过渡金属磷化物基材料在电催化析氢中的改性策略:现状及展望

雷琬莹, 吴攀, 司渭滨, 赵亮, 谭自强, 杨鑫鑫, 乔明涛, 张婷婷

雷琬莹, 吴攀, 司渭滨, 等. 过渡金属磷化物基材料在电催化析氢中的改性策略:现状及展望[J]. 复合材料学报, 2024, 41(4): 1737-1749. DOI: 10.13801/j.cnki.fhclxb.20231120.002
引用本文: 雷琬莹, 吴攀, 司渭滨, 等. 过渡金属磷化物基材料在电催化析氢中的改性策略:现状及展望[J]. 复合材料学报, 2024, 41(4): 1737-1749. DOI: 10.13801/j.cnki.fhclxb.20231120.002
LEI Wanying, WU Pan, SI Weibin, et al. Modification strategies of transition metal phosphide-based materials in electrocatalytic hydrogen evolution: Current status and prospect[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1737-1749. DOI: 10.13801/j.cnki.fhclxb.20231120.002
Citation: LEI Wanying, WU Pan, SI Weibin, et al. Modification strategies of transition metal phosphide-based materials in electrocatalytic hydrogen evolution: Current status and prospect[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1737-1749. DOI: 10.13801/j.cnki.fhclxb.20231120.002

过渡金属磷化物基材料在电催化析氢中的改性策略:现状及展望

基金项目: 国家自然科学基金(51902443);陕西省教育厅重点研究项目(22JY039;22JY037)
详细信息
    通讯作者:

    雷琬莹,博士,副教授,硕士生导师,研究方向为纳米复合材料、能源转化与利用 E-mail: leiwy@xauat.edu.cn

  • 中图分类号: TB331

Modification strategies of transition metal phosphide-based materials in electrocatalytic hydrogen evolution: Current status and prospect

Funds: National Natural Science Foundation of China (51902443); Key Research Project of Shaanxi Education Department (22JY039; 22JY037)
  • 摘要: 氢能作为一种零碳燃料,被认为是替代化石能源的理想能源。电催化析氢(HER)是一种绿色环保技术,可以裂解水分子制备氢气。因此开发低廉高效且稳定性好的非贵金属催化剂对于解决能源危机和可持续发展尤为重要。过渡金属磷化物(TMPs)具有良好的导电性、多变的化学组成、丰富的储量和稳定的理化性质,是HER反应重要的催化剂之一。本文首先介绍了HER反应机制及TMPs的结构特点,然后总结了TMPs的合成方法包括液相合成法和气-固合成法等,接着重点分析了现有TMPs的改性策略如形貌调控、缺陷调控、元素掺杂和界面复合,最后对未来TMPs的发展方向提出了展望。
    Abstract: Hydrogen, a zero-carbon fuel, is supposed to be the potential alternative for fossil energy. Electrocatalytic hydrogen evolution reaction (HER) is a green technology that could split water molecules to produce hydrogen. Therefore, exploring the low-cost, efficient and long-stable noble metal-free catalysts is particularly important for solving the problems of energy crisis and sustainable development. Transition metal phosphides (TMPs) possess excellent electrical conductivity, variable chemical composition, abundant reserves and stable physicochemical properties, which is one of the critical catalysts in HER. Herein, the HER mechanism and the structural characteristics of TMPs are introduced at first, then the fabrication approaches of TMPs like liquid phase formation, gas-solid synthesis, etc. are summarized. This paper are mainly focusing on the recent modification strategies for TMPs-based nanostructures, such as morphology regulation, vacancy creation, elemental doping and interface engineering. Finally, the future directions for the development of TMPs is proposed.
  • 随着我国桥梁建设的快速发展,交通量的增加,桥梁结构遭遇火灾情况也时有发生[1-4],2007年10月广东广深高速虎门大桥,油罐车爆炸引发大火,拉索和桥墩都被大火湮灭;2014年,湖南郴州在建赤石特大桥在主跨合拢前6号桥墩左幅塔顶突发大火,事故导致6号桥墩左幅9根斜拉索断裂,这些火灾事故对缆索的受力性能构成了极大的考验。文献[5-8]对钢丝缆索的高温力学性能进行研究,在火灾高温下钢丝力学性能会明显下降,导致缆索的承载能力急剧下降。

    采用轻质、高强、耐腐蚀、抗疲劳的碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)用于桥梁缆索,可提高桥梁跨径,从根本上解决钢质拉索的腐蚀及疲劳问题。但CFRP索内的CFRP筋遇到火灾后环氧树脂会燃烧分解,影响其极限承载性能,对桥梁结构的安全造成影响。文献[9-12]通过试验研究发现,高温下CFRP筋的力学性能下降十分明显。付成龙等[11]研究了温度对CFRP筋弯曲强度和压缩强度的影响,研究显示温度对试样弯曲强度和压缩强度的影响较大,CFRP筋的强度保留率随温度升高而降低。方志等[12]对较高玻璃化转变温度Tg(Tg >200℃)的CFRP筋高温后力学性能进行研究,处理温度为100℃时,筋材静力性能与常温试件相比未发生明显变化,筋材经历200℃和300℃温升作用后,其抗拉强度、弹性模量和极限拉应变均有所下降。

    文献[13-15]对桥梁缆索的阻燃防火措施做了一些研究。李艳等[13]在索体外表面设置一种导热系数很低的耐高温防火涂层,从而降低火源热辐射传给索体的温度。张凯等[14]研究了带砂浆包覆层CFRP筋的高温力学性能,在砂浆包覆层保持完好未爆裂的情况下,包覆层为CFRP筋提供了较好的隔氧环境,CFRP筋在长时间高温作用后具有较高的残余强度。徐玉林等[15]对外包陶瓷纤维防火层的CFRP索的耐火性进行了火灾试验研究,对CFRP 缆索外包陶瓷纤维防火层可大幅提高缆索的临界安全耐火时长。

    综上所述,目前已有一些缆索的阻燃防火措施,如外包砂浆或陶瓷纤维防火层,但这些措施会大幅度增大索体直径,严重影响索体外表面的空气动力学特性。本文针对桥梁缆索用CFRP筋在高温下的力学性能及CFRP索的阻燃防火措施进行系统研究,研制开发具有阻燃防火特性的CFRP索,避免火灾带来的风险,保障应用安全,有助于CFRP索的推广应用。

    CFRP筋采用拉挤成型工艺制备,为了便于锚固,筋材表面带有螺旋肋,筋材底径7 mm,纤维体积分数为72vol%,密度为1.52 g/cm3,玻璃化转变温度Tg为120℃。

    图1为CFRP筋高温拉伸试验。可见,筋材两端采用粘结型锚固方式,筋材锚固后穿过试验台架,在筋材中间自由段部位外套金属铝筒,金属铝筒外缠绕加热带对筒内空气进行加热,采用热电偶监测空气温度,采用温度继电器控制温度,使金属铝筒内温度保持设定温度,采用千斤顶加载,加载速度不超过300 MPa/min。筋材拉伸强度为筋材破断时压力传感器载荷读数除以筋材承载面积。

    图  1  碳纤维增强树脂复合材料(CFRP)筋高温拉伸试验
    Figure  1.  High temperature tensile test of carbon fiber reinforced polymer (CFRP) tendon

    对筋材中间自由段部位进行加热,加热至指定温度,保温2 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。

    图2为不同温度下保温 2 h后的CFRP筋材抗拉强度。可以看出,随着试验温度的升高,筋材拉伸强度呈线性下降趋势,270℃加热2 h,筋材强度降为2000 MPa左右,210℃加热2 h,筋材强度最低为2245.8 MPa,比初始强度下降26.13%。图3为保温2 h后筋材高温拉伸破断照片。可以看出,筋材发生了散丝状断裂。

    图  2  不同温度下保温 2 h后的CFRP筋材抗拉强度
    Figure  2.  Tensile strength of CFRP tendons at different temperatures with heat preservation 2 h
    图  3  CFRP筋材高温拉伸破断状态
    Figure  3.  Tensile fracture state of CFRP tendons at high temperature

    对筋材中间自由段部位进行加热,加热至210℃,分别保温1、2、3 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。图4为210℃不同保温时间下的CFRP筋材抗拉强度。

    图  4  210℃不同保温时间下的CFRP筋材抗拉强度
    Figure  4.  Tensile strength of CFRP tendons with different holding time at 210℃

    可以看出,筋材高温拉伸强度仅与试验温度有关,当筋材芯部温度达到保温温度时,筋材的高温拉伸强度与保温时间无关,210℃的高温3 h内,筋材剩余拉伸强度均能达到2245.8 MPa以上。

    对筋材中间自由段部位进行加热,加热至指定温度,保温2 h,待筋材充分冷却至室温后进行破断拉伸试验,获得筋材经历高温冷却后的拉伸强度,如图5所示。可以看出,筋材高温加热冷却后继续进行拉伸试验,拉伸强度会存在一定的可逆性恢复,且恢复后的剩余强度均能达到2800 MPa以上,但最终剩余拉伸强度较原始强度呈略微下降趋势,且加热温度越高,剩余拉伸强度越低,最大下降幅度为6.13%。

    图  5  经历不同温度加热2 h冷却后CFRP筋材抗拉强度
    Figure  5.  Tensile strength of CFRP tendons after heating at different temperatures for 2 h and cooling

    分别采用石棉布、陶瓷纤维布及阻燃防火涂层材料来研究对CFRP筋/索的阻燃防火效果。

    对在持荷状态下的7 mm直径CFRP筋试验件中间部位用火焰温度1000℃的高温火焰枪进行灼烧,如图6所示,其中图6(a)中筋材无保护,图6(b)中筋材包裹陶瓷纤维布,观测不同时间筋材的受力状态及筋材表面的温度变化,灼烧2 h后,进行破断拉伸试验,获得剩余强度。

    表1为不同防护措施下筋材温度及持荷性能。可以看出,在无任何防护条件下,对拉伸应力水平1170 MPa条件下的CFRP筋用火焰温度1000℃的高温火焰枪进行灼烧,25 min后,筋材灼烧部位树脂热解,筋材断裂;采用45 mm厚度陶瓷纤维布与石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高分别为562℃与635℃,筋材高温部位树脂发生热解,没有发生断裂(图7),剩余强度分别为1646 MPa与1249 MPa,图8为其破断试样;采用60 mm厚度石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高为170℃,筋材完好,没有发生断裂,剩余强度为3121 MPa,筋材基本没有发生损伤。

    图  6  持荷条件下CFRP筋阻燃防火措施对比
    Figure  6.  Comparison on fire retardant measures of CFRP tendons under load conditions
    表  1  不同防护类型下CFRP筋材温度及持荷性能
    Table  1.  Temperature and load carrying capacity of CFRP tendons under different protection types
    Protection
    type
    Protection thickness/mmBurning time/minCFRP tendons temperature/℃Stress level/MPaTest resultResident strength/MPa
    2510001170Resin pyrolysis,
    tendon tensile fracture
    Ceramic fiber cloth451205621170Resin pyrolysis,
    tendon is not fracture
    1646
    Asbestos451206351170Resin pyrolysis,
    tendon is not fracture
    1249
    Asbestos601201701170The tendon is not damaged3121
    下载: 导出CSV 
    | 显示表格
    图  7  CFRP筋材高温下树脂热解(562℃,2 h)
    Figure  7.  Resin pyrolysis of tendons at high temperature (562℃, 2 h)
    图  8  树脂热解后CFRP筋材极限拉伸破断
    Figure  8.  Ultimate tensile fracture of CFRP tendons after resin pyrolysis

    以上试验研究可以看出,包裹60 mm厚的石棉可以起到很好的阻燃防火效果,但是过厚的石棉必然影响索体直径,给CFRP索的盘卷带来困难,同时会改变索体表面原有的空气动力学特性,不方便应用。

    选用一种阻燃防火涂层,刷在CFRP索股索体双层聚乙烯(PE)护套外表面,其中索股直径61 mm,PE护套厚度6 mm,阻燃防火涂层厚度2 mm,如图9所示。所用阻燃防火涂料层由基料丙烯酸乳液、膨胀催化剂聚磷酸铵、碳化剂季戊四醇、膨胀发泡剂三聚氰胺与氯化石蜡、颜料钛白粉、成膜助剂醇酯等组成。

