Recent advances in applications of graphene aerogel composite materials for electrochemical energy storage
-
摘要: 石墨烯气凝胶作为一种内部互连的三维框架体,在微观和宏观尺度上具有突出的维度特性,成为各种零维、一维、二维和三维材料的理想宿主。其高导电性、高比表面积及高结构稳定性等特点令石墨烯气凝胶在储能领域得到了广泛的应用,特别是在高比容量金属离子电池负极和超级电容器电极等领域。首先,本文对石墨烯前体及气凝胶的处理策略进行整理,介绍当前不同处理方式对石墨烯前体及气凝胶成型影响。其次,根据储能机制的不同,介绍石墨烯气凝胶复合材料在主流储能器件中的改性应用及性能表现。最后,对电化学储能用石墨烯气凝胶复合材料的研究进展进行总结,指出当前存在的挑战并展望未来的研究方向。Abstract: Graphene aerogel has become an ideal host for various zero dimensional, one-dimensional, two-dimensional and three-dimensional materials because of prominent dimensional characteristics in both micro and macro scales with its interconnected three-dimensional framework. The high conductivity, specific surface area and structural stability make it widely used in the field of energy storage in recent years, especially in the application of anodes for metal ion batteries and supercapacitors electrodes with high specific capacity. Firstly, the treatment strategies of graphene precursor and aerogel are sorted out, and the effects of different treatment methods on the formation of graphene precursor and aerogel are introduced. Secondly, according to the different energy storage mechanisms, the modified application and performance of graphene aerogel composites in mainstream energy storage devices are introduced. Finally, the research progress of graphene aerogel composites for electrochemical energy storage are summarized, the current challenges are pointed out and the future research directions are prospected.
-
图 1 (a) 改进Hummers制备氧化石墨烯(GO)[11];(b) 球磨和液相剥离组合剥落石墨烯[13];(c) 模板定向化学气相沉积法(CVD)制备石墨烯[17]
Figure 1. (a) Preparation of graphene oxide (GO) based on the modified Hummers method[11]; (b) Based on ball-milling and liquid phase exfoliated graphene[13]; (c) Graphene prepared via template-oriented chemicalvapor deposition (CVD)[17]
PVA—Polyvinyl alcohol; GNFs—Graphene nanofibers; S, S-GNFs—Stainless steel-graphene nanofibers; MFCs—Mass flow controllers
图 3 (a) 常规溶胶-凝胶法与发泡溶胶-凝胶法制备的对比图[28];(b) 水塑发泡法制备GAs及发泡机制示意图[29];冰晶模板法制备GA图示及孔隙结构的SEM图像(c)及冰晶成核和冰粒生长模拟图(d)[32]
Figure 3. (a) Comparative diagrams of the conventional sol-gel method and surfactant-foaming sol-gel method[28]; (b) Schematic diagram of the preparation of GAs and mechanism of hydroplastic foaming method[29]; Schematic diagram of the ice crystal template method and SEM images of porous network structures (c) and show the nucleation and anisotropy growth of ice grains (d)[32]
POM—Polarized-light optical microscopy; PRGH—Prereduced GO hydrogel; FGO—Foamed GO; GHB—Graphene hydrogel bulk
图 6 MnO/多孔石墨烯气凝胶(PGA)制备示意图(a)、恒流充放电测试(b)、倍率性能(c)、循环性能(d)[54];(e) Si@SiOx/碳纳米管(CNTs)/GA制备示意图[61]
Figure 6. Schematic diagram of preparation (a), GCD curves (b), rate performance (c) and cycling performance (d) of MnO/porous-graphene aerogel (PGA)[54]; (e) Schematic diagram of Si@SiOx/carbon nanotubes (CNTs)/GA preparation[61]
图 7 rGO@Sb2O3制备流程示意图(a)、形貌(b)和储钠倍率性能(c)[66];(d) Sb2S3@N-C/rGO制备流程示意图[69];(e) N、P双掺杂GA (NPGA)制备流程示意图[74]
Figure 7. Schematic illustration of the preparation procedure (a), microtopography (b) and sodium storage rate performance (c) of rGO@Sb2O3[66]; (d) Schematic illustration of the preparation of Sb2S3@N-C/rGO[69]; (e) Schematic illustration of the preparation of N, P co-doping GA (NPGA)[74]
PDA—Polydopamine
图 8 TpDq-共价有机框架(COF)/rGO气凝胶制备流程图(a)、SEM形貌(b)、充放电曲线(c)、电流密度-比容量关系图(d)[80]
