留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺栓预紧力对复合材料单搭沉头螺栓接头静载性能影响

李汝鹏 肖睿恒 葛恩德

李汝鹏, 肖睿恒, 葛恩德. 螺栓预紧力对复合材料单搭沉头螺栓接头静载性能影响[J]. 复合材料学报, 2024, 41(7): 3765-3776. doi: 10.13801/j.cnki.fhclxb.20231107.001
引用本文: 李汝鹏, 肖睿恒, 葛恩德. 螺栓预紧力对复合材料单搭沉头螺栓接头静载性能影响[J]. 复合材料学报, 2024, 41(7): 3765-3776. doi: 10.13801/j.cnki.fhclxb.20231107.001
LI Rupeng, XIAO Ruiheng, GE Ende. Effect of bolt preload on bearing response of single-lap, countersunkcomposite bolted joints[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3765-3776. doi: 10.13801/j.cnki.fhclxb.20231107.001
Citation: LI Rupeng, XIAO Ruiheng, GE Ende. Effect of bolt preload on bearing response of single-lap, countersunkcomposite bolted joints[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3765-3776. doi: 10.13801/j.cnki.fhclxb.20231107.001

螺栓预紧力对复合材料单搭沉头螺栓接头静载性能影响

doi: 10.13801/j.cnki.fhclxb.20231107.001
详细信息
    通讯作者:

    李汝鹏,博士,研究员,研究方向为飞机装配技术 E-mail: lirupeng@comac.cc

  • 中图分类号: TB332

Effect of bolt preload on bearing response of single-lap, countersunkcomposite bolted joints

  • 摘要: 根据ASTM 5961试验标准设计了复合材料单搭沉头螺栓接头试件,通过试验和仿真分析了螺栓预紧力水平对其静拉伸性能影响规律。试件为准各向同性铺层的碳纤维环氧树脂层合板,试验过程中利用非接触全场应变测量系统2D数字图像相关技术(DIC)对沉头板表面应变场数据进行了采集。基于ABAQUS/Standard隐式分析模块建立了复合材料单搭沉头螺栓接头的静拉伸三维有限元模型,分析了螺栓预紧力和摩擦系数对沉头孔周挤压应力的影响规律。结果表明:当接头承受拉伸载荷时,沉头孔周区域受螺栓挤压损伤最为严重;增加螺栓预紧力可提高螺栓孔2%变形的承载强度,但对接头极限承载强度的提升效果较小。有限元应力分析表明,增加螺栓预紧力或增大层合板之间的摩擦系数均有利于减轻孔周应力集中程度,提高复合材料单搭沉头螺栓接头的承载性能。

     

  • 图  1  复合材料单搭沉头螺栓接头设计

    Figure  1.  Dimension design of single-lap, countersunk compositebolted joints

    Ø—Hole diameter

    图  2  复合材料单搭沉头螺栓接头拉伸试验

    Figure  2.  Tensile test of single-lap, countersunk composite bolted joints

    DIC—Digital image correlation

    图  3  复合材料单搭沉头螺栓接头试件挤压失效

    Figure  3.  Bearing failure of single-lap, countersunk composite bolted joints

    图  4  复合材料单搭沉头螺栓接头二维主应变场

    Figure  4.  Two dimensional principal strain field of single-lap, countersunk composite bolted joints

    E—Maximum principal strain

    图  5  复合材料单搭沉头螺栓接头不同螺栓预紧力水平下的孔挤压应力-位移曲线

    Figure  5.  Bearing stress-displacement curves under varied preload levels of single-lap, countersunk composite bolted joints

    图  6  复合材料单搭沉头螺栓接头有限元模型(FEM)

    Figure  6.  Finite element model (FEM) of single-lap, countersunk composite bolted joints

    θ—Ply angle

    图  7  接触关系设置

    Figure  7.  Contact setting

    图  8  试验结果与仿真数据对比

    Figure  8.  Comparison between test and simulation

    图  9  复合材料单搭沉头螺栓接头施加2.5 kN预紧力后沿孔周的应力分布

    Figure  9.  Circumferential stress distribution of single-lap, countersunk composite joints after applying 2.5 kN preload

    图  10  复合材料单搭沉头螺栓接头承受2 kN拉伸载荷时的面外变形示意图

    Figure  10.  Out-of-plane deformation diagram of of single-lap, countersunk composite joints under 2 kN tension load

    图  11  复合材料单搭沉头螺栓接头施加2 kN拉伸载荷后第13~16层沿孔周的应力分布

    Figure  11.  Circumferential stress distribution of the ply 13-16 of single-lap, countersunk composite joints under 2 kN tension load