    图  9  刷有阻燃防火涂层的CFRP索股
    Figure  9.  CFRP cable strand coated with fire retardant coating

    在PE表面刷有2 mm阻燃防火涂层,并在索体PE内表面预埋测温线,用火焰温度1000℃的高温火焰枪对索股局部进行长达2 h的高温灼烧试验(图10),阻燃防火涂料层发生膨胀并形成均匀而致密蜂窝状碳化层,保护双层PE护套不发生燃烧,使得缆索具有阻燃防火特性,PE护套仅发生软化。无阻燃防火涂层保护的索体5 min内PE护套燃烧殆尽,漏出索体(图11)。图12为2 mm阻燃防火涂层温度-时间曲线。可以看出,2 h灼烧索股PE内表面最高温度为206℃。

    图  10  阻燃防火涂层遇火焰发泡
    Figure  10.  Fire retardant coating foams when expose to fire
    图  11  无阻燃防火涂层聚乙烯(PE)燃烧
    Figure  11.  Combustion of polyethylene (PE) sheath without fire retardant coating
    图  12  2 mm厚阻燃防火涂层温度-时间曲线
    Figure  12.  Temperature-time curve of 2 mm thickness fire retardant coating

    为探究发生火灾时CFRP索股内部PE内筋材温度,将测温线置于不同位置处测量灼烧试验时各位置的温度(图13),分别为索股PE内表面、距离PE内表面7 mm、距离PE内表面14 mm。图14为灼烧2 h索股内部不同位置处温度-时间曲线。可以看出,紧贴PE内表面的温度最高,为206℃,其次是测温线与PE内表层间隔7 mm处的温度(次外层筋材),为156℃,温度最低的是与PE内表层距离14 mm处的温度(第三层筋材),为100℃。

    图  13  CFRP索股测温位置
    Figure  13.  Temperature measurement position of CFRP cable strand
    图  14  CFRP索股不同位置处温度-时间曲线
    Figure  14.  Temperature-time curves at different positions of CFRP cable strand

    针对阻燃防火涂层的不同厚度,试验研究在1000℃火焰灼烧下阻燃防火效果的持续性,索股规格同2.2节。图15为不同厚度阻燃防火涂层温度-时间曲线。可知无阻燃防火涂层防护,索股PE层5 min燃烧殆尽;0.3 mm厚度阻燃防火涂层可保护索股PE层20 min;1.4 mm厚度阻燃防火涂层可保护索股PE层160 min;刷有2 mm厚度阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层厚度为2 mm。

    图  15  不同厚度阻燃防火涂层的温度-时间曲线
    Figure  15.  Temperature-time curves of fire retardant coating with different thickness

    图16为2 mm厚度阻燃防火涂层的索股燃烧360 min试验过程的发泡过程。可以看出,随着火焰灼烧时间的增长,发泡层高度逐渐增大,发泡尺寸也逐渐增大,6 h熄火后形成一个6 cm×8 cm、高4 cm的发泡层,长达6 h的灼烧试验,PE内表面最高温度为245℃,熄火后,拨开厚厚的发泡层,PE护套仅发生软化。结合图15图16,可以看出,燃烧前20 min为快速发泡升温阶段,发泡层快速增大,PE内表面温度从室温上升到196℃;20~140 min为稳定阶段,发泡层缓慢增大,PE内表面温度维持在203~209℃之间;140~360 min为动态平衡阶段,继续燃烧温度缓慢升高,燃烧至180 min,PE内表面温度达到216℃,阻燃防火涂层内层达到发泡温度开始发泡,发泡层高度增加,PE内表面温度下降,燃烧至240 min,PE内表面温度降至200℃,燃烧至280 min左右,发泡层表层开始发生热解,PE内表面温度升高至230℃左右,阻燃防火涂层内层达到发泡温度进一步发泡,发泡层高度持续增加,PE内表面温度下降,但随着发泡层表层热解,PE内表面温度又缓慢上升。

    图  16  2 mm厚度阻燃防火涂层的CFRP索股膨胀发泡过程
    Figure  16.  Intumescent process of CFRP cable strand coated with 2 mm thickness fire retardant coating

    (1) 碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)筋材高温剩余强度随温度升高呈线性下降趋势,210℃加热3 h,剩余强度最低为2245.8 MPa,比初始强度下降26.13%。

    (2) CFRP筋材高温加热冷却后强度存在一定程度的可逆性恢复,剩余强度均能达到2800 MPa以上,但较原始强度略微下降,且经历温度越高剩余强度越低,最大下降幅度为6.13%。

    (3) 对比3种阻燃防火措施,阻燃防火涂层具有较好的阻燃防火效果,2 h灼烧索股聚乙烯(PE)内表面最高温度为206℃,次外层筋材最高温度为156℃,第三层筋材最高温度为100℃,火灾2 h内,索股仍可承载,剩余强度≥2245 MPa。

    (4) 阻燃防火涂层越厚防护时间越长,2 mm厚阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层的厚度为2 mm。

  • 图  1   电催化析氢(HER)反应机制图

    Figure  1.   Diagram of the electrocatalytic hydrogen evolution reaction (HER) reaction mechanism

    图  2   过渡金属磷化物(TMPs)的晶胞示意图

    Figure  2.   Schemtaic of the unit cell for transition metal phosphides (TMPs)

    P—Phosphorus; M—Metal

    图  3   NiP-Pt/Co(OH)2 (a)[30]和CoFeP/还原氧化石墨烯(rGO) (b)的合成过程示意图[32]

    Figure  3.   Schematic illustration of the synthesis process of NiP-Pt/Co(OH)2 (a)[30] and CoFeP/reduced graphene oxide (rGO) (b)[32]

    GO—Graphene oxide; LDH—Layered double hydroxides

    图  4   Fe-CoP (a)[39]和3D WP2 纳米线 (b)[42]的SEM图像;(c) FeP、Mg-FeP和Vc-FeP的(111)晶面的结合能图[43];(d) CoP的线性扫描伏安曲线[44]

