留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有亮红色发光的Tm3+/Ho3+掺杂NaErF4@NaYF4核壳纳米晶的可控制备及其上转换发光性能

尹玉 陈杰 刘蓉 赵伟

尹玉, 陈杰, 刘蓉, 等. 具有亮红色发光的Tm3+/Ho3+掺杂NaErF4@NaYF4核壳纳米晶的可控制备及其上转换发光性能[J]. 复合材料学报, 2024, 41(7): 3591-3601. doi: 10.13801/j.cnki.fhclxb.20231106.001
引用本文: 尹玉, 陈杰, 刘蓉, 等. 具有亮红色发光的Tm3+/Ho3+掺杂NaErF4@NaYF4核壳纳米晶的可控制备及其上转换发光性能[J]. 复合材料学报, 2024, 41(7): 3591-3601. doi: 10.13801/j.cnki.fhclxb.20231106.001
YIN Yu, CHEN Jie, LIU Rong, et al. Controllable preparation and upconversion luminescence properties of Tm3+/Ho3+ doped NaErF4@NaYF4 core-shell nanocrystals with bright red emission[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3591-3601. doi: 10.13801/j.cnki.fhclxb.20231106.001
Citation: YIN Yu, CHEN Jie, LIU Rong, et al. Controllable preparation and upconversion luminescence properties of Tm3+/Ho3+ doped NaErF4@NaYF4 core-shell nanocrystals with bright red emission[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3591-3601. doi: 10.13801/j.cnki.fhclxb.20231106.001

具有亮红色发光的Tm3+/Ho3+掺杂NaErF4@NaYF4核壳纳米晶的可控制备及其上转换发光性能

doi: 10.13801/j.cnki.fhclxb.20231106.001
基金项目: 国家自然科学基金(51902125);吉林省科技发展计划(YDZJ202101ZYTS029);吉林市科技发展计划(20210103092);第七批吉林省青年科技人才托举工程(QT202316)
详细信息
    通讯作者:

    陈杰,博士,副教授,硕士生导师,研究方向为稀土光功能材料的开发与应用 E-mail: jiechendr@163.com

  • 中图分类号: O734;TB332

Controllable preparation and upconversion luminescence properties of Tm3+/Ho3+ doped NaErF4@NaYF4 core-shell nanocrystals with bright red emission

Funds: National Natural Science Foundation of China (51902125); Science and Technology Development Plan of Jilin Province (YDZJ202101ZYTS029); Science and Technology Development Plan of Jilin City (20210103092); The Seventh Batch of Jilin Province Young Science and Technology Talents Promotion Project (QT202316)
  • 摘要: 为了获得具有红光发射的上转换纳米材料,以实现深层生物成像的应用,采用热分解法制备了一系列Tm3+、Ho3+掺杂NaErF4@NaYF4核壳上转换纳米晶,并对其形貌、结构和发光性能进行了表征。结果表明:所制备NaErF4、NaErF4∶Tm3+和NaErF4∶Ho3+裸核均为六方相结构,呈现良好的球形形貌,平均粒径分别为28.01 nm、23.19 nm、27.89 nm。包覆NaYF4惰性壳层后,样品晶型没有改变,形貌变为短棒状,平均长度增大至37.82 nm、38.51 nm、42.65 nm。在980 nm近红外光激发下,由于Er3+4F9/24I15/2跃迁,所制备NaErF4、NaErF4∶Tm3+和NaErF4∶Ho3+裸核均呈现明显的红光发射,且包覆NaYF4惰性壳层后,发光强度和荧光寿命都明显增加,特别是NaErF4@NaYF4核壳样品的发光强度约是NaErF4裸核的1787倍,荧光寿命达到2.04 ms。此外,与NaErF4@NaYF4纳米棒相比,NaErF4∶(Tm3+, Ho3+)@NaYF4体系中的Tm3+、Ho3+充当了能量捕获中心且与Er3+之间发生能量传递,使其具有更大的红绿发射峰比值(R/G),发光颜色更趋近于红色,与色坐标(CIE)颜色区域相一致。最后,根据发光强度与激发功率的关系,详细分析了上转换纳米晶的发光增强机制及可能存在的能量传递过程。