    图  12  复合材料单搭螺栓接头不同螺栓预紧力下第16层孔周的应力分布

    Figure  12.  Circumferential stress distribution of the ply 16 of single-lap, countersunk composite joints under varied preload levels

    图  13  复合材料单搭沉头螺栓接头不同摩擦系数fl下第16层孔周的应力分布

    Figure  13.  Circumferential stress distribution of ply 16 of single-lap, countersunk composite joints under varied friction coefficients fl

    图  14  复合材料单搭沉头螺栓接头不同摩擦系数fbh下第16层孔周的应力分布

    Figure  14.  Circumferential stress distribution of ply 16 of single-lap, countersunk composite joints under varied friction coefficients fbh

    表  1  试验材料参数[35]

    Table  1.   Test material parameter[35]

    Material $ {E}_{11} $/GPa $ {E}_{22} $/GPa $ {E}_{33} $/GPa $ {G}_{12} $/GPa $ {G}_{13} $/GPa $ {G}_{23} $/GPa $ {\nu }_{12} $ $ {\nu }_{13} $ $ {\nu }_{32} $
    Lamina 135 8.8 8.8 4.47 4.47 3.00 0.33 0.33 0.33
    E/GPa ν
    Ti (Bolt) 110 0.28
    Steel (Washer and nut) 210 0.3
    Notes: E11, E22, E33—Elasticity modulus; G12, G13, G23—Shear modulus; v12, v13, v32—Poisson's ratio.
    下载: 导出CSV

    表  2  数字图像相关(DIC)主要技术指标

    Table  2.   Main technical indicators of digital image correlation (DIC)

    Displacement accuracy/pixel 0.02
    Strain/10−6 200
    Measurement resolution/pixel 4096×3000
    Frames per second/Hz 9
    Measurement range/mm 120×100
    下载: 导出CSV

    表  3  不同螺栓预紧力对复合材料单搭沉头螺栓接头挤压强度的影响

    Table  3.   Influence of varied bolt preloads on bearing strength of single-lap, countersunk composite bolted joints

    Property Tightening torque/(N·m)
    0.5 1 2 3 4
    Ultimate bearing strength/MPa 714 705 708 722 758
    Diff from 0.5 N·m −1.26% +0.84% +1.12% +6.16%
    2% offset bearing strength/MPa 108 172 170 190 201
    Diff from 0.5 N·m +59.3% +57.4% +75.9% +86.1%
    下载: 导出CSV