Figure 8. Schematic diagram of preparation (a), SEM image (b), charge-discharge curves (c), current density-specific capacity (d) of TpDq-covalent organic frameworks (COF)/rGO aerogel[80]
PTSA—p-toluenesulfonic acid; Tp—1, 3, 5-triformylphloroglucinol; Dq—diaminoanthraquinone
图 9 聚吡咯/氧化石墨烯(PGO)@GA的结构示意图(a)、充放电曲线(b)、倍率性能(c)、EIS阻抗测试(d)、循环性能(e)[87]
Figure 9. Schematic diagram of structure (a), charge-discharge curves (b), rate performance (c) , EIS curves (d), cycling performance (e) of polypyrrole/graphene oxide (PGO)@GA[87]
Z'—Real part of impedance; Z''—Imaginary part of impedance; Rs—Solution resistance; Rct—Charge transfer resistance; W0—Warburg region; SCE—Saturated calomel electrode
图 10 TiO2−x/GA制备示意图(a)、倍率性能(b)和循环性能(c)[94];LVO/GA的SEM和储能机制(d)、循环性能对比(e)[99]
Figure 10. Schematic illustration of preparation (a), rate performance (b) and cycling performance (c) of TiO2−x/GA[94]; SEM image and mechanism (d), cycling performance comparison (e) of LVO/GA[99]
B-TiO2−x—Black-TiO2−x; LVO—Li3VO4
表 1 锂离子电池(LIBs)用金属氧化物(MOs)-GA复合负极的MOs种类、形貌和储能性能
Table 1. MOs species, morphology and energy storage performance of metal oxides (MOs)-GA composite anode materials for lithiumion batteries (LIBs)
Anode MOs Nanomorphology Specific capacity/(mA·h·g–1) Current density/(A·g–1) Ref. Fe3O4 NWs/GA Fe3O4 Nanowires 557 2 [45] Fe3O4/GAs Nanoclusters 522.8 1 [46] Fe3O4/GA Nanoflowers 797 0.2 [47] TiO2/GA TiO2 Nanoflowers 663.2 0.1 [48] GASO SnO2 Nanoparticles 1032 0.1 [49] SnO2 NRs/GA Nanorods 1005 0.1 [50] MO/MS/SGA MoO2 Nanoparticles 533 0.5 [51] Co3O4@GA Co3O4 Nanosquares 850 0.1 [52] Notes: GASO—Graphene aerogel/SnO2; MO/MS/SGA—MoO2/MoS2/S-doped graphene aerogel; NWs—Nanowires; NRs—Nanorods. 表 2 超级电容器(SCs)用GA复合材料性能表现
Table 2. Energy storage performance of GA composite materials for supercapacitors (SCs)
Electrode material Specific capacity Cycle performance Ref. All SCs Bio-AC/rGO/CNF//MnO2/Bio-AC/rGO/CNF 812 mF·cm–2 99% capacitance retention after 5000 cycles [78] ETAC/CNF/rGO 556 F·g–1 97.5% capacitance retention after 10000 cycles [79] TpDq-COF/rGO 269 F·g–1 96% capacitance retention after 5000 cycles [80] DAAQ-COFs/GA 378 F·g–1 88.9% capacitance retention after 20000 cycles [81] v-COF-GAs 289 F·g–1 92% capacitance retention after 20000 cycles [82] All SCs PPys-CNTs@3D//GA MnO2@CNTs@3D GA 950 mF·cm–2 84.6% capacitance retention after 2000 cycles [83] PANI/rGO 808 F·g–1 73% capacitance retention after 1000 cycles [84] GA-Fe2O3 200 F·g–1 72.3% capacitance retention after 5000 cycles [85] MnO2/GA 275 F·g–1 100% capacitance retention after 5000 cycles [86] Notes: Bio-AC—Biomass active carbon; CNF—Cellulose nanofiber; ETAC—Eucommia wood tar-based activated carbon; TpDq—1, 3, 5-triformylphloroglucinol diaminoanthraquinone; COF—Covalent organic frameworks; DAAQ—2, 6-diaminoanthraquinone; PPy—Polypyrroles; PANI—Polyaniline. -
[1] MAO J, IOCOZZIA J, HUANG J, et al. Graphene aerogels for efficient energy storage and conversion[J]. Energy & Environmental Science, 2018, 11(4): 772-799. [2] ANG T Z, SALEM M, KAMAROL M, et al. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions[J]. Energy Strategy Reviews, 2022, 43: 100939. doi: 10.1016/j.esr.2022.100939 [3] ZHAO Y, ZHANG Y, WANG Y, et al. Versatile zero-to three-dimensional carbon for electrochemical energy storage[J]. Carbon Energy, 2021, 3(6): 895-915. doi: 10.1002/cey2.137 [4] SHAQSI A Z, SOPIAN K, AL HINAI A. Review of energy storage services, applications, limitations, and benefits[J]. Energy Reports, 2020, 6: 288-306. [5] WANG B, RUAN T, CHEN Y, et al. Graphene-based composites for electrochemical energy storage[J]. Energy Storage Materials, 2020, 24: 22-51. doi: 10.1016/j.ensm.2019.08.004 [6] LING R, CAO B, QI W, et al. Three-dimensional Na3V2(PO4)3@carbon/N-doped graphene aerogel: A versatile cathode and anode host material with high-rate and ultralong-life for sodium storage[J]. Journal of Alloys and Compounds, 2021, 869: 159307. doi: 10.1016/j.jallcom.2021.159307 [7] LIU W, ZHANG X, XU Y, et al. Recent advances on carbon-based materials for high performance lithium-ion capacitors[J]. Batteries & Supercaps, 2021, 4(3): 407-428. [8] SUI D, CHANG M, PENG Z, et al. Graphene-based cathode materials for lithium-ion capacitors: A review[J]. Nanomaterials, 2021, 11(10): 2771. doi: 10.3390/nano11102771 [9] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. doi: 10.1021/nn1006368 [10] CHEN J, YAO B, LI C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64: 225-229. doi: 10.1016/j.carbon.2013.07.055 [11] YU H, ZHANG B, BULIN C, et al. High-efficient synthesis of graphene oxide based on improved hummers method[J]. Scientific Reports, 2016, 6: 36143. doi: 10.1038/srep36143 [12] TIAN J, WU S, YIN X, et al. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode[J]. Applied Surface Science, 2019, 496: 143696. doi: 10.1016/j.apsusc.2019.143696 [13] ZHANG J, YANG Y, HUANG X, et al. Novel preparation of high-yield graphene and graphene/ZnO composite[J]. Journal of Alloys and Compounds, 2021, 875: 160024. doi: 10.1016/j.jallcom.2021.160024 [14] GÜRÜNLÜ B, TAŞDELEN-YÜCEDAĞ Ç, BAYRAMOĞLU M. One pot synthesis of graphene through microwave assisted liquid exfoliation of graphite in different solvents[J]. Molecules, 2022, 27(15): 5027. doi: 10.3390/molecules27155027 [15] KIM K S, ZHAO Y, JANG H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230): 706-710. doi: 10.1038/nature07719 [16] CHEN Z, REN W, GAO L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428. doi: 10.1038/nmat3001 [17] THIRUMAL V, YUVAKKUMAR R, SENTHIL K P, et al. Direct growth of multilayered graphene nanofibers by chemical vapour deposition and their binder-free electrodes for symmetric supercapacitor devices[J]. Progress in Organic Coatings, 2021, 161: 106511. doi: 10.1016/j.porgcoat.2021.106511 [18] STEFANO V, GEORG P, FILIPPO F, et al. 3D arrangement of epitaxial graphene conformally grown on porousified crystalline SiC[J]. Carbon, 2022, 189: 210-218. doi: 10.1016/j.carbon.2021.12.042 [19] 高亚辉, 尹国杰, 张少文, 等. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100. doi: 10.11868/j.issn.1001-4381.2019.000704GAO Yahui, YIN Guojie, ZHANG Shaowen, et al. Research progress in electrochemical preparation of graphene[J]. Journal of Materials Engineering, 2020, 48(8): 84-100(in Chinese). doi: 10.11868/j.issn.1001-4381.2019.000704 [20] LEI Y, OSSONON B D, TRAHAN P L, et al. Electrochemically exfoliated graphene oxide for simple fabrication of cocaine aptasensors[J]. ACS Applied Materials & Interfaces, 2023, 15(29): 35580-35589. [21] BAI H, LI C, WANG X, et al. On the gelation of graphene oxide[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5545-5551. doi: 10.1021/jp1120299 [22] XU Y, SHENG K, LI C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330. doi: 10.1021/nn101187z [23] ZHANG X, SUI Z, XU