     

  • 图  1  NaErF4 ((a), (g))、NaErF4∶Tm3+ ((b), (h))、NaErF4∶Ho3+ ((c), (i))、NaErF4@NaYF4 ((d), (j))、NaErF4∶Tm3+@NaYF4 ((e), (k))、NaErF4∶Ho3+@NaYF4 ((f), (l))纳米粒子的HRTEM图像和尺寸分布图

    Figure  1.  HRTEM images and size distributions of NaErF4 ((a), (g)), NaErF4∶Tm3+ ((b), (h)), NaErF4∶Ho3+ ((c), (i)), NaErF4@NaYF4 ((d), (j)), NaErF4∶Tm3+@NaYF4 ((e), (k)), NaErF4∶Ho3+@NaYF4 ((f), (l)) nanoparticles

    d—Average diameter

    图  2  NaErF4 (a)、NaErF4∶Tm3+ (b)、NaErF4∶Ho3+ (c)、NaErF4@NaYF4 (d)、NaErF4∶Tm3+@NaYF4 (e)、NaErF4∶Ho3+@NaYF4 (f)纳米粒子的EDS图谱

    Figure  2.  EDS patterns of NaErF4 (a), NaErF4∶Tm3+ (b), NaErF4∶Ho3+ (c), NaErF4@NaYF4 (d), NaErF4∶Tm3+@NaYF4 (e), NaErF4∶Ho3+@NaYF4 (f) nanoparticles

    图  3  NaErF4、NaErF4∶Tm3+、NaErF4∶Ho3+裸核(a)及NaErF4@NaYF4、NaErF4∶Tm3+@NaYF4、NaErF4∶Ho3+@NaYF4核壳纳米粒子(b)的XRD图谱

    Figure  3.  XRD patterns of NaErF4, NaErF4∶Tm3+, NaErF4∶Ho3+ core (a) and NaErF4@NaYF4, NaErF4∶Tm3+@NaYF4, NaErF4∶Ho3+@NaYF4 core-shell nanoparticles (b)

    图  4  在980 nm激发下不同裸核纳米粒子的上转换发射光谱(a)和红绿发射峰比值(R/G) (b)

    Figure  4.  Upconversion emission spectra of different bare core nanoparticles under 980 nm excitation (a) and ratio of red to green emission peaks (R/G) (b)

    图  5  980 nm激发下NaErF4@NaYF4 (a)、NaErF4∶Tm3+@NaYF4 (b)、NaErF4∶Ho3+@NaYF4 (c)核壳样品与对应裸核的上转换发射光谱对比图;不同核壳样品的上转换发射光谱(d)和红绿发射峰强度比值(R/G)图(e)

    Figure  5.  Comparison of emission spectra between bare core and core-shell samples under 980 nm excitation: (a) NaErF4@NaYF4; (b) NaErF4∶Tm3+@NaYF4; (c) NaErF4∶Ho3+@NaYF4; Emission spectra (d) and the ratio of red to green emission intensity (R/G) (e) of different core-shell samples

    图  6  不同裸核(a)和核壳(b)纳米粒子653 nm (Er3+4F9/24I15/2 )处发射峰强度IUC与泵浦功率P的对数图

    Figure  6.  Logarithmic plots of upconversion emission intensity IUC at 653 nm (Er3+, 4F9/24I15/2 ) versus pumping power P of bare core (a) and core-shell (b) nanoparticles

    图  7  NaErF4@NaYF4 (a)、NaErF4∶Tm3+@NaYF4 (b)、NaErF4∶Ho3+@NaYF4 (c)核壳纳米粒子的上转换发光机制图

    Figure  7.  Upconversion luminescence mechanism diagram of NaErF4@NaYF4 (a), NaErF4∶Tm3+@NaYF4 (b), NaErF4∶Ho3+@NaYF4 (c) core-shell nanoparticles

    GSA—Ground state absorption; ESA—Excited state absorption

    图  8  980 nm激发(Ex)下NaErF4、NaErF4∶Tm3+、NaErF4∶Ho3+裸核(a)和NaErF4@NaYF4、NaErF4∶Tm3+@NaYF4、NaErF4∶Ho3+@NaYF4核壳纳米粒子中653 nm发射(Em) (b)的荧光衰减曲线