    表  4  摩擦系数

    Table  4.   Friction coefficients

    Contact surface Friction coefficient
    Plate-bolt 0.1
    Plate-plate 0.4
    Plate-washer 0.3
    Bolt-washer 0.1
    下载: 导出CSV
  • [1] PARK H J. Effects of stacking sequence and clamping force on the bearing strengths of mechanically fastened joints in composite laminates[J]. Composite Structures, 2001, 53(2): 213-221. doi: 10.1016/S0263-8223(01)00005-8
    [2] QUINN W J, MATTHEWS F L. The effect of stacking sequence on the pin-bearing strength in GFRP[J]. Journal of Composite Materials, 1977, 11(2): 139-145. doi: 10.1177/002199837701100202
    [3] AKTAS A, DIRIKOLU M H. The effect of stacking sequence of carbon epoxy composite laminates on pinned-joint strength[J]. Composite Structures, 2003, 62(1): 107-111. doi: 10.1016/S0263-8223(03)00096-5
    [4] COOPER C, TURVEY G J. Effects of joint geometry and bolt torque on the structural performance of single bolt tension joints in pultruded GRP sheet material[J]. Composite Structures, 1995, 32(1-4): 217-226. doi: 10.1016/0263-8223(95)00071-2
    [5] KRETSIS G, MATTHEWS F L. Strength of bolted joints in glass fibre/epoxy laminates[J]. Composites, 1985, 16(2): 92-102. doi: 10.1016/0010-4361(85)90615-9
    [6] CHUTIMA C, BLACKIE A P. Effect of pitch distance, row spacing, end distance and bolt diameter on multi-fastened composite joints[J]. Composites Part A: Applied Science Manufacturing, 1996, 27(2): 105-110. doi: 10.1016/1359-835X(95)00020-3
    [7] CROXFORD A M, DAVIDSON P, WAAS A M. Influence of hole eccentricity on failure progression in a double shear bolted joint (DSBJ)[J]. Composites Science and Technology, 2018, 168: 179-187. doi: 10.1016/j.compscitech.2018.09.011
    [8] YANG Y, LIU X, WANG Y, et al. An enhanced spring-mass model for stiffness prediction in single-lap composite joints with considering assembly gap and gap shimming[J]. Composite Structures, 2018, 187: 18-26. doi: 10.1016/j.compstruct.2017.12.041
    [9] MCCARTHY M A, LAWLOR V P, STANLEY W F, et al. Bolt-hole clearance effects and strength criteria in single-bolt, single-lap, composite bolted joints[J]. Composites Science and Technology, 2002, 62(10): 1415-1431.
    [10] KELLY G, HALLSTRÖM S. Bearing strength of carbon fibre/epoxy laminates: Effects of bolt-hole clearance[J]. Composites Part B: Engineering, 2004, 35(4): 331-343. doi: 10.1016/j.compositesb.2003.11.001
    [11] LAWLOR V P, MCCARTHY M A, STANLEY W F. An experimental study of bolt-hole clearance effects in double-lap, multi-bolt composite joints[J]. Composite Structures, 2005, 71(2): 176-190. doi: 10.1016/j.compstruct.2004.09.025
    [12] MCCARTHY C T, MCCARTHY M A. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: Part II—Effects of bolt-hole clearance[J]. Composite Structures, 2005, 71(2): 159-175. doi: 10.1016/j.compstruct.2004.09.023
    [13] WANG H S, HUNG C L, CHANG F K. Bearing failure of bolted composite joints. Part I: Experimental characterization[J]. Journal of Composite Materials, 1996, 30(12): 1284-1313. doi: 10.1177/002199839603001201
    [14] GIANNOPOULOS I K, DORONI-DAWES D, KOUROUSIS K I, et al. Effects of bolt torque tightening on the strength and fatigue life of airframe FRP laminate bolted joints[J]. Composites Part B: Engineering, 2017, 125(15): 19-26.
    [15] HU J S, MI S Q, YANG Z Y, et al. An experimental investigation on bearing behavior and failure mechanism of bolted composite interference-fit joints under thermal effects[J]. Engineering Failure Analysis, 2022, 131: 105830. doi: 10.1016/j.engfailanal.2021.105830
    [16] 肖睿恒, 王耀, 刘庆波, 等. 预紧力对复合材料单搭接接头疲劳性能的影响[J]. 机械制造与自动化, 2022, 51(5): 65-69.

    XIAO Ruiheng, WANG Yao, LIU Qingbo, et al. Effect of preload on fatigue properties of composite single-lap joints[J]. Machine Building & Automation, 2022, 51(5): 65-69(in Chinese).
    [17] 刘庆波, 安鲁陵, 杨浩然. 预紧力对复合材料单搭接接头拉伸性能的影响[J]. 机械制造与自动化, 2022, 51(3): 5-8.

    LIU Qingbo, AN Luling, YANG Haoran. Effect of preload on tensile properties of composite single-lap joints[J]. Machine Building & Automation, 2022, 51(3): 5-8(in Chinese).
    [18] 梅俊杰, 倪爱清, 王继辉. 复合材料螺栓连接渐近失效分析[J]. 复合材料科学与工程, 2017(7): 40-44.

    MEI Junjie, NI Aiqing, WANG Jihui. Progressive damage analysis of composite bolted joints[J]. Composites Science and Engineering, 2017(7): 40-44(in Chinese).
    [19] 董慧民, 李小刚, 马绪强, 等. 聚合物基复合材料凸头螺栓连接研究进展[J]. 北京航空航天大学学报, 2023, 49(4): 745-760.

    DONG Huimin, LI Xiaogang, MA Xuqiang, et al. Research progress in mechanically fastened polymer-matrix composite joints with protruding-head bolts[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(4): 745-760(in Chinese).
    [20] 宋广舒. 复合材料沉头螺栓连接强度分析与渐进损伤研究[D]. 郑州: 郑州大学, 2017.

    SONG Guangshu. The strength analysis and progressive damage research for countersunk composite bolted joints[D]. Zhengzhou: Zhengzhou University, 2017(in Chinese).
    [21] 黄学优. 复合材料螺栓连接接头失效行为研究[D]. 太原: 中北大学, 2016.

    HUANG Xueyou. Failure behavior study of composite bolted joint[D]. Taiyuan: North University of China, 2016(in Chinese).
    [22] 安子乾, 舒茂盛, 程羽佳, 等. 3钉带衬套复合材料/金属接头拉伸疲劳性能[J]. 材料工程, 2021, 49(12): 164-174.

