of CoP nanoarrays by Cr-doping for efficient overall water splitting[J]. Chemical Engineering Journal, 2021, 425: 130651. doi: 10.1016/j.cej.2021.130651 [13] LIN Y, CHEN X M, TUO Y X, et al. In-situ doping-induced lattice strain of NiCoP/S nanocrystals for robust wide pH hydrogen evolution electrocatalysis and supercapacitor[J]. Journal of Energy Chemistry, 2022, 70: 27-35. doi: 10.1016/j.jechem.2022.02.024 [14] 李创, 王宇, 候利强, 等. 多孔碳负载钌单原子和钌纳米团簇催化剂用于高效析氢反应[J]. 复合材料学报, 2023, 40(4): 2155-2168.LI Chuang, WANG Yu, HOU Liqiang, et al. Porous carbon supported ruthenium single atom and ruthenium nanoclusters catalysts for efficient hydrogen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2155-2168(in Chinese). [15] GUO Z T, LIU L, WANG J Q, et al. Recent progress in CoP-based materials for electrochemical water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(69): 34194-34215. [16] ZHANG X D, KIM S, GUO X Y, et al. Impacts of boron doping on the atomic structure, stability, and photocatalytic activity of Cu3P nanocrystals[J]. Applied Catalysis B: Environmental, 2021, 298: 120515. [17] LI M X, LIU X X, HU X L, et al. Fabrication of core-sheath NiCoP@FeP x nanoarrays for efficient electrocatalytic hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8847-8855. [18] LI F, WANG C R, HAN X C, et al. Confinement effect of mesopores: In situ synthesis of cationic tungsten-vacancies for a highly ordered mesoporous tungsten phosphide electrocatalyst[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 22741-22750. [19] XIONG L W, QIU Y F, ENG X, et al. Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction[J]. Nano Energy, 2022, 104: 107882. doi: 10.1016/j.nanoen.2022.107882 [20] ZHAGN X Y, XIE J Y, MA Y, et al. An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction[J]. Chemical Engineering Journal, 2022, 430: 132312. doi: 10.1016/j.cej.2021.132312 [21] ZHU C R, GAO D Q, DING J, et al. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches[J]. Chemical Society Reviews, 2018, 47: 4332-4356. doi: 10.1039/C7CS00705A [22] FENG S Y, YU Y H, LI J, et al. Recent progress in seawater electrolysis for hydrogen evolution by transition metal phosphides[J]. Catalysis Communications, 2022, 162: 106382. doi: 10.1016/j.catcom.2021.106382 [23] YANG Y Y, YANG J Y, KONG C, et al. Heterogeneous cobalt-iron phosphide nanosheets formed by in situ phosphating of hydroxide for efficient overall water splitting[J]. Journal of Alloys and Compounds, 2022, 926: 166930. doi: 10.1016/j.jallcom.2022.166930 [24] HONG L F, GUO R T, YUAN Y, et al. Recent progress of transition metal phosphides for photocatalytic hydrogen evolution[J]. ChemSusChem, 2021, 14(2): 539-557. [25] OYAMA S T, GOTT T, ZHAO H, et al. Transition metal phosphide hydroprocessing catalysts: A review[J]. Catalysis Today, 2009, 143: 94-107. doi: 10.1016/j.cattod.2008.09.019 [26] JI L L, WANG J Y, TENG X, et al. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting[J]. ACS Catalysis, 2020, 10(1): 412-419 . doi: 10.1021/acscatal.9b03623 [27] SU J Z, ZHOU J L, WANG L, et al. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting[J]. Science Bulletin, 2017, 62: 633-644. doi: 10.1016/j.scib.2016.12.011 [28] YANG X L, LU A Y, ZHU Y H, et al. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation[J]. Nano Energy, 2015, 15: 634-641. doi: 10.1016/j.nanoen.2015.05.026 [29] WANG M S, FU W Y, DU L, et al. Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis[J]. Applied Surface Science, 2020, 515: 146059. doi: 10.1016/j.apsusc.2020.146059 [30] LIU Z X, GUO Z G, HE H L, et al. Interface regulation of Pt quantum dots doped nickel phosphide and cobalt hydroxide to promote electrocatalytic overall water splitting[J]. International Journal of Hydrogen Energy, 2022, 47: 40986-40998. doi: 10.1016/j.ijhydene.2022.09.182 [31] ZONG Q, LIU C F, YANG H, et al. Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors[J]. Nano Today, 2021, 38: 101201. doi: 10.1016/j.nantod.2021.101201 [32] CAI X D, SONG Q, JIAO D H, et al. Bifunctional electrocatalysts of CoFeP/rGO heterostructure for water splitting[J]. International Journal of Hydrogen Energy, 2022, 47: 39499-39508. doi: 10.1016/j.ijhydene.2022.09.112 [33] YI X L, SONG L Z, OUYANG S X, et al. Structural and componential engineering of Co2P&CoP@N-C nanoarrays for energy-efficient hydrogen production from water electrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56064-56072 . [34] PU Z H, LIU T T, AMIINU I S, et al. Transition-metal phosphides: Activity origin, energy-related electrocatalysis applications, and synthetic strategies[J]. Advanced Functional Materials, 2020, 30(45): 2004009. [35] WU J J, FU Z W. Pulsed-laser-deposited Sn4P3 electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2009, 156: A22. doi: 10.1149/1.3005960 [36] YU F, ZHOU H Q, HUANG Y F, et al. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting[J]. Nature Communications, 2018, 9: 2551. doi: 10.1038/s41467-018-04746-z [37] LU X F, YU L, LOU X W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts[J]. Science Advances, 2019, 5(2): eaav6009. [38] ZHAO X J, LUO D, WANG Y, et al. Reduced graphene oxide-supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction[J]. Nano Research, 2019, 12: 2872-2880. doi: 10.1007/s12274-019-2529-y [39] YANG Y Y, MENG H X, KONG C, et al. Template-free synthesis of 1D hollow Fe doped CoP nanoneedles as highly activity electrocatalysts for overall water splitting[J]. International Journal of Hydrogen Energy, 2021, 46: 28053-28063. doi: 10.1016/j.ijhydene.2021.06.047 [40] ZHAO L, WEN M, TIAN Y K, et al. A novel structure of quasi-monolayered NiCo-bimetal-phosphide for superior electrochemical performance[J]. Journal of Energy Chemistry, 2022, 74: 203-211. doi: 10.1016/j.jechem.2022.07.017 [41] TIAN Y S, LI S Y, QIN P P, et al. Metal-organic frameworks derived multidimensional CoP/N, P-doped carbon architecture as an efficient electrocatalyst for overall water splitting[J]. ChemCatChem, 2021, 13(13): 3037-3045. doi: 10.1002/cctc.202100272 [42] MENG F Y, YU Y, SUN D F, et al. Three-dimensional flower-like WP2 nanowire arrays grown on Ni foam for full water splitting[J]. Applied Surface Science, 2021, 546: 148926. doi: 10.1016/j.apsusc.2021.148926 [43] KWONG W L, GRACIA-ESPINO E, LEE C C, et al. Cationic vacancy defects in iron phosphide: A promising route toward efficient and stable hydrogen evolution by electrochemical water splitting[J]. ChemSusChem, 2017, 10(22), 4544-4551. [44] XU K, SUN Y Q, LI X L, et al. Fluorine-induced dual defects in cobalt phosphide nanosheets enhance hydrogen evolution reaction activity[J]. ACS Materials Letters, 2020, 2(7): 736-743. [45] ZHANG W Z, CHEN G Y, ZHAO J, et al. Self-growth Ni2P nanosheet arrays with cationic vacancy defects as a highly efficient bifunctional electrocatalyst for overall water splitting[J]. Journal of Colloid and Interface Science, 2020, 561: 638-646. doi: 10.1016/j.jcis.2019.11.039 [46] ZHANG X Y, GUO T, LIU T Y, et al. Tungsten phosphide (WP) nanoparticles with tunable crystallinity, W vacancies, and electronic structures for hydrogen production[J]. Electrochimica Acta, 2019, 323: 134798. doi: 10.1016/j.electacta.2019.134798 [47] XU R R, JIANG T F, FU Z, et al. Ion-exchange controlled surface engineering of cobalt phosphide nanowires for enhanced hydrogen evolution[J]. Nano Energy, 2020, 78: 105347. doi: 10.1016/j.nanoen.2020.105347 [48] 孙兴伟, 白杰, 李春萍, 等. 钴基电极材料的改性策略及其应用研究[J]. 复合材料学报, 2023, 40(5): 2550-2565.SUN Xingwei, BAI Jie, LI Chunping, et al. Modification strategy and application of cobalt-based electrode materials[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2550-2565(in Chinese). [49] LU S S, ZHANG L M, DONG Y W, et al. Tungsten-doped Ni-Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(28): 16859-16866. doi: 10.1039/C9TA03944A [50] YAN L, ZHANG B, ZHU J L, et al. Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting[J]. Applied Catalysis B: Environmental, 2020, 265: 118555. doi: 10.1016/j.apcatb.2019.118555 [51] LIU W, XIAO Z Z, CHANDRASEKARAN S, et al. Insights into the effect of sulfur incorporation into tungsten diphosphide for improved hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16157-16164. [52] ZHU J J, ZHENG X Y, LIU C C, et al. Zinc and fluorine ions dual-modulated NiCoP nanoprism array electrocatalysts for efficient water splitting[J]. Journal of Colloid and Interface Science, 2023, 630: 559-569. doi: 10.1016/j.jcis.2022.10.136 [53] GUO W H, ZHANG Q, WANG X H, et al. MOF-derived V-Co xP@NC nanoarchitectures for highly enhanced electrocatalytic water splitting through electronical tuning[J]. Electrochimica Acta, 2020, 357: 136850. doi: 10.1016/j.electacta.2020.136850 [54] LI Y L, JIA B M, CHEN B Y, et al. MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting[J]. Dalton Transactions, 2018, 47: 14679-14685. doi: 10.1039/C8DT02706D [55] LIU Z, YU X, XUE H G, et al. A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(21): 13242-13248. doi: 10.1039/C9TA03201K [56] QIN L, SONG T S, GUO L, et al. Boosting the electrocatalytic performance of ultrathin NiP2 nanosheets by synergic effect of W and Ru doping engineering[J]. Applied Surface Science, 2020, 508: 145302. doi: 10.1016/j.apsusc.2020.145302 [57] TAHMASEBI Z, MOHAMMADI ZARDKHOSHOUI A, HOSSEINY DAVARANI S S. Facile synthesis of Fe-doped CoP nanosheet arrays wrapped by graphene for overall water splitting[J]. Dalton Transactions, 2021, 50(35): 12168-12178. [58] ZHOU G Y, LI M, LI Y L, et al. Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting[J]. Advanced Functional Materials, 2020, 30(7): 1905252. [59] FU R R, JIAO X G, YU J A, et al. Mo-doped CoFeP/nitrogen doped carbon porous nanocubes for alkaline hydrogen production[J]. Journal of Electroanalytical Chemistry, 2023, 930: 117137. doi: 10.1016/j.jelechem.2022.117137 [60] HAN Y C, LI P F, TIAN Z F, et al. Molybdenum-doped porous cobalt phosphide nanosheets for efficient alkaline hydrogen evolution[J]. ACS Applied Energy Materials, 2019, 2(9): 6302-6310. doi: 10.1021/acsaem.9b00924 [61] MA Y, ZHOU G Y, LIU Z Y, et al. Electronic structural regulation of CoP nanorods by the tunable incorporation of oxygen for enhanced electrocatalytic activity during the hydrogen evolution reaction[J]. Nanoscale, 2020, 12(27): 14733-14738. doi: 10.1039/D0NR03685D [62] MENG C, WANG Z M, ZHANG L J, et al. Tuning the Mn dopant to boost the hydrogen evolution performance of CoP nanowire arrays[J]. Inorganic Chemistry Frontiers, 2022, 61(25): 9832-9839. [63] RAO Y, WANG S W, ZHANG R Y, et al. Nanoporous V-doped Ni5P4 microsphere: A highly efficient electrocatalyst for hydrogen evolution reaction at all pH[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37092-37099. [64] RONG Y S, MA Y H, GUO F Y, et al. Paintbrush-like Co doped Cu3P grown on Cu foam as an efficient janus electrode for overall water splitting[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28833-28840. doi: 10.1016/j.ijhydene.2019.09.042 [65] WANG H L, WANG Y C, ZHANG J W, et al. Electronic structure engineering through Fe-doping CoP enables hydrogen evolution coupled with electro-Fenton[J]. Nano Energy, 2021, 84: 105943. doi: 10.1016/j.nanoen.2021.105943 [66] XIAO X, TAO L M, LI M, et al. Electronic modulation of transition metal phosphide via doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction[J]. Chemical Science, 2018, 9(7): 1970-1975. doi: 10.1039/C7SC04849A [67] XU S R, YU X, LIU X, et al. Contrallable synthesis of peony-like porous Mn-CoP nanorod electrocatalyst for highly efficient hydrogen evolution in acid and alkaline[J]. Journal of Colloid and Interface Science, 2020, 577: 379-387. doi: 10.1016/j.jcis.2020.05.097 [68] XUE H Y, MENG A, ZHANG H Q, et al. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting[J]. Nano Research, 2021, 14: 4173-4181. doi: 10.1007/s12274-021-3359-2 [69] YU X R, CHEN L X, JIA L Y, et al. Ion exchange synthesis of Fe-doped clustered CoP nanowires as superior electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2023, 48(44): 16715-16724. doi: 10.1016/j.ijhydene.2023.01.108 [70] ZHANG Y, HUI Z X, ZHOU H Y, et al. Ga doping enables superior alkaline hydrogen evolution reaction performances of CoP[J]. Chemical Engineering Journal, 2022, 429: 132012. doi: 10.1016/j.cej.2021.132012 [71] ZOU W J, XIANG J D, TANG H. Niobium-doped cobalt phosphide