    Figure  8.  Decay curves of 653 nm emission (Em) in NaErF4, NaErF4∶Tm3+, NaErF4∶Ho3+ core (a), NaErF4@NaYF4, NaErF4∶Tm3+@NaYF4, NaErF4∶Ho3+@NaYF4 core-shell nanoparticles under 980 nm excitation (Ex) (b)

    τ—Lifetime

    图  9  980 nm激发下NaErF4、NaErF4∶Tm3+、NaErF4∶Ho3+裸核(a)及NaErF4@NaYF4、NaErF4∶Tm3+@NaYF4、NaErF4∶Ho3+@NaYF4核壳(b)纳米粒子的色坐标图

    Figure  9.  Chromaticity coordinate (CIE) diagram of NaErF4, NaErF4∶Tm3+, NaErF4∶Ho3+ bare core (a) and NaErF4@NaYF4, NaErF4∶Tm3+@NaYF4, NaErF4∶Ho3+@NaYF4 core-shell (b) nanoparticles under 980 nm excitation

    Tc—Color temperature

    表  1  NaErF4、NaErF4∶Tm3+、NaErF4∶Ho3+及NaErF4@NaYF4、NaErF4∶Tm3+@NaYF4、NaErF4∶Ho3+@NaYF4样品的色坐标参数

    Table  1.   CIE parameters of NaErF4, NaErF4∶Tm3+, NaErF4∶Ho3+, NaErF4@NaYF4, NaErF4∶Tm3+@NaYF4 and NaErF4∶Ho3+@NaYF4 samples