B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry, 2011, 21(18): 6494. doi: 10.1039/c1jm10239g [24] HU H, ZHAO Z, WAN W, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25(15): 2219-2223. doi: 10.1002/adma.201204530 [25] LI M, JIANG Q, YAN M, et al. Three-dimensional boron- and nitrogen-codoped graphene aerogel-supported Pt nanoparticles as highly active electrocatalysts for methanol oxidation reaction[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6644-6653. [26] FENG Q, LI T, SUI Y, et al. Facile synthesis and first-principles study of nitrogen and sulfur dual-doped porous graphene aerogels/natural graphite as anode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2021, 884: 160923. doi: 10.1016/j.jallcom.2021.160923 [27] BI H, CHEN I W, LIN T, et al. A new tubular graphene form of a tetrahedrally connected cellular structure[J]. Advanced Materials, 2015, 27(39): 5943-5949. doi: 10.1002/adma.201502682 [28] YANG H, LI Z, LU B, et al. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications[J]. ACS Nano, 2018, 12(11): 11407-11416. doi: 10.1021/acsnano.8b06380 [29] PANG K, SONG X, XU Z, et al. Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors[J]. Science Advances, 2020, 6(46): eabd4045. doi: 10.1126/sciadv.abd4045 [30] YANG C, ZHU X, WANG X, et al. Phase-field model of graphene aerogel formation by ice template method[J]. Applied Physics Letters, 2019, 115(11): 111901. doi: 10.1063/1.5120311 [31] WANG Y, KONG D, SHI W, et al. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries[J]. Advanced Energy Materials, 2016, 6(21): 1601057. doi: 10.1002/aenm.201601057 [32] YANG C, ZHU X, WANG X, et al. Phase-field model of graphene aerogel formation by ice template method[J]. Applied Physics Letters, 2019, 115(11): 111901. [33] XU X, TAN Y H, DING J, et al. 3D printing of next-generation electrochemical energy storage devices: From multiscale to multimaterial[J]. Energy & Environmental Materials, 2022, 5(2): 427-438. [34] BROWN E, YAN P, TEKIK H, et al. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes[J]. Materials & Design, 2019, 170: 107689. [35] ZHU C, LIU T, QIAN F, et al. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Letters, 2016, 16(6): 3448-3456. doi: 10.1021/acs.nanolett.5b04965 [36] JIANG Y, XU Z, HUANG T, et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices[J]. Advanced Functional Materials, 2018, 28(16): 1707024. doi: 10.1002/adfm.201707024 [37] YAO B, CHANDRASEKARAN S, ZHANG H, et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels[J]. Advanced Materials, 2020, 32(8): 1906652. [38] CHEN Q, SHEN J, ESTEVEZ D, et al. Ultraprecise 3D printed graphene aerogel microlattices on tape for micro sensors and E-skin[J]. Advanced Functional Materials, 2023, 33(33): 2302545. [39] LE L, ZHANG D, DENG J, et al. Carbon-based materials for fast charging lithium-ion batteries[J]. Carbon, 2021, 183: 721-734. doi: 10.1016/j.carbon.2021.07.053 [40] SUN J, LUO B, LI H. A review on the conventional capacitors, supercapacitors, and emerging hybrid ion capacitors: Past, present, and future[J]. Advanced Energy and Sustainability Research, 2022, 3(6): 2100191. doi: 10.1002/aesr.202100191 [41] LIU X, SUN Y, TONG Y, et al. Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: A review[J]. Nano Energy, 2021, 86: 106070. doi: 10.1016/j.nanoen.2021.106070 [42] ZHENG J P. Energy density theory of lithium-ion capacitors[J]. Journal of the Electrochemical Society, 2021, 168(8): 080503. doi: 10.1149/1945-7111/ac180f [43] DONG S, LYU N, WU Y, et al. Lithiumion and sodiumion hybrid capacitors: From insertion-type materials design to devices construction[J]. Advanced Functional Materials, 2021, 31(21): 2100455. doi: 10.1002/adfm.202100455 [44] LAI S Y, CAVALLO C, ABDELHAMID M E, et al. Advanced and emerging negative electrodes for Li-ion capacitors: Pragmatism vs. performance[J]. Energies, 2021, 14(11): 3010. doi: 10.3390/en14113010 [45] WANG Y, JIN Y, JIA M. Ultralong Fe3O4 nanowires embedded graphene aerogel composite anodes for lithium ion batteries[J]. Materials Letters, 2018, 228: 395-398. doi: 10.1016/j.matlet.2018.06.077 [46] ZHOU S, ZHOU Y, JIANG W, et al. Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery[J]. Applied Surface Science, 2018, 439: 927-933. doi: 10.1016/j.apsusc.2017.12.259 [47] WANG Y, JIN Y, ZHAO C, et al. 3D graphene aerogel wrapped 3D flower-like Fe3O4 as a long stable and high rate anode material for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2018, 830-831: 106-115. doi: 10.1016/j.jelechem.2018.10.038 [48] CHENG L, QIAO D, ZHAO P, et al. Template-free synthesis of mesoporous succulents-like TiO2/graphene aerogel composites for lithium-ion batteries[J]. Electrochimica Acta, 2019, 300: 417-425. doi: 10.1016/j.electacta.2019.01.133 [49] SONG D, WANG S, LIU R, et al. Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material[J]. Applied Surface Science, 2019, 478: 290-298. doi: 10.1016/j.apsusc.2019.01.143 [50] WANG Y, JIN Y, ZHAO C, et al. 1D ultrafine SnO2 nanorods anchored on 3D graphene aerogels with hierarchical porous structures for high-performance lithium/sodium storage[J]. Journal of Colloid and Interface Science, 2018, 532: 352-362. doi: 10.1016/j.jcis.2018.08.011 [51] ZHANG Y, TAO H, MA H, et al. Three-dimensional MoO2@few-layered MoS2 covered by S-doped graphene aerogel for enhanced lithium ion storage[J]. Electrochimica Acta, 2018, 283: 619-627. doi: 10.1016/j.electacta.2018.07.011 [52] SHAO J, XIAO J, WANG Y, et al. Cobalt oxide nanocubes encapsulated in graphene aerogel as integrated anodes for lithium-ion batteries[J]. ChemistrySelect, 2020, 5(17): 5323-5329. doi: 10.1002/slct.202001273 [53] WANG Y, JIN Y, ZHAO C, et al. Fe3O4 nanoparticle/graphene aerogel composite with enhanced lithium storage performance[J]. Applied Surface Science, 2018, 458: 1035-1042. doi: 10.1016/j.apsusc.2018.07.127 [54] MA Z, CAO H, ZHOU X, et al. Hierarchical porous MnO/graphene composite aerogel as high-performance anode material for lithium ion batteries[J]. RSC Advances, 2017, 7(26): 15857-15863. doi: 10.1039/C7RA00818J [55] PAN L, GAO P, TERVOORT E, et al. Surface energy-driven ex situ hierarchical assembly of low-dimensional nanomaterials on graphene aerogels: A versatile strategy[J]. Journal of Materials Chemistry A, 2018, 6(38): 18551-18560. doi: 10.1039/C8TA07338D [56] LIU R, ZHAO X, ZHAO H, et al. Carbon-coated MnO quantum dot-decorated three-dimensional graphene aerogel composite for high-performance lithium-ion batteries[J]. Energy & Fuels, 2023, 37(8): 6240-6247. [57] ZHONG J, WANG T, WANG L, et al. A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity[J]. Nano-Micro Letters, 2022, 14(1): 50. doi: 10.1007/s40820-022-00790-z [58] CHANG P, LIU X, ZHAO Q, et al. Constructing three-dimensional honeycombed graphene/silicon skeletons for