    AN Ziqian, SHU Maosheng, CHENG Yujia, et al. Tensile fatigue properties of composite/metal bolted joints with 3-pin and sleeves[J]. Journal of Materials Engineering, 2021, 49(12): 164-174(in Chinese).
    [23] 安子乾, 舒茂盛, 程羽佳, 等. 3钉带衬套复合材料/金属接头拉伸疲劳性能试验研究[J]. 材料导报, 2021, 35(20): 20081-20086.

    AN Ziqian, SHU Maosheng, CHENG Yujia, et al. Experimental study on tensile fatigue properties of composite/metal bolted joints with 3-pin and sleeves[J]. Materials Reports, 2021, 35(20): 20081-20086(in Chinese).
    [24] IREMAN T. Three-dimensional stress analysis of bolted single-lap composite joints[J]. Composite Structures, 1998, 43(3): 195-216. doi: 10.1016/S0263-8223(98)00103-2
    [25] CHISHTI M, WANG C H, THOMSON R S, et al. Experimental investigation of damage progression and strength of countersunk composite joints[J]. Composite Structures, 2012, 94(3): 865-873. doi: 10.1016/j.compstruct.2011.10.011
    [26] MANDAL B, CHAKRABARTI A. Numerical failure assessment of multi-bolt FRP composite joints with varying sizes and preloads of bolts[J]. Composite Structures, 2018, 187: 169-178. doi: 10.1016/j.compstruct.2017.12.048
    [27] YOON D, KIM S, KIM J, et al. Study on bearing strength and failure mode of a carbon-epoxy composite laminate for designing bolted joint structures[J]. Composite Structures, 2020, 239: 112023. doi: 10.1016/j.compstruct.2020.112023
    [28] SUN H T, CHANG F K, QING X. The response of composite joints with bolt-clamping loads. Part I: Model development[J]. Journal of Composite Materials, 2002, 36(1): 47-67. doi: 10.1177/0021998302036001301
    [29] 宋广舒, 郑艳萍, 赵江铭. 复合材料沉头搭接强度与渐进损伤研究[J]. 复合材料科学与工程, 2017(4): 5-10.

    SONG Guangshu, ZHENG Yanping, ZHAO Jiangming. Strength and progress failure research of countersunk composite[J]. Composites Science and Engineering, 2017(4): 5-10(in Chinese).
    [30] 林炜彦. 单搭接单螺栓连接板的力学特性研究[D]. 南昌: 南昌航空大学, 2018.

    LIN Weiyan. Study on mechanical properties of single-lapped and single bolted joint plate[D]. Nanchang: Nanchang Hangkong University, 2018(in Chinese).
    [31] 刘豫霖. 树脂基复合材料机匣安装边连接强度分析与试验研究[D]. 南京: 南京航空航天大学, 2020.

    LIU Yulin. Analysis and experimental research on the connection strength of the installation edge of the resin matrix composite case[D]. Nanjing : Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
    [32] EGAN B, MCCARTHY C T, MCCARTHY M A, et al. Stress analysis of single-bolt, single-lap, countersunk composite joints with variable bolt-hole clearance[J]. Composite Structures, 2012, 94(3): 1038-1051. doi: 10.1016/j.compstruct.2011.10.004
    [33] EGAN B, MCCARTHY C T, MCCARTHY M A, et al. Modelling a single-bolt countersunk composite joint using implicit and explicit finite element analysis[J]. Computational Materials Science, 2012, 64: 203-208. doi: 10.1016/j.commatsci.2012.02.008
    [34] ASTM. Standard test method for bearing response of polymer matrix composite laminates: ASTM D5961/D5961M—13[S]. West Conshohocken: ASTM, 2013.
    [35] ZHAI Y N, LI D S, LI X Q, et al. An experimental study on the effect of bolt-hole clearance and bolt torque on single-lap, countersunk composite joints[J]. Composite Structurest, 2015, 127: 411-419. doi: 10.1016/j.compstruct.2015.03.028
    [36] 张振华, 应秉斌, 矫明. 螺栓拧紧力矩的确定方法及相关探讨[J]. 化学工程与装备, 2009(8): 105-107, 96.

    ZHANG Zhenhua, YING Bingbin, JIAO Ming. Discussions and method for determining the bolt tightening torque[J]. Chemical Engineering & Equipment, 2009(8): 105-107, 96(in Chinese).
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  223
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2023-10-15
  • 录用日期:  2023-10-26
  • 网络出版日期:  2023-11-08
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回