    No. Sample CIE (x, y) CCT/K Color
    1 NaErF4 (0.4608, 0.4652) 5067 Yellow
    2 NaErF4∶0.5%Tm3+ (0.6649, 0.3123) 2962 Red
    3 NaErF4∶0.5%Ho3+ (0.4638, 0.4969) 5103 Green-yellow
    4 NaErF4@NaYF4 (0.4711, 0.4984) 5083 Green-yellow
    5 NaErF4∶0.5%Tm3+@NaYF4 (0.6138, 0.3764) 4080 Orange-red
    6 NaErF4∶0.5%Ho3+@NaYF4 (0.5109, 0.4719) 4908 Orange
    Note: CCT—Color correlated temperature.
    下载: 导出CSV
  • [1] WANG C C, ZHAO P R, YANG G L, et al. Reconstructing the intracellular pH microenvironment for enhancing photodynamic therapy[J]. Materials Horizons, 2020, 7(4): 1180-1185. doi: 10.1039/C9MH01824G
    [2] TAN L X, LI D N, ZHANG L J, et al. Preparation of multishell-structured NaYF4:Yb, Tm, Nd@NaYF4:Yb, Nd@SiO2@ZnO nanospheres with effective NIR-induced photocatalytic activity[J]. The Journal of Physical Chemistry C, 2020, 124(33): 18081-18090. doi: 10.1021/acs.jpcc.0c04528
    [3] XU M M, GE W Y, ZHANG X M, et al. Bi-functional NaBiF4: Er3+, Tm3+ nanoparticles for optical thermometry and anti-counterfeiting applications[J]. Optics & Laser Technology, 2022, 145: 107529.
    [4] YAO Y, XIE G M, ZHANG X, et al. Fast detection of E. coli with a novel fluorescent biosensor based on a FRET system between UCNPs and GO@Fe3O4 in urine specimens[J]. Analytical Methods: Advancing Methods and Applications, 2021, 13(19): 2209-2214.
    [5] ÖRÜCÜ H, TABANLI S, ERDEM M, et al. Bright white light up-conversion luminescence from Yb3+/Er3+/Tm3+ tridoped gadolinium gallium garnet nano-crystals for multicolor and white light-emitting diodes[J]. Optical Materials, 2022, 131: 112613.
    [6] WU Q X, XU Z, WAGEH S, et al. The dynamic variation of upconversion luminescence dependent on shell Yb3+ contents in NaYF4:Yb3+, Tm3+@NaYF4:Yb3+, Er3+ nanoparticles[J]. Journal of Alloys and Compounds, 2022, 891: 162067. doi: 10.1016/j.jallcom.2021.162067
    [7] XIE Y L, CHEN Q, WANG M, et al. Highly doped NaErF4-based nanocrystals for multi-tasking application[J]. Journal of Rare Earths, 2021, 39(12): 1467-1476. doi: 10.1016/j.jre.2021.04.014
    [8] LI H, WANG X, LI X L, et al. Clearable shortwave-infrared-emitting NaErF4 nanoparticles for noninvasive dynamic vascular imaging[J]. Chemistry of Materials, 2020, 32(8): 3365-3375. doi: 10.1021/acs.chemmater.9b04784
    [9] SHANG Y F, HAO S W, LYU W Q, et al. Confining excitation energy of Er3+-sensitized upconversion nanoparticles through introducing various energy trapping centers[J]. Journal of Materials Chemistry C, 2018, 6(15): 3869-3875. doi: 10.1039/C7TC05742C
    [10] YU B, ZHOU X P, TANG X S, et al. Enhancing the red upconversion of water-soluble β-NaErF4:Yb nanocrystals through Ca2+ doping[J]. Journal of Sol-Gel Science and Technology, 2020, 93(3): 473-478. doi: 10.1007/s10971-019-05215-9
    [11] XIE W Y, AN X T, CHEN L, et al. Tunable phase and upconverting luminescence of Gd3+ co-doped NaErF4:Yb3+ nanostructures[J]. Materials Research Bulletin, 2017, 95: 509-514. doi: 10.1016/j.materresbull.2017.08.033
    [12] SHI L C, HU J S, WU X F, et al. Upconversion core/shell nanoparticles with lowered surface quenching for fluorescence detection of Hg2+ ions[J]. Dalton Transactions, 2018, 47(46): 16445-16452. doi: 10.1039/C8DT02853B
    [13] YU Z C, ZHOU H F, ZHOU G J, et al. Optical-magnetic bifunctional properties and mechanistic insights on upconversion of NaYF4:Yb, Ho, Tm@NaGdF4 with a tunable nanodumbbell morphology[J]. Physical Chemistry Chemical Physics, 2017, 19(47): 31675-31683. doi: 10.1039/C7CP05011A
    [14] 陈杰, 高忆欣, 王超, 等. 六角柱形NaErF4和NaErF4@NaYF4核壳微粒制备及多色上转换荧光调控性能[J]. 发光学报, 2022, 43(2): 209-217. doi: 10.37188/CJL.20210373

    CHEN Jie, GAO Yixin, WANG Chao, et al. Preparation and polychromatic upconversion luminescence of hexagonal NaErF4 and NaErF4@NaYF4 core-shell particles[J]. Chinese Journal of Luminescence, 2022, 43(2): 209-217(in Chinese). doi: 10.37188/CJL.20210373
    [15] CHOI J E, KIM D, JANG H S. Intense upconversion red emission from Gd-doped NaErF4:Tm-based core/shell/shell nanocrystals under 980 and 800 nm near infrared light excitations[J]. Chemical Communications, 2019, 55(16): 2261-2264. doi: 10.1039/C8CC09031A
    [16] JOSHI R, PERALA R S, SHELAR S B, et al. Super bright red upconversion in NaErF4:0.5%Tm@NaYF4:20%Yb nanoparticles for anti-counterfeit and bioimaging applications[J]. Applied Materianls & Interfaces, 2021, 13(2): 3481-3490.
    [17] PAN T T, SUN L Y, GAO R Y, et al. Efficient modulation of upconversion luminescence in NaErF4-based core-shell nanocrystals[J]. New Journal of Chemistry, 2020, 44(22): 9153-9157.
    [18] 晏旭, 梁作芹, 张晓波, 等. 花菁衍生物/上转换纳米复合材料的制备与发光性质[J]. 复合材料学报, 2023, 40(6): 3562-3570.