    Figure  4.   SEM images of Fe-CoP (a)[39]and 3D WP2 nanowire (b)[42]; (c) Free energy diagram of FeP, Mg-FeP and Vc-FeP of (111) crystal plane[43]; (d) Liner sweep voltammetry curves of CoP[44]

    Vc-FeP—Fe-vacancy-rich FeP; F-CoP-Vp—F doping and P vacancies CoP; U—Voltage; RHE—Reversible hydrogen electrode

    图  5   (a) W-NiCoP/镍泡沫(NF)的HER机制图[49];(b) Cu-CoP材料不同位点的HER反应能垒图[50];(c) H和金属位之间态密度图[51];(d) 恒电位下C-Co2P的原位拉曼光谱及等值线图[72]

    Figure  5.   (a) HER mechanism for W-NiCoP/nickel foam (NF)[49]; (b) HER free energy diagrams for various sites on Cu-CoP[50]; (c) Partial density of states between H and active metallic site[51]; (d) In-situ Raman spectra and corresponding contour plots of C-Co2P at constant potentials[72]

    OCP—Open circuit potential; DOS—Density of states

    图  6   CoP3/Fe2P@NF (a)[23]和CoP-WP/rGO (b)[77]的HRTEM图像;(c) CoP3/Fe2P@NF的线性扫描伏安曲线[23];(d) CoP-WP/rGO的结合能图[77]

    Figure  6.   HRTEM images of CoP3/Fe2P@NF (a)[23] and CoP-WP/rGO (b)[77]; (c) Liner sweep voltammetry curves of CoP3/Fe2P@NF[23];(d) Free-energy diagram of CoP-WP/rGO[77]

    表  1   通过缺陷调控改善TMPs 基电催化剂的HER性能的总结

    Table  1   Summary of the HER performance for TMPs-based electrocatalysts by vacancy creation

    Catalyst Vacancy
    Substrate Current density/
    (mA·cm−2)
    Overpotential/
    mV
    Tafel slope/
    (mV·dec−1)
    Ref.
    WP Cationic vacancies Glassy carbon electrode 100 175 58 [18]
    Vc-FeP Cationic vacancy Ti foils 10 108 33 [43]
    F-CoP-Vp Anion vacancies Carbon fiber cloth 10 108 88.9 [44]
    V-Ni2P/NF Cationic vacancy Nickel foam (NF) 10 81 48 [45]
    WP Cationic vacancies Glassy carbon electrode 300 80.6 52 [46]
    S-CoP-p P vacancies Ti mesh 100 114 58.4 [47]
    下载: 导出CSV

    表  2   通过元素掺杂改善TMPs 基电催化剂的HER性能的总结

    Table  2   Summary of the HER performance for TMPs-based electrocatalysts by elemental doping

    Catalyst Substrate Current density/(mA·cm−2) Overpotential/mV Tafel slope/(mV·dec−1) Ref.
    MnCoP/CC Carbon cloth (CC) 10 65 46.16 [29]
    Fe-CoP@CC Carbon cloth 10 49 149 [39]
    W-NiCoP/NF Nickel foam (NF) 10 29.6 38 [49]
    Cu-CoP NAs/CP Carbon paper (CP) 10 81 83.5 [50]
    S-WP2 Carbon cloth 10 115 75 [51]
    Zn/F-NiCoP/NF Nickel foam 10 59 81.03 [52]
    V-CoxP@NC Carbon paper 10 106 93 [53]
    Mn-CoP Glassy carbon electrode 10 148 61 [54]
    CoP-N/Co foam Co foam 50 100 50.9 [55]
    W, Ru-NiP2 Nickel foam 10 17.8 67.5 [56]
    F0.25CP-G Graphene (G) 10 66 61 [57]
    O-CoP Glassy carbon electrode 10 98 59.9 [58]
    Mo-CoFeP/NC Glassy carbon electrode 10 145 68 [59]
    pCoMo-P/ NF Nickel foam 10 49 55.02 [60]
    O-CoP Glassy carbon electrode 10 116 59 [61]
    Mn-doped CoP/NF Nickel foam 10 60 56.7 [62]
    V-Ni5P4 Nickel foam 10 13 [63]
    Co-Cu3P/CF Cu foam (CF) 100 250 75 [64]
    CoFeP/C Graphene 10 42.1 59 [65]
    V-CoP/CC Carbon cloth 10 71 67.6 [66]
    Mn-CoP PMFs/CC Carbon cloth 10 90 86.1 [67]
    V-doped CoP/NF Nickel foam 10 84.6 79.2 [68]
    CoFeP/NF Nickel foam 10 29.8 68.4 [69]
    Ga-CoP NSs/CFP Carbon fiber paper (CFP) 10 44 62 [70]
    Nb-CoP Glassy carbon electrode 10 99 59.4 [71]
    Notes: NAs—Nanosheet arrays; PMFs—Peony-like micro-flower; NSs—Nanosheets; NC—Nitrogen doped carbon.
    下载: 导出CSV

    表  3   界面复合调控TMPs 基电催化剂的HER性能的总结

    Table  3   Summary of the HER performance for TMPs-based catalysts by interface engineering

    Catalyst Substrate Current density/(mA·cm−2) Overpotential/mV Tafel slope/(mV·dec−1) Ref.
    NiCoP@FePx 10 82.5 69.1 [17]
    CoP3/Fe2P@NF Nickel foam 10 81 104.4 [23]
    Co2P&CoP@NC Nickel foam 10 62.8 60 [33]
    NiP-Pt/Co(OH)2 Nickel foam 10 40 49.85 [30]
    CoFeP/rGO Glassy carbon electrode 10 101 169 [32]
    CoFeP NS@Fe-CoP Nickel foam 10 78 73 [73]
    NiFe LDH/CoFeP/NF Nickel foam 50 198 75.2 [74]
    CoP/NiCoP N-doped carbon 10 75 64 [75]
    Cu3P/NiCoP Nickel-cobalt foam 10 51 89 [76]
    CoP-WP/rGO Nickel foam 10 138 62 [77]
    g-C3N4/Cu3P Cu foil 10 67 45 [78]
    W2C/WP@NC Glassy carbon electrode 10 116.37 59.07 [79]
    NiP/Wood Pristine wood 10 83 73.2 [80]
    Cu3P@NPC Copper foam 10 81.94 81.25 [81]
    CoFeP NFs/NPCNT Glassy carbon electrode 10 132 62.9 [82]
    CoP/Mo2CTx Glassy carbon electrode 10 78 66 [83]
    N-CoO@CoP Nickel foam 100 201 37 [84]
    Fe2O3-TiO2/rGO Reduced graphene oxide 10 96 98 [85]
    Ni2P@NPCNFs Carbon cloth 10 63.2 56.7 [86]
    CoFeP NS@NCNF Nickel foam 10 113 108 [87]
    CoFeOH/CoFeP/IF Iron foam (IF) 100 114.9 128.37 [88]
    Notes: NPC—Nitrogen and phosphorus co-doped carbon; NPCNT—Nitrogen and phosphorus co-doped carbon nanotubes; NPCNFs—Nitrogen-doped porous carbon nanofibers; NCNF—Nitrogen-doped carbon nanofiber; NFs—Nanoframes; MoCT—Molybdenum carbide (T is the surface terminal group).
    下载: 导出CSV
  • [1]

