留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向海工结构阴极防护用纳米水泥基热电复合材料制备及其温差自供能性

袁士柯 罗健林 高乙博 滕飞 张纪刚 刘昂 张立卿

袁士柯, 罗健林, 高乙博, 等. 面向海工结构阴极防护用纳米水泥基热电复合材料制备及其温差自供能性[J]. 复合材料学报, 2024, 41(5): 2662-2673. doi: 10.13801/j.cnki.fhclxb.20231103.003
引用本文: 袁士柯, 罗健林, 高乙博, 等. 面向海工结构阴极防护用纳米水泥基热电复合材料制备及其温差自供能性[J]. 复合材料学报, 2024, 41(5): 2662-2673. doi: 10.13801/j.cnki.fhclxb.20231103.003
YUAN Shike, LUO Jianlin, GAO Yibo, et al. Preparation of nano-modified cement-based thermoelectric composite and its self-power supply behaviors engineered cathodic protection for offshore structure[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2662-2673. doi: 10.13801/j.cnki.fhclxb.20231103.003
Citation: YUAN Shike, LUO Jianlin, GAO Yibo, et al. Preparation of nano-modified cement-based thermoelectric composite and its self-power supply behaviors engineered cathodic protection for offshore structure[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2662-2673. doi: 10.13801/j.cnki.fhclxb.20231103.003

面向海工结构阴极防护用纳米水泥基热电复合材料制备及其温差自供能性

doi: 10.13801/j.cnki.fhclxb.20231103.003
基金项目: 国家自然科学基金 (51878364);山东省自然科学基金(ZR2023ME011);中建八局横向合作项目(JM20191030;B2-2022-0253;B2-2022-0048;B2-2023-0014);国家111计划、省高峰学科资助
详细信息
    通讯作者:

    罗健林,博士,教授,博士生导师,研究方向为复合材料与结构 E-mail: lawjanelim@qut.edu.cn

  • 中图分类号: TB332

Preparation of nano-modified cement-based thermoelectric composite and its self-power supply behaviors engineered cathodic protection for offshore structure

Funds: National Natural Science Foundation of China (51878364); Natural Science Foundation of Shandong Province (ZR2023ME011); Cooperation Project of China Construction Eight Division (JM20191030; B2-2022-0253; B2-2022-0048; B2-2023-0014); National 111 Program, Provincial Peak Discipline Funding
  • 摘要: 经略海洋及双碳背景下,用阴极防护(CP)技术提升海工结构服役寿命具有重要意义,然而需外加电源额外驱动。为此本文先用水热法合成纳米二氧化锰(nMnO2),然后与碳纳米管(CNTs)复掺水泥砂浆体系中,制备纳米水泥基热电复合材料(NTEC);最后将20个NTEC串联成1套热电发电模块,并结合电化学方法综合评价基于温差发电的NTEC热电模块直接用作海工结构钢筋CP系统电流供给源的可行性。结果表明:复掺有0.2wt%CNTs与5.0wt%nMnO2的NTEC试件的热电系数、热电功率因数可分别达3612 μV/℃和301.4 μW·m−1·℃−2,本征力学强度与耐久抗渗性得到保障;施加基于NTEC温差发电的CP,钢筋的腐蚀电位正移,腐蚀概率显著降低;施加基于NTEC热电模块的CP后能使钢筋腐蚀电流密度降低3个数量级,腐蚀电荷转移得到了抑制,腐蚀速率大为降低,实现海工结构钢筋CP的自供能,同时保障了其用作保护层的强度与耐久性。

     

  • 图  1  纳米水泥基热电复合材料(NTEC)试样的电极分布图(a)和热电系数(S)测试示意图(b)

    ΔT—Change in temperature; ΔV—Change in voltage

    Figure  1.  Electrode distribution diagram (a) and schematic diagram of thermoelectric coefficient (S) test (b) for nano-modified cement-based thermoelectric composites (NTEC) specimen

    图  2  NTEC温差发电模块示意图

    Figure  2.  Schematic diagram of temperature gap power generationmodule of NTEC

    图  3  电化学测试示意图:(a)不设阴极防护(NP);(b)设置阴极防护(CP)

    Figure  3.  Schematic diagram of electrochemical testing: (a) Testing without cathodic protection (NP); (b) Testing with cathodic protection (CP)

    图  4  纳米MnO2 (nMnO2)的XRD图谱

    Figure  4.  XRD patterns of nano-MnO2 (nMnO2)

    图  5  nMnO2的SEM图像

    Figure  5.  SEM image of nMnO2

    图  6  不同nMnO2掺量下NTEC的温差电压随温差变化趋势

    Figure  6.  Curves of thermoelectric voltage with temperature gap for NTEC with different doping of nMnO2

    图  7  不同nMnO2掺量下NTEC的热电系数S和热电功率因数PF变化趋势

    Figure  7.  Trends of thermoelectric coefficient S and thermoelectric power factor PF of NTEC with different nMnO2 doping

    图  8  不同nMnO2掺量下NTEC与nMnO2水泥基复合材料(nMnO2/CC)试样的28天抗压强度(fc 28 d)和抗折强度(ft 28 d)

    Figure  8.  28 days compressive strength (fc 28 d) and flexural strength (ft 28 d) of NTEC and nMnO2/cement-based composite (nMnO2/CC) specimens with different nMnO2 doping

    图  9  不同nMnO2掺量下NTEC与nMnO2/CC试样的迁移系数(λ)

    Figure  9.  Migration coefficient (λ) of NTEC and nMnO2/CC specimens with different nMnO2 doping

    图  10  两组钢筋的腐蚀电位变化曲线(a)和在腐蚀模拟孔隙液(CSF)中浸泡21天后的动电位极化曲线图(b)

    Ecorr—Corrosion potential

    Figure  10.  Corrosion potential change curves for two groups of steel rebars (a) and dynamic potential polarization plots for two groups of steel rebