留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

橡胶颗粒和稻壳灰复掺改性ECC拉压性能与裂缝特征

滕晓丹 黎永鸿 韦宵宁 周俊杰

滕晓丹, 黎永鸿, 韦宵宁, 等. 橡胶颗粒和稻壳灰复掺改性ECC拉压性能与裂缝特征[J]. 复合材料学报, 2024, 41(7): 3717-3726. doi: 10.13801/j.cnki.fhclxb.20231107.002
引用本文: 滕晓丹, 黎永鸿, 韦宵宁, 等. 橡胶颗粒和稻壳灰复掺改性ECC拉压性能与裂缝特征[J]. 复合材料学报, 2024, 41(7): 3717-3726. doi: 10.13801/j.cnki.fhclxb.20231107.002
TENG Xiaodan, LI Yonghong, WEI Xiaoning, et al. Tensile and compressive properties and crack characteristics of rice husk ash and crumb rubber particles modified engineered cementitious composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3717-3726. doi: 10.13801/j.cnki.fhclxb.20231107.002
Citation: TENG Xiaodan, LI Yonghong, WEI Xiaoning, et al. Tensile and compressive properties and crack characteristics of rice husk ash and crumb rubber particles modified engineered cementitious composites[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3717-3726. doi: 10.13801/j.cnki.fhclxb.20231107.002

橡胶颗粒和稻壳灰复掺改性ECC拉压性能与裂缝特征

doi: 10.13801/j.cnki.fhclxb.20231107.002
基金项目: 国家自然科学基金(11962001);广西自然科学基金项目(2023GXNSFBA026268)
详细信息
    通讯作者:

    滕晓丹,博士,讲师,硕士生导师,研究方向为高延性水泥基复合材料 E-mail: xdteng@gxu.edu.cn

  • 中图分类号: TU528.58;TB332

Tensile and compressive properties and crack characteristics of rice husk ash and crumb rubber particles modified engineered cementitious composites

Funds: National Natural Science Foundation of China (11962001); Guangxi Natural Science Foundation Project (2023GXNSFBA026268)
  • 摘要: 采用稻壳灰为主要胶凝材料并掺入橡胶颗粒作为人工缺陷,制备低碳环保型的高延性水泥基复合材料(Rice husk ash and crumb rubbers engineered cementitious composites,CR-RHA/ECC)。通过宏观力学性能与微观实验,研究不同养护龄期下(7天和28天)橡胶掺入量(0、10%、20%、30%)对CR-RHA/ECC延性和开裂特性的影响。结果表明:随着龄期的增长,CR-RHA/ECC的延性存在较大差异,橡胶替代10%河砂使CR-RHA/ECC的7天龄期延性削弱了54%,而使CR-RHA/ECC的28天龄期增长了67%,随着龄期增长(28天龄期),橡胶替代30%河砂可使CR-RHA/ECC的延性达6%,此时CR-RHA/ECC相较于无橡胶替代河砂组,CR-RHA/ECC的拉伸裂缝宽度减小了52.79%。

     

  • 图  1  颗粒微观形态:(a) 稻壳灰(RHA);(b) 粉煤灰(FA)

    Figure  1.  Microscopic morphology of particles: (a) RHA; (b) FA

    图  2  FA、RHA和普通硅酸盐水泥(OPC)粒度分布

    Figure  2.  Particle size distribution of FA, RHA and OPC

    图  3  狗骨试件尺寸(a)及测试图(b)

    Figure  3.  Dog bone specimen size (a) and test diagram (b)

    图  4  7天和28天CR-RHA/ECC抗压强度

    Figure  4.  Compressive strength of CR-RHA/ECC at 7 days and 28 days

    图  5  各组ECCs 7天应力-应变曲线

    Figure  5.  Stress-strain curves of ECCs at 7 days

    图  6  各组ECC 28天应力-应变曲线

    Figure  6.  Stress-strain curves of ECCs at 28 days

    图  7  7天(a)和28天(b)龄期延性变化归一化拟合曲线

    Figure  7.  Curves of ductility change at 7 days (a) and 28 days (b) normalized

    R2—Correlation coefficient; A1, A2—Parameters of the fitting function; t1, t2—Parameters of the fitting function; a, b—Parameters of the fitting function

    图  8  PVA纤维单纤维拉拔曲线[25]

    Figure  8.  Single fiber pull-out curve for PVA[25]

    P—Load; u—Displacement

    图  9  CR-RHA/ECC 28天多缝开裂图

    Figure  9.  Multi-cracking diagram of CR-RHA/ECC at 28 days

    图  10  CR对裂缝宽度影响的两种机制:(a) CR削弱基体;(b) CR桥接裂缝[19]

    Figure  10.  Two mechanisms for CR to reduce crack width: (a) CR weakened matrix; (b) CR bridges cracks[19]

    σ—Bridging stress; δ—Crack opening displacement

    图  11  R60CR0和R60CR30的SEM图像

    Figure  11.  SEM images of R60CR0 and R60CR30

    图  12  28天R60CR0的EDS图谱

    Figure  12.  EDS patterns of R60CR0 at 28 days

    表  1  胶凝材料化学成分含量

    Table  1.   Chemical composition content of cementitious materials

    Material Chemical composition content/wt%
    SiO2 K2O CaO P2O5 Al2O3 MgO Fe2O3 SO3 Na2O
    RHA 85.90 3.43 1.11 0.75 0.55 0.46 0.37 0.19 0.11
    FA 50.80 1.44 2.29 0.38 31.95 0.62 3.34 0.67 0.54
    OPC 22.00 0.56 62.20 0.12 6.02 0.85 4.23 3.16 0.17
    Notes: RHA—Rice husk ash; FA—Fly ash; OPC—Ordinary portland cement.
    下载: 导出CSV

    表  2  稻壳灰掺入橡胶颗粒的工程水泥基复合材料(CR-RHA/ECC)配合比方案

    Table  2.   Mix design of rice husk ash and crumb rubbers engineered cementitious composites (CR-RHA/ECC)

    Mixture OPC/wt% FA/wt% RHA/wt% River sand/wt% CR/wt% Water/wt% HRWRA/wt% PVA/vol%
    R60CR0 1.00 0.88 0.76 1.15 0 0.80 7.00 2.00
    R60CR10 1.00 0.88 0.76 1.04 0.03 0.80 7.00 2.00
    R60CR20 1.00 0.88 0.76 0.92 0.05 0.80 7.00 2.00
    R60CR30 1.00 0.88 0.76 0.81 0.08 0.80 7.00 2.00
    R0CR0 1.00 2.20 0.00 1.15 0.00 0.80 2.00 2.00
    Notes: HRWRA—Liquid superplasticizer; PVA—Polyvinyl alcohol; R represents RHA, CR represents crumbs rubber, in RiCRj, i represents the volume fraction of RHA to FA; j represents the volume ratio of CR to river sand.
    下载: 导出CSV

    表  3  开裂与极限应力及其比值

    Table  3.   Cracking and ultimate strength and their ratio

    Mixture Cracking strength $ {\sigma }_{\mathrm{s}\mathrm{s}} $/MPa Ultimate strength $ {\sigma }_{\mathrm{c}} $/MPa $ {\sigma }_{\mathrm{c}}/{\sigma }_{\mathrm{s}\mathrm{s}} $
    7 d 28 d 7 d 28 d 7 d 28 d
    R60CR0 2.47 2.82 3.47 4.36 1.44 1.55
    R60CR10 2.49 2.61 2.51 4.33 1.09 1.66
    R60CR20 2.24 2.36 2.49 3.89 1.00 1.65
    R60CR30 2.23 2.52 2.45 4.11 1.17 1.63
    下载: 导出CSV

    表  4  28天裂缝参数统计

    Table  4.   Statistical of crack parameters at 28 days

    Mixture Crack number Crack width/μm Mixture Crack number Crack width/μm
    R60CR0 12 197 R60CR10 37 96
    R60CR20 47 104 R60CR30 48 93
    下载: 导出CSV
  • [1] LI V C, WANG S X, WU C. Tensile strain-hardening behavior or polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6): 483-492.
    [2] 徐世烺, 蔡向荣, 张英华. 超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J]. 土木工程学报, 2009, 42(11): 79-85. doi: 10.3321/j.issn:1000-131X.2009.11.011

    XU Shilang, CAI Xiangrong, ZHANG Yinghua. Determination and analysis of full stress-strain curves of ultra-high toughness cement-based composites under uniaxial compression[J]. Journal of Civil Engineering, 2009, 42(11): 79-85(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.11.011
    [3] 高淑玲, 徐世烺. PVA纤维增强水泥基复合材料拉伸特性试验研究[J]. 大连理工大学学报, 2007(2): 233-239. doi: 10.3321/j.issn:1000-8608.2007.02.016

    GAO Shuling, XU Shilang. Experimental study on tensile properties of PVA fiber reinforced cement-based composites[J]. Journal of Dalian University of Technology, 2007(2): 233-239(in Chinese). doi: 10.3321/j.issn:1000-8608.2007.02.016
    [4] YU J, LI H, LEUNG C K Y, et al. Matrix design for waterproof engineered cementitious composites (ECCs)[J]. Construction and Building Materials, 2017, 139: 438-446. doi: 10.1016/j.conbuildmat.2017.02.076
    [5] 杨珊, 彭林欣, 滕晓丹. 高温后PVA纤维增强水泥基复合材料力学性能试验研究[J]. 混凝土与水泥制品, 2021(4): 49-54.

    YANG Shan, PENG Linxin, TENG Xiaodan. Experimental study on mechanical properties of PVA fiber-reinforced cement-based composites at high temperature[J]. Concrete and Cement Products, 2021(4): 49-54(in Chinese).
    [6] WANG J, XIAO J, ZHANG Z, et al. Action mechanism of rice husk ash and the effect on main performances of cement-based materials: A review[J]. Construction and Building Materials, 2021, 288: 123068. doi: 10.1016/j.conbuildmat.2021.123068
    [7] 李丽华, 韩琦培, 杨星, 等. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究[J]. 土木工程学报, 2023, 56(12): 166-176.

    LI Lihua, HAN Qipei, YANG Xing, et al. Rice husk ash and cement solidification silt soil mechanics properties and microscopic mechanism research [J]. China Civil Engineering Journal, 2023, 56(12): 166-176(in Chinese).
    [8] HE Z H, LI L Y, DU S G. Creep analysis of concrete containing rice husk ash[J]. Cement and Concrete Composites, 2017, 80: 190-199.
    [9] HUANG H, GAO X, WANG H, et al. Influence of rice husk ash on strength and permeability of ultra-high performance concrete[J]. Construction and Building Materials, 2017, 149: 621-628. doi: 10.1016/j.conbuildmat.2017.05.155
    [10] ZHANG Z G, YANG F, LIU J C, et al. Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash[J]. Cement and Concrete Research, 2020, 137: 106200. doi: 10.1016/j.cemconres.2020.106200
    [11] DA COSTA F B P, RIGHI D P, GRAEFF A G, et al. Experimental study of some durability properties of ECC with a more environmentally sustainable rice husk ash and high tenacity polypropylene fibers[J]. Construction and Building Materials, 2019, 213: 505-513. doi: 10.1016/j.conbuildmat.2019.04.092
    [12] ZHANG Z, YUVARAJ A, DI J, et al. Matrix design of light weight, high strength, high ductility ECC[J]. Construction and Building Materials, 2019, 210: 188-197. doi: 10.1016/j.conbuildmat.2019.03.159
    [13] ABDULKADIR I, MOHAMMED B S, LIEW M S, et al. A review of the effect of waste tire rubber on the properties of ECC[J]. International Journal of Advanced and Applied Sciences, 2020, 7(8): 105-116. doi: 10.21833/ijaas.2020.08.011
    [14] ZHANG Z, MA H, QIAN S. Investigation on properties of ECC incorporating crumb rubber of different sizes[J]. Journal of Advanced Concrete Technology, 2015, 13(5): 241-251. doi: 10.3151/jact.13.241
    [15] 陈爱玖, 王静, 马莹. 钢纤维橡胶再生混凝土的抗冻性试验[J]. 复合材料学报, 2015, 32(4): 933-941.