high-performance Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31879-31886. [59] YANG Z, LIU X, REN F, et al. Multi-layer wrapping functionalized silicon via graphene aerogels regenerated from spent graphite anode achieves high efficient lithium storage[J]. Journal of Alloys and Compounds, 2023, 969: 172227. [60] AGHAJAMALI M, XIE H, JAVADI M, et al. Size and surface effects of silicon nanocrystals in graphene aerogel composite anodes for lithium ion batteries[J]. Chemistry of Materials, 2018, 30(21): 7782-7792. doi: 10.1021/acs.chemmater.8b03198 [61] BAI X, HOU M, YU Z, et al. An optimized 3D carbon matrix for high rate silicon anodes[J]. RSC Advances, 2017, 7(53): 33521-33525. doi: 10.1039/C7RA05647H [62] YI T F, SARI H, LI X, et al. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors[J]. Nano Energy, 2021, 85: 105955. doi: 10.1016/j.nanoen.2021.105955 [63] ZHANG L, LI X, YANG M, et al. High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective[J]. Energy Storage Materials, 2021, 41: 522-545. doi: 10.1016/j.ensm.2021.06.033 [64] ZHANG L, ZHU C, YU S, et al. Status and challenges facing representative anode materials for rechargeable lithium batteries[J]. Journal of Energy Chemistry, 2022, 66: 260-294. doi: 10.1016/j.jechem.2021.08.001 [65] SONG Y, LI H, YANG L, et al. Solid-solution sulfides derived from tunable layered double hydroxide precursors/graphene aerogel for pseudocapacitors and sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42742-42750. [66] ZHOU J, YAN B, YANG J, et al. A densely packed Sb2O3 nanosheet-graphene aerogel toward advanced sodium-ion batteries[J]. Nanoscale, 2018, 10(19): 9108-9114. doi: 10.1039/C8NR02102C [67] LAKSHMI K P, DEIVANAYAGAM R, SHAIJUMON M M. Carbon nanotube 'wired' octahedral Sb2O3/graphene aerogel as efficient anode material for sodium and lithium ion batteries[J]. Journal of Alloys and Compounds, 2021, 857: 158267. doi: 10.1016/j.jallcom.2020.158267 [68] GUO X, WANG S, YU L, et al. Dense SnS2 nanoplates vertically anchored on a graphene aerogel for pseudocapacitive sodium storage[J]. Materials Chemistry Frontiers, 2022, 6(3): 325-332. doi: 10.1039/D1QM01369F [69] ZHAN W, ZHU M, LAN J, et al. 1D Sb2S3@nitrogen-doped carbon coaxial nanotubes uniformly encapsulated within 3D porous graphene aerogel for fast and stable sodium storage[J]. Chemical Engineering Journal, 2021, 408: 128007. doi: 10.1016/j.cej.2020.128007 [70] LIM Y V, HUANG S, HU J, et al. Explicating the sodium storage kinetics and redox mechanism of highly pseudocapacitive binary transition metal sulfide via operando techniques and ab initio evaluation[J]. Small Methods, 2019, 3(7): 1900112. doi: 10.1002/smtd.201900112 [71] XU J, WANG M, WICKRAMARATNE N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams[J]. Advanced Materials, 2015, 27(12): 2042-2048. doi: 10.1002/adma.201405370 [72] HOU H, SHAO L, ZHANG Y, et al. Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries[J]. Advanced Science, 2017, 4(1): 1600243. doi: 10.1002/advs.201600243 [73] ZHAO J, ZHANG Y Z, CHEN J, et al. Codoped holey graphene aerogel by selective etching for high-performance sodium-ion storage[J]. Advanced Energy Materials, 2020, 10(18): 2000099. doi: 10.1002/aenm.202000099 [74] LI C, FU Q, ZHAO K, et al. Nitrogen and phosphorous dual-doped graphene aerogel with rapid capacitive response for sodium-ion batteries[J]. Carbon, 2018, 139: 1117-1125. doi: 