纳米纤维素基湿度响应智能器件的研究进展

Recent advances in the nanocellulose-based humidity-responsive smart devices

  • 摘要: 纳米纤维素来源广泛、绿色可再生,作为纤维素衍生材料,由于其特殊的结构特性,使其具有高机械强度、高结晶度、大比表面积等特点。基于纳米纤维素的湿度响应智能器件因其丰富的亲水基团(例如羟基和羧基)而显示出出色的响应性能,因此纳米纤维素可以作为一种湿度敏感材料来制备高性能湿度响应智能器件。本文介绍了纳米纤维素的分类、来源及湿度响应智能器件的分类及响应原理,重点阐述了不同纳米纤维素在湿度响应智能器件方面的制备及应用,总结了不同类型纳米纤维素与导电材料复合的湿度响应智能器件的性能及优缺点,最后对纳米纤维素基湿度响应智能器件的研究应用存在的问题与挑战进行归纳总结,以期为纳米纤维素基复合材料在湿度响应智能器件中的发展提供理论支持。

     

    Abstract: Nanocellulose is an abundant, eco-friendly, and renewable resource, as a cellulose-derived material, it is characterized by high mechanical strength, high crystallinity, and large specific surface area due to its special structural properties. Nanocellulose-based humidity-responsive smart devices show excellent sensitivity and fast response due to its abundant hydrophilic groups (such as hydroxyl and carboxyl groups). Nanocellulose can be used as a humidity sensitive material to prepare high-performance humidity-responsive smart devices. This paper provides a concise overview of nanocellulose, its classification, and sources, along with an exploration of the classification and response principle of humidity responsive smart devices. The primary focuses lie in the application of nanocellulose within the context of humidity-responsive smart devices, and summarized the performance, advantages and disadvantages of different types of humidity responsive smart devices composited with nanocellulose and conductive materials. Finally, this paper conclude the problems and challenges in the potential research applications of nanocellulose-based humidity-responsive smart devices, aiming to offer theoretical support for the advancement of nanocellulose-based composites in humidity-responsive smart devices.

     

/

返回文章
返回