    CHEN Aijiu, WANG Jing, MA Ying. Rubber steel fiber recycled concrete frost resistance test[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 933-941(in Chinese).
    [16] ISMAIL M K, SHERIR M A, SIAD H, et al. Properties of self-consolidating engineered cementitious composite modified with rubber[J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018031. doi: 10.1061/(ASCE)MT.1943-5533.0002219
    [17] MA H, QIAN S, ZHANG Z, et al. Tailoring engineered cementitious composites with local ingredients[J]. Construction and Building Materials, 2015, 101: 584-595. doi: 10.1016/j.conbuildmat.2015.10.146
    [18] RAMANATHAN S, MOON H, CROLY M, et al. Suraneni, predicting the degree of reaction of supplementary cementitious materials in cementitious pastes using a pozzolanic test[J]. Construction and Building Materials, 2019, 204: 621-630.
    [19] HOU M, ZHANG D, LI V C. Crack width control and mechanical properties of low carbon engineered cementitious composites (ECC)[J]. Construction and Building Materials, 2022, 348: 128692.
    [20] 中华人民共和国国家质量监督检验检疫总局. 用于水泥和混凝土中的粉煤灰: GB/T 1596—2017[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Fly ash used for cement and concrete: GB/T 1596—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
    [21] ASTM. Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50 mm] cube specimens): ASTM C109/C109M—21[S]. West Conshohocken: ASTM, 2021.

    ASTM. Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50 mm] cube specimens): ASTM C109/C109M—21[S]. West Conshohocken: ASTM, 2021.
    [22] SURANENI P, WEISS J. Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis[J]. Cement and Concrete Composites, 2017, 83: 273-278. doi: 10.1016/j.cemconcomp.2017.07.009
    [23] DURDZIŃSKI P T, BEN HAHA M, BERNAL S A, et al. Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements[J]. Materials and Structures/Materiaux et Constructions, 2017, 50(2): 135.
    [24] WANG J, GUO Z, YUAN Q, et al. Effects of ages on the ITZ microstructure of crumb rubber concrete[J]. Construction and Building Materials, 2020, 254: 119329. doi: 10.1016/j.conbuildmat.2020.119329
    [25] YANG E H, WANG S, YANG Y, et al. Fiber-bridging constitutive law of engineered cementitious composites[J]. Journal of Advanced Concrete Technology, 2008, 6(1): 181-193. doi: 10.3151/jact.6.181
    [26] 滕晓丹, 郭健鸣, 孙辉煌. 基于深度学习的高延性水泥基复合材料单轴拉伸裂缝检查与特征定量化识别[J]. 硅酸盐学报, 2023, 51(5): 1323-1331.

    TENG Xiaodan, GUO Jianming, SUN Huihuang. Deep learning based uniaxial tensile crack inspection and feature quantification identification of high ductility cement-based composites[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1323-1331(in Chinese).
    [27] 阚黎黎, 朱嘉伦, 王飞, 等. 聚乙烯纤维增强赤泥-碱矿渣复合材料的力学性能[J]. 复合材料学报, 2022, 33(11): 5367-5374.

    KAN Lili, ZHU Jialun, WANG Fei, et al. Polyethylene fiber reinforced mechanical properties of red mud-alkali slag composites[J]. Acta Materiae Compositae Sinica, 2022, 33(11): 5367-5374(in Chinese).
    [28] REDON C, LI V C, WU C, et al. Measuring and modifying interface properties of PVA fibers in ECC matrix[J]. Journal of Materials in Civil Engineering, 2001, 13(6): 399-406. doi: 10.1061/(ASCE)0899-1561(2001)13:6(399)
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  198
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 修回日期:  2023-10-13
  • 录用日期:  2023-10-24
  • 网络出版日期:  2023-11-08
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回