10.1016/j.carbon.2018.06.035 [75] FAN L, LI X, SONG X, et al. Promising dual-doped graphene aerogel/SnS2 nanocrystal building high performance sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2637-2648. [76] WANG Y, FU Q, LI C, et al. Nitrogen and phosphorus dual-doped graphene aerogel confined monodisperse iron phosphide nanodots as an ultrafast and long-term cycling anode material for sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15083-15091. [77] LIU S, SHI D, TU H, et al. Self-supported fluorine-doped boron carbonitride porous aerogels for high-performance supercapacitors[J]. Energy Technology, 2021, 9(12): 2100824. doi: 10.1002/ente.202100824 [78] CHEN R, LI X, HUANG Q, et al. Self-assembled porous biomass carbon/rGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes[J]. Chemical Engineering Journal, 2021, 412: 128755. doi: 10.1016/j.cej.2021.128755 [79] LIAO Z, CHENG J, YU J H, et al. Graphene aerogel with excellent property prepared by doping activated carbon and CNF for free-binder supercapacitor[J]. Carbohydrate Polymers, 2022, 286: 119287. doi: 10.1016/j.carbpol.2022.119287 [80] LI C, YANG J, PACHFULE P, et al. Ultralight covalent organic framework/graphene aerogels with hierarchical porosity[J]. Nature Communications, 2020, 11(1): 4712. doi: 10.1038/s41467-020-18427-3 [81] AN N, GUO Z, XIN J, et al. Hierarchical porous covalent organic framework/graphene aerogel electrode for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2021, 9(31): 16824-16833. doi: 10.1039/D1TA04313G [82] JIANG Y, ZHANG Z, CHEN D, et al. Vertical growth of 2D covalent organic framework nanoplatelets on macroporous scaffold for high-performance electrodes[J]. Advanced Materials, 2022, 34(49): 2204250. doi: 10.1002/adma.202204250 [83] PAN Z, LIU M, YANG J, et al. High electroactive material loading on a carbon nanotube@3D graphene aerogel for high-performance flexible all-solid-state asymmetric supercapacitors[J]. Advanced Functional Materials, 2017, 27(27): 1701122. doi: 10.1002/adfm.201701122 [84] WU J, ZHANG Q, WANG J, et al. A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors[J]. Energy & Environmental Science, 2018, 11(5): 1280-1286. [85] GUO R, DANG L, LIU Z, et al. Incorporation of electroactive NiCo2S4 and Fe2O3 into graphene aerogel for high-energy asymmetric supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125110. doi: 10.1016/j.colsurfa.2020.125110 [86] MA C, WANG R, TETIK H, et al. Hybrid nanomanufacturing of mixed-dimensional manganese oxide/graphene aerogel macroporous hierarchy for ultralight efficient supercapacitor electrodes in self-powered ubiquitous nanosystems[J]. Nano Energy, 2019, 66: 104124. doi: 10.1016/j.nanoen.2019.104124 [87] ZHANG E, LIU W, LIU X, et al. Pulse electrochemical synthesis of polypyrrole/graphene oxide@graphene aerogel for high-performance supercapacitor[J]. RSC Advances, 2020, 10(20): 11966-11970. doi: 10.1039/D0RA01181A [88] 逄其涵, 宋慧敏, 刘佳豪, 等. MOF/聚吡咯/石墨烯三元复合气凝胶的制备与电化学性能[J]. 