nanowires realizing enhanced electrocatalytic activity for overall water splitting[J]. International Journal of Hydrogen Energy, 2022, 47(27): 13251-13260. [72] XU W C, FAN G L, ZHU S L, et al. Electronic structure modulation of nanoporous cobalt phosphide by carbon doping for alkaline hydrogen evolution reaction[J]. Advanced Functional Materials, 2021, 31(48): 2107333. [73] BI H H, LI B, ZHAGN J, et al. Supersaturation-triggered synthesis of 2D/1D phosphide heterostructures as multi-functional catalysts for water splitting[J]. Applied Physics Letters, 2021, 118(9): 093901. doi: 10.1063/5.0041080 [74] YE F, MA X F, CAO Y P, et al. Heterogeneous layered multiple transition metal composite electrocatalysts with controlled composition for hydrogen production[J]. International Journal of Hydrogen Energy, 2023, 48(5): 1733-1746. doi: 10.1016/j.ijhydene.2022.10.065 [75] BOPPELLA R, TAN J W, YANG W, et al. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis[J]. Advanced Functional Materials, 2019, 29(6): 1807976. [76] YANG Y X, ZHANG L, GUO F Y, et al. Curved trapezoidal Cu3P/NiCoP nanosheet arrays on nickel-cobalt foam for pH-insensitive hydrogen evolution reaction[J]. Electrochimica Acta, 2022, 421: 140498. doi: 10.1016/j.electacta.2022.140498 [77] JIAO Y Q, YAN H J, WANG D X, et al. Multi-touch cobalt phosphide-tungsten phosphide heterojunctions anchored on reduced graphene oxide boosting wide pH hydrogen evolution[J]. Science China Materials, 2022, 65: 1225-1236. doi: 10.1007/s40843-021-1894-4 [78] RIYAJUDDIN S, TARIK AZIZ S K, KUMAR S, et al. 3D-graphene decorated with g-C3N4/Cu3P composite: A noble metal-free bifunctional electrocatalyst for overall water splitting[J]. ChemCatChem, 2020, 12(5): 1394-1402. [79] WEI P, SUN X P, WANG M H, et al. Construction of an N-decorated carbon-encapsulated W2C/WP heterostructure as an efficient electrocatalyst for hydrogen evolution in both alkaline and acidic media[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53955-53964. [80] HUI B, ZHANG K W, XIA Y Z, et al. Natural multi-channeled wood frameworks for electrocatalytic hydrogen evolution[J]. Electrochimica Acta, 2020, 330: 135274. doi: 10.1016/j.electacta.2019.135274 [81] JIANG E J, JIANG J H, HUANG G, et al. Porous nanosheets of Cu3P@N, P co-doped carbon hosted on copper foam as an efficient and ultrastable pH-universal hydrogen evolution electrocatalyst[J]. Sustainable Energy Fuels, 2021, 5(9): 2451-2457. doi: 10.1039/D1SE00161B [82] LI W X, CHEN Y F, YU B, et al. 3D hollow Co-Fe-P nanoframes immobilized on N, P-doped CNT as an efficient electrocatalyst for overall water splitting[J]. Nanoscale, 2019, 11(36): 17031-17040. doi: 10.1039/C9NR05924E [83] LIU S L, LIN Z S, WAN R D, et al. Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting[J]. Journal of Materials Chemistry A, 2021, 9(37): 21259-21269. doi: 10.1039/D1TA05648D [84] LU M J, LI L, CHEN D, et al. MOF-derived nitrogen-doped CoO@CoP arrays as bifunctional electrocatalysts for efficient overall water splitting[J]. Electrochimica Acta, 2020, 330: 135210. doi: 10.1016/j.electacta.2019.135210 [85] SUMI V S, MEERA M S, SHA M A, et al. Effect of rGO on Fe2O3-TiO2 composite incorporated NiP coating for boosting hydrogen evolution reaction in alkaline solution[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2460-2477. doi: 10.1016/j.ijhydene.2019.11.167 [86] WANG M Q, YE C, LIU H, et al. Nanosized metal phosphides embedded in nitrogen-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values[J]. Angewandte Chemie-International Edition, 2018, 57(7): 1963-1967. [87] WEI B, XU G C, HEI J C, et al. CoFeP hierarchical nanoarrays supported on nitrogen-doped carbon nanofiber as efficient electrocatalyst for water splitting[J]. Journal of Colloid and Interface Science, 2021, 602: 619-626. doi: 10.1016/j.jcis.2021.06.045 [88] ZHANG X Y, WANG F L, FU J Y, et al. Amorphous-crystalline catalytic interface of CoFeOH/CoFeP with double sites based on ultrafast hydrolysis for hydrogen evolution at high current density[J]. Journal of Power Sources, 2021, 507: 230279. doi: 10.1016/j.jpowsour.2021.230279