    GUO X, LI M G, QIU L Y, et al. Engineering electron redistribution of bimetallic phosphates with CeO2 enables high-performance overall water splitting[J]. Chemical Engineering Journal, 2023, 453: 139796. DOI: 10.1016/j.cej.2022.139796

    [2]

    SHAN A X, TENG X A, ZHANG Y, et al. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction[J]. Nano Energy, 2022, 94: 106913. DOI: 10.1016/j.nanoen.2021.106913

    [3]

    WANG C S, ZHANG Q, YAN B, et al. Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions[J]. Nano-Micro Letters, 2023, 15: 52. DOI: 10.1007/s40820-023-01024-6

    [4]

    WANG L, GONG N, ZHOU Z, et al. Electronic modulation of multi-element transition metal phosphide by V-doping for high-efficiency and pH-universal hydrogen evolution reactio[J]. International Journal of Hydrogen Energy, 2022, 47: 18305-18313. DOI: 10.1016/j.ijhydene.2022.04.024

    [5]

    CHEN Z J, DUAN X G, WEI W, et al. Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution[J]. Journal of Materials Chemistry A, 2019, 7: 14971-15005. DOI: 10.1039/C9TA03220G

    [6]

    WANG J J, YUE X Y, YANG Y Y, et al. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review[J]. Journal of Alloys and Compounds, 2020, 819: 153346. DOI: 10.1016/j.jallcom.2019.153346

    [7] 姜金池, 金彪, 孟龙月. 基于电催化析氧反应的非贵金属催化剂研究进展[J]. 复合材料学报, 2023, 40(3): 1365-1380. DOI: 10.13801/j.cnki.fhclxb.20220819.001

    JIANG Jinchi, JIN Biao, MENG Longyue. Research progress of non-noble metal catalysts based on electrocatalytic oxygen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1365-1380(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20220819.001

    [8]

    GAO Y Y, QIAN S, WANG H J, et al. Boron-doping on the surface mediated low-valence Co centers in cobalt phosphide for improved electrocatalytic hydrogen evolution[J]. Applied Catalysis B-Environmental, 2023, 320: 122014. DOI: 10.1016/j.apcatb.2022.122014

    [9] 姚素薇, 李贺, 张卫国, 等. AC/Ni-Co复合电极材料的制备及其催化析氢性能[J]. 复合材料学报, 2006, 23(3): 77-81.

    YAO Suwei, LI He, ZHANG Weiguo, et al. Preparation and property for hydrogen evolution of AC (activated char)/Ni-Co composite electrode materials[J]. Acta Materiae Compositae Sinica, 2006, 23(3): 77-81(in Chinese).

    [10]

    YANG S F, YANG X B, WANG Q, et al. Facet-selective hydrogen evolution on Rh2P electrocatalysts in pH-universal media[J]. Chemical Engineering Journal, 2022, 449: 137790. DOI: 10.1016/j.cej.2022.137790

    [11]

    DU H T, KONG R M, GUO X X, et al. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution[J]. Nanoscale, 2018, 10: 21617-21624. DOI: 10.1039/C8NR07891B

    [12]

    LI W F, JIANG Y, LI Y R, et al. Electronic modulation of CoP nanoarrays by Cr-doping for efficient overall water splitting[J]. Chemical Engineering Journal, 2021, 425: 130651. DOI: 10.1016/j.cej.2021.130651

    [13]

    LIN Y, CHEN X M, TUO Y X, et al. In-situ doping-induced lattice strain of NiCoP/S nanocrystals for robust wide pH hydrogen evolution electrocatalysis and supercapacitor[J]. Journal of Energy Chemistry, 2022, 70: 27-35. DOI: 10.1016/j.jechem.2022.02.024

    [14] 李创, 王宇, 候利强, 等. 多孔碳负载钌单原子和钌纳米团簇催化剂用于高效析氢反应[J]. 复合材料学报, 2023, 40(4): 2155-2168.

    LI Chuang, WANG Yu, HOU Liqiang, et al. Porous carbon supported ruthenium single atom and ruthenium nanoclusters catalysts for efficient hydrogen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2155-2168(in Chinese).

    [15]

    GUO Z T, LIU L, WANG J Q, et al. Recent progress in CoP-based materials for electrochemical water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(69): 34194-34215.

    [16]

    ZHANG X D, KIM S, GUO X Y, et al. Impacts of boron doping on the atomic structure, stability, and photocatalytic activity of Cu3P nanocrystals[J]. Applied Catalysis B: Environmental, 2021, 298: 120515.

    [17]

    LI M X, LIU X X, HU X L, et al. Fabrication of core-sheath NiCoP@FeP x nanoarrays for efficient electrocatalytic hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8847-8855.

    [18]

    LI F, WANG C R, HAN X C, et al. Confinement effect of mesopores: In situ synthesis of cationic tungsten-vacancies for a highly ordered mesoporous tungsten phosphide electrocatalyst[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 22741-22750.