    YAN Xu, LIANG Zuoqin, ZHANG Xiaobo, et al. Preparation and luminescence properties of cyanine dye-sensitized upconversion nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3562-3570(in Chinese).
    [19] BORODZIUK A, BARANOWSKI M, WOJCIECHOWSKI T, et al. Excitation efficiency determines the upconversion luminescence intensity of β-NaYF4:Er3+, Yb3+ nanoparticles in magnetic fields up to 70 T[J]. Nanoscale, 2020, 12(39): 20300-20307. doi: 10.1039/D0NR04252H
    [20] 陈杰, 王超, 尹玉, 等. SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho)核壳微球的制备及上转换发光性能[J]. 复合材料学报, 2023, 40(7): 4072-4081.

    CHEN Jie, WANG Chao, YIN Yu, et al. Preparation and upconversion luminescence properties of SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho) core-shell microspheres[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4072-4081(in Chinese).
    [21] ZHANG X J, GAO R Y, WANG Z J, et al. Effect of excitation mode on the upconversion luminescence of β-NaYF4: Yb/Er nanocrystals[J]. Chemical Physics Letters, 2021, 779: 138880. doi: 10.1016/j.cplett.2021.138880
    [22] CHEN J, WANG C, YIN Y, et al. Upconversion luminescence enhancement and color modulation in Yb3+/Er3+/Ln3+ (Ln = Tm, Ho) tri-doped YF3 microrods[J]. Optical Materials, 2023, 140: 113839. doi: 10.1016/j.optmat.2023.113839
    [23] SHUAI P F, GUO Q F, LIAO L B, et al. Structure, optical characteristics and temperature sensing performance studies of Cs3YF6:Er3+, Yb3+ up-conversion material with cryolite structure[J]. Journal of Solid State Chemistry, 2022, 306: 122720. doi: 10.1016/j.jssc.2021.122720
    [24] CHEN J, GUO J J, CHEN L Y, et al. Optimized luminescent intensity of Ca2MgWO6:Er3+, Yb3+ up-conversion phosphors by uniform design and response surface methodology[J]. Journal of Luminescence, 2022, 248: 118958. doi: 10.1016/j.jlumin.2022.118958
    [25] PRZYBYLSKA D, GRZYB T, ERDMAN A, et al. Anti-counterfeiting system based on luminescent varnish enriched by NIR-excited nanoparticles for paper security[J]. Scientific Reports, 2022, 12(1): 19388. doi: 10.1038/s41598-022-23686-9
    [26] CHEN Q S, XIE X J, HUANG B L, et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping[J]. Angewandte Chemie, 2017, 129(26): 7713-7717.
    [27] SONG Y, GONG G, XIE S W, et al. Synthesis and inkjet printing of NaYF4:Ln3+@NaYF4 core-shell nanoparticles with enhanced upconversion fluorescence for anti-counterfeiting applications[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(3): 1511-1519.
    [28] JIN L M, CHEN X, SIU C K, et al. Enhancing multiphoton upconversion from NaYF4:Yb/Tm@NaYF4 core-shell nanoparticles via the use of laser cavity[J]. ACS Nano, 2017, 11(1): 843-849. doi: 10.1021/acsnano.6b07322
    [29] YANG H J, LI X B, ZHANG R R, et al. Preparation and properties of Nd3+ doped Gd2O3 near-infrared phosphor[J]. Ceramics International, 2021, 47(6): 8510-8517. doi: 10.1016/j.ceramint.2020.11.218
    [30] TANG R J, WANG J X, XU Y S, et al. Controlled synthesis and upconversion luminescence properties of heterogeneous isomorphic Yb3+/Er3+ co-doped Na0.9Ca0.9Gd1.1F6 nanorods with multiple luminescence centers[J]. CrystEngComm, 2022, 24(2): 251-259.
    [31] AN J X, ZHANG S, LIU R W, et al. Luminescent properties of Dy3+/Eu3+ doped fluorescent glass for white LED based on oxyfluoride matrix[J]. Journal of Rare Earths, 2021, 39(1): 26-32. doi: 10.1016/j.jre.2020.01.013
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  233
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-12
  • 修回日期:  2023-10-25
  • 录用日期:  2023-10-26
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回