复合材料学报, 2024, 41(2): 726-737.FENG Qihan, SONG Huimin, LIU Jiahao, et al. Preparation and electrochemical properties of metal-organic framework/polypyrrole/graphene ternary composite aerogel[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 726-737(in Chinese). [89] ZOU K, CAI P, CAO X, et al. Carbon materials for high-performance lithium-ion capacitor[J]. Current Opinion in Electrochemistry, 2020, 21: 31-39. doi: 10.1016/j.coelec.2020.01.005 [90] LIANG J, WANG D W. Design rationale and device configuration of lithiumion capacitors[J]. Advanced Energy Materials, 2022, 12(25): 2200920. doi: 10.1002/aenm.202200920 [91] ZHENG J, XING G, ZHANG L, et al. A minireview on high-performance anodes for lithium-ion capacitors[J]. Batteries & Supercaps, 2021, 4(6): 897-908. [92] SALANNE M, ROTENBERG B, NAOI K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1(6): 16070. doi: 10.1038/nenergy.2016.70 [93] YANG C, LAN J L, DING C, et al. Three-dimensional hierarchical ternary aerogels of ultrafine TiO2 nanoparticles@porous carbon nanofibers-reduced graphene oxide for high-performance lithium-ion capacitors[J]. Electrochimica Acta, 2019, 296: 790-798. doi: 10.1016/j.electacta.2018.10.037 [94] ZHU G, MA L, LIN H, et al. High-performance Li-ion capacitor based on black-TiO2− x/graphene aerogel anode and biomass-derived microporous carbon cathode[J]. Nano Research, 2019, 12(7): 1713-1719. doi: 10.1007/s12274-019-2427-3 [95] LI Y, WANG R, ZHENG W, et al. Design of Nb2O5/graphene hybrid aerogel as polymer binder-free electrodes for lithium-ion capacitors[J]. Materials Technology, 2020, 35(9-10): 625-634. doi: 10.1080/10667857.2020.1734720 [96] YANG H, ZHANG C, MENG Q, et al. Pre-lithiated manganous oxide/graphene aerogel composites as anode materials for high energy density lithium ion capacitors[J]. Journal of Power Sources, 2019, 431: 114-124. doi: 10.1016/j.jpowsour.2019.05.060 [97] LIN D, CHANDRASEKARAN S, FORIEN J B, et al. 3D-printed graded electrode with ultrahigh MnO2 loading for non-aqueous electrochemical energy storage[J]. Advanced Energy Materials, 2023, 13(20): 2300408. [98] YAO L, DENG H, HUANG Q A, et al. Three-dimensional carbon-coated ZnFe2O4 nanospheres/nitrogen-doped graphene aerogels as anode for lithium-ion batteries[J]. Ceramics International, 2017, 43(1): 1022-1028. doi: 10.1016/j.ceramint.2016.10.034 [99] ZHANG M, DONG L, ZHANG C, et al. Heterogeneous nucleation of Li3VO4 regulated in dense graphene aerogel for lithium ion capacitors[J]. Journal of Power Sources, 2020, 468: 228364. doi: 10.1016/j.jpowsour.2020.228364 [100] JIANG H, WANG S, ZHANG B, et al. High performance lithium-ion capacitors based on LiNbO3-arched 3D graphene aerogel anode and BCNNT cathode with enhanced kinetics match[J]. Chemical Engineering Journal, 2020, 396: 125207. doi: 10.1016/j.cej.2020.125207 [101] SAJJAD M, JAVED M S, IMRAN M, et al. CuCo2O4 nanoparticles wrapped in a rGO aerogel composite as an anode for a fast and stable Li-ion capacitor with ultra-high specific energy[J]. New Journal of Chemistry, 2021, 45(44): 20751-20764. doi: 10.1039/D1NJ04919D [102] WANG H, ZHANG Y, ANG H, et al. A high-energy lithium-ion capacitor by integration of a 3d interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode[J]. Advanced Functional Materials, 2016, 26(18): 3082-3093. doi: 10.1002/adfm.201505240 [103] SHANG Y, SUN X, CHEN Z, et al. Carbon-doped surface unsaturated sulfur enriched CoS2@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion capacitors[J]. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1500-1513. doi: 10.1007/s11705-021-2086-2 [104] LI Y, XIA K, ZHANG Y, et al. Ethanol-mediated dense and N/O/P tri-doped graphene xerogel for ultrahigh volumetric capacitive energy storage[J]. Journal of Power Sources, 2023, 564: 232869. doi: 10.1016/j.jpowsour.2023.232869