    [19]

    XIONG L W, QIU Y F, ENG X, et al. Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction[J]. Nano Energy, 2022, 104: 107882. DOI: 10.1016/j.nanoen.2022.107882

    [20]

    ZHAGN X Y, XIE J Y, MA Y, et al. An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction[J]. Chemical Engineering Journal, 2022, 430: 132312. DOI: 10.1016/j.cej.2021.132312

    [21]

    ZHU C R, GAO D Q, DING J, et al. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches[J]. Chemical Society Reviews, 2018, 47: 4332-4356. DOI: 10.1039/C7CS00705A

    [22]

    FENG S Y, YU Y H, LI J, et al. Recent progress in seawater electrolysis for hydrogen evolution by transition metal phosphides[J]. Catalysis Communications, 2022, 162: 106382. DOI: 10.1016/j.catcom.2021.106382

    [23]

    YANG Y Y, YANG J Y, KONG C, et al. Heterogeneous cobalt-iron phosphide nanosheets formed by in situ phosphating of hydroxide for efficient overall water splitting[J]. Journal of Alloys and Compounds, 2022, 926: 166930. DOI: 10.1016/j.jallcom.2022.166930

    [24]

    HONG L F, GUO R T, YUAN Y, et al. Recent progress of transition metal phosphides for photocatalytic hydrogen evolution[J]. ChemSusChem, 2021, 14(2): 539-557.

    [25]

    OYAMA S T, GOTT T, ZHAO H, et al. Transition metal phosphide hydroprocessing catalysts: A review[J]. Catalysis Today, 2009, 143: 94-107. DOI: 10.1016/j.cattod.2008.09.019

    [26]

    JI L L, WANG J Y, TENG X, et al. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting[J]. ACS Catalysis, 2020, 10(1): 412-419 . DOI: 10.1021/acscatal.9b03623

    [27]

    SU J Z, ZHOU J L, WANG L, et al. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting[J]. Science Bulletin, 2017, 62: 633-644. DOI: 10.1016/j.scib.2016.12.011

    [28]

    YANG X L, LU A Y, ZHU Y H, et al. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation[J]. Nano Energy, 2015, 15: 634-641. DOI: 10.1016/j.nanoen.2015.05.026

    [29]

    WANG M S, FU W Y, DU L, et al. Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis[J]. Applied Surface Science, 2020, 515: 146059. DOI: 10.1016/j.apsusc.2020.146059

    [30]

    LIU Z X, GUO Z G, HE H L, et al. Interface regulation of Pt quantum dots doped nickel phosphide and cobalt hydroxide to promote electrocatalytic overall water splitting[J]. International Journal of Hydrogen Energy, 2022, 47: 40986-40998. DOI: 10.1016/j.ijhydene.2022.09.182

    [31]

    ZONG Q, LIU C F, YANG H, et al. Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors[J]. Nano Today, 2021, 38: 101201. DOI: 10.1016/j.nantod.2021.101201

    [32]

    CAI X D, SONG Q, JIAO D H, et al. Bifunctional electrocatalysts of CoFeP/rGO heterostructure for water splitting[J]. International Journal of Hydrogen Energy, 2022, 47: 39499-39508. DOI: 10.1016/j.ijhydene.2022.09.112

    [33]

    YI X L, SONG L Z, OUYANG S X, et al. Structural and componential engineering of Co2P&CoP@N-C nanoarrays for energy-efficient hydrogen production from water electrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56064-56072 .

    [34]

    PU Z H, LIU T T, AMIINU I S, et al. Transition-metal phosphides: Activity origin, energy-related electrocatalysis applications, and synthetic strategies[J]. Advanced Functional Materials, 2020, 30(45): 2004009.

    [35]

    WU J J, FU Z W. Pulsed-laser-deposited Sn4P3 electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2009, 156: A22. DOI: 10.1149/1.3005960

    [36]

    YU F, ZHOU H Q, HUANG Y F, et al. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting[J]. Nature Communications, 2018, 9: 2551. DOI: 10.1038/s41467-018-04746-z

    [37]

    LU X F, YU L, LOU X W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts[J]. Science Advances, 2019, 5(2): eaav6009.

    [38]

    ZHAO X J, LUO D, WANG Y, et al. Reduced graphene oxide-supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction[J]. Nano Research, 2019, 12: 2872-2880. DOI: 10.1007/s12274-019-2529-y

    [39]

    YANG Y Y, MENG H X, KONG C, et al. Template-free synthesis of 1D hollow Fe doped CoP nanoneedles as highly activity electrocatalysts for overall water splitting[J]. International Journal of Hydrogen Energy, 2021, 46: 28053-28063. DOI: 10.1016/j.ijhydene.2021.06.047

    [40]

    ZHAO L, WEN M, TIAN Y K, et al. A novel structure of quasi-monolayered NiCo-bimetal-phosphide for superior electrochemical performance[J]. Journal of Energy Chemistry, 2022, 74: 203-211. DOI: 10.1016/j.jechem.2022.07.017

    [41]

    TIAN Y S, LI S Y, QIN P P, et al. Metal-organic frameworks derived multidimensional CoP/N, P-doped carbon architecture as an efficient electrocatalyst for overall water splitting[J]. ChemCatChem, 2021, 13(13): 3037-3045. DOI: 10.1002/cctc.202100272

    [42]

    MENG F Y, YU Y, SUN D F, et al. Three-dimensional flower-like WP2 nanowire arrays grown on Ni foam for full water splitting[J]. Applied Surface Science, 2021, 546: 148926. DOI: 10.1016/j.apsusc.2021.148926

    [43]

    KWONG W L, GRACIA-ESPINO E, LEE C C, et al. Cationic vacancy defects in iron phosphide: A promising route toward efficient and stable hydrogen evolution by electrochemical water splitting[J]. ChemSusChem, 2017, 10(22), 4544-4551.

    [44]

    XU K, SUN Y Q, LI X L, et al. Fluorine-induced dual defects in cobalt phosphide nanosheets enhance hydrogen evolution reaction activity[J]. ACS Materials Letters, 2020, 2(7): 736-743.

    [45]

    ZHANG W Z, CHEN G Y, ZHAO J, et al. Self-growth Ni2P nanosheet arrays with cationic vacancy defects as a highly efficient bifunctional electrocatalyst for overall water splitting[J]. Journal of Colloid and Interface Science, 2020, 561: 638-646. DOI: 10.1016/j.jcis.2019.11.039

    [46]

    ZHANG X Y, GUO T, LIU T Y, et al. Tungsten phosphide (WP) nanoparticles with tunable crystallinity, W vacancies, and electronic structures for hydrogen production[J]. Electrochimica Acta, 2019, 323: 134798. DOI: 10.1016/j.electacta.2019.134798

    [47]

    XU R R, JIANG T F, FU Z, et al. Ion-exchange controlled surface engineering of cobalt phosphide nanowires for enhanced hydrogen evolution[J]. Nano Energy, 2020, 78: 105347. DOI: 10.1016/j.nanoen.2020.105347

    [48] 孙兴伟, 白杰, 李春萍, 等. 钴基电极材料的改性策略及其应用研究[J]. 复合材料学报, 2023, 40(5): 2550-2565.

    SUN Xingwei, BAI Jie, LI Chunping, et al. Modification strategy and application of cobalt-based electrode materials[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2550-2565(in Chinese).

    [49]

    LU S S, ZHANG L M, DONG Y W, et al. Tungsten-doped Ni-Co phosphides with multiple catalytic sites as efficient electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(28): 16859-16866. DOI: 10.1039/C9TA03944A

    [50]

    YAN L, ZHANG B, ZHU J L, et al. Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting[J]. Applied Catalysis B: Environmental, 2020, 265: 118555. DOI: 10.1016/j.apcatb.2019.118555

    [51]

    LIU W, XIAO Z Z, CHANDRASEKARAN S, et al. Insights into the effect of sulfur incorporation into tungsten diphosphide for improved hydrogen evolution reaction[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16157-16164.

    [52]

    ZHU J J, ZHENG X Y, LIU C C, et al. Zinc and fluorine ions dual-modulated NiCoP nanoprism array electrocatalysts for efficient water splitting[J]. Journal of Colloid and Interface Science, 2023, 630: 559-569. DOI: 10.1016/j.jcis.2022.10.136

    [53]

    GUO W H, ZHANG Q, WANG X H, et al. MOF-derived V-Co xP@NC nanoarchitectures for highly enhanced electrocatalytic water splitting through electronical tuning[J]. Electrochimica Acta, 2020, 357: 136850. DOI: 10.1016/j.electacta.2020.136850

    [54]

    LI Y L, JIA B M, CHEN B Y, et al. MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting[J]. Dalton Transactions, 2018, 47: 14679-14685. DOI: 10.1039/C8DT02706D

    [55]

    LIU Z, YU X, XUE H G, et al. A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(21): 13242-13248. DOI: 10.1039/C9TA03201K

    [56]

    QIN L, SONG T S, GUO L, et al. Boosting the electrocatalytic performance of ultrathin NiP2 nanosheets by synergic effect of W and Ru doping engineering[J]. Applied Surface Science, 2020, 508: 145302. DOI: 10.1016/j.apsusc.2020.145302

    [57]

    TAHMASEBI Z, MOHAMMADI ZARDKHOSHOUI A, HOSSEINY DAVARANI S S. Facile synthesis of Fe-doped CoP nanosheet arrays wrapped by graphene for overall water splitting[J]. Dalton Transactions, 2021, 50(35): 12168-12178.

    [58]

    ZHOU G Y, LI M, LI Y L, et al. Regulating the electronic structure of CoP nanosheets by O incorporation for high-efficiency electrochemical overall water splitting[J]. Advanced Functional Materials, 2020, 30(7): 1905252.

    [59]

    FU R R, JIAO X G, YU J A, et al. Mo-doped CoFeP/nitrogen doped carbon porous nanocubes for alkaline hydrogen production[J]. Journal of Electroanalytical Chemistry, 2023, 930: 117137. DOI: 10.1016/j.jelechem.2022.117137

    [60]

    HAN Y C, LI P F, TIAN Z F, et al. Molybdenum-doped porous cobalt phosphide nanosheets for efficient alkaline hydrogen evolution[J]. ACS Applied Energy Materials, 2019, 2(9): 6302-6310. DOI: 10.1021/acsaem.9b00924

    [61]

    MA Y, ZHOU G Y, LIU Z Y, et al. Electronic structural regulation of CoP nanorods by the tunable incorporation of oxygen for enhanced electrocatalytic activity during the hydrogen evolution reaction[J]. Nanoscale, 2020, 12(27): 14733-14738. DOI: 10.1039/D0NR03685D

    [62]

    MENG C, WANG Z M, ZHANG L J, et al. Tuning the Mn dopant to boost the hydrogen evolution performance of CoP nanowire arrays[J]. Inorganic Chemistry Frontiers, 2022, 61(25): 9832-9839.

    [63]

    RAO Y, WANG S W, ZHANG R Y, et al. Nanoporous V-doped Ni5P4 microsphere: A highly efficient electrocatalyst for hydrogen evolution reaction at all pH[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37092-37099.

    [64]

    RONG Y S, MA Y H, GUO F Y, et al. Paintbrush-like Co doped Cu3P grown on Cu foam as an efficient janus electrode for overall water splitting[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28833-28840. DOI: 10.1016/j.ijhydene.2019.09.042

    [65]

    WANG H L, WANG Y C, ZHANG J W, et al. Electronic structure engineering through Fe-doping CoP enables hydrogen evolution coupled with electro-Fenton[J]. Nano Energy, 2021, 84: 105943. DOI: 10.1016/j.nanoen.2021.105943

    [66]

    XIAO X, TAO L M, LI M, et al. Electronic modulation of transition metal phosphide via doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction[J]. Chemical Science, 2018, 9(7): 1970-1975. DOI: 10.1039/C7SC04849A

    [67]

    XU S R, YU X, LIU X, et al. Contrallable synthesis of peony-like porous Mn-CoP nanorod electrocatalyst for highly efficient hydrogen evolution in acid and alkaline[J]. Journal of Colloid and Interface Science, 2020, 577: 379-387. DOI: 10.1016/j.jcis.2020.05.097

    [68]

    XUE H Y, MENG A, ZHANG H Q, et al. 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting[J]. Nano Research, 2021, 14: 4173-4181. DOI: 10.1007/s12274-021-3359-2

    [69]

    YU X R, CHEN L X, JIA L Y, et al. Ion exchange synthesis of Fe-doped clustered CoP nanowires as superior electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2023, 48(44): 16715-16724. DOI: 10.1016/j.ijhydene.2023.01.108

    [70]

    ZHANG Y, HUI Z X, ZHOU H Y, et al. Ga doping enables superior alkaline hydrogen evolution reaction performances of CoP[J]. Chemical Engineering Journal, 2022, 429: 132012. DOI: 10.1016/j.cej.2021.132012

    [71]

    ZOU W J, XIANG J D, TANG H. Niobium-doped cobalt phosphide nanowires realizing enhanced electrocatalytic activity for overall water splitting[J]. International Journal of Hydrogen Energy, 2022, 47(27): 13251-13260.

    [72]

    XU W C, FAN G L, ZHU S L, et al. Electronic structure modulation of nanoporous cobalt phosphide by carbon doping for alkaline hydrogen evolution reaction[J]. Advanced Functional Materials, 2021, 31(48): 2107333.

    [73]

    BI H H, LI B, ZHAGN J, et al. Supersaturation-triggered synthesis of 2D/1D phosphide heterostructures as multi-functional catalysts for water splitting[J]. Applied Physics Letters, 2021, 118(9): 093901. DOI: 10.1063/5.0041080

    [74]

    YE F, MA X F, CAO Y P, et al. Heterogeneous layered multiple transition metal composite electrocatalysts with controlled composition for hydrogen production[J]. International Journal of Hydrogen Energy, 2023, 48(5): 1733-1746. DOI: 10.1016/j.ijhydene.2022.10.065

    [75]

    BOPPELLA R, TAN J W, YANG W, et al. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis[J]. Advanced Functional Materials, 2019, 29(6): 1807976.

    [76]

    YANG Y X, ZHANG L, GUO F Y, et al. Curved trapezoidal Cu3P/NiCoP nanosheet arrays on nickel-cobalt foam for pH-insensitive hydrogen evolution reaction[J]. Electrochimica Acta, 2022, 421: 140498. DOI: 10.1016/j.electacta.2022.140498

    [77]

    JIAO Y Q, YAN H J, WANG D X, et al. Multi-touch cobalt phosphide-tungsten phosphide heterojunctions anchored on reduced graphene oxide boosting wide pH hydrogen evolution[J]. Science China Materials, 2022, 65: 1225-1236. DOI: 10.1007/s40843-021-1894-4

    [78]

    RIYAJUDDIN S, TARIK AZIZ S K, KUMAR S, et al. 3D-graphene decorated with g-C3N4/Cu3P composite: A noble metal-free bifunctional electrocatalyst for overall water splitting[J]. ChemCatChem, 2020, 12(5): 1394-1402.

    [79]

    WEI P, SUN X P, WANG M H, et al. Construction of an N-decorated carbon-encapsulated W2C/WP heterostructure as an efficient electrocatalyst for hydrogen evolution in both alkaline and acidic media[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 53955-53964.

    [80]

    HUI B, ZHANG K W, XIA Y Z, et al. Natural multi-channeled wood frameworks for electrocatalytic hydrogen evolution[J]. Electrochimica Acta, 2020, 330: 135274. DOI: 10.1016/j.electacta.2019.135274

    [81]

    JIANG E J, JIANG J H, HUANG G, et al. Porous nanosheets of Cu3P@N, P co-doped carbon hosted on copper foam as an efficient and ultrastable pH-universal hydrogen evolution electrocatalyst[J]. Sustainable Energy Fuels, 2021, 5(9): 2451-2457. DOI: 10.1039/D1SE00161B

    [82]

    LI W X, CHEN Y F, YU B, et al. 3D hollow Co-Fe-P nanoframes immobilized on N, P-doped CNT as an efficient electrocatalyst for overall water splitting[J]. Nanoscale, 2019, 11(36): 17031-17040. DOI: 10.1039/C9NR05924E

    [83]

    LIU S L, LIN Z S, WAN R D, et al. Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting[J]. Journal of Materials Chemistry A, 2021, 9(37): 21259-21269. DOI: 10.1039/D1TA05648D

    [84]

    LU M J, LI L, CHEN D, et al. MOF-derived nitrogen-doped CoO@CoP arrays as bifunctional electrocatalysts for efficient overall water splitting[J]. Electrochimica Acta, 2020, 330: 135210. DOI: 10.1016/j.electacta.2019.135210

    [85]

    SUMI V S, MEERA M S, SHA M A, et al. Effect of rGO on Fe2O3-TiO2 composite incorporated NiP coating for boosting hydrogen evolution reaction in alkaline solution[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2460-2477. DOI: 10.1016/j.ijhydene.2019.11.167

    [86]

    WANG M Q, YE C, LIU H, et al. Nanosized metal phosphides embedded in nitrogen-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values[J]. Angewandte Chemie-International Edition, 2018, 57(7): 1963-1967.

    [87]

    WEI B, XU G C, HEI J C, et al. CoFeP hierarchical nanoarrays supported on nitrogen-doped carbon nanofiber as efficient electrocatalyst for water splitting[J]. Journal of Colloid and Interface Science, 2021, 602: 619-626. DOI: 10.1016/j.jcis.2021.06.045

    [88]

    ZHANG X Y, WANG F L, FU J Y, et al. Amorphous-crystalline catalytic interface of CoFeOH/CoFeP with double sites based on ultrafast hydrolysis for hydrogen evolution at high current density[J]. Journal of Power Sources, 2021, 507: 230279. DOI: 10.1016/j.jpowsour.2021.230279

  • 期刊类型引用(2)

    1. 李友明,景昭,吴增文,李冰垚,刘琛,葛敬冉,梁军. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测. 强度与环境. 2024(01): 23-30 . 百度学术
    2. 马帅,金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用. 材料导报. 2022(S1): 252-256 . 百度学术

    其他类型引用(1)

图(6)  /  表(3)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  1124
  • PDF下载量:  133
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2023-11-02
  • 录用日期:  2023-11-08
  • 网络出版日期:  2023-11-20
  • 刊出日期:  2024-03-31

目录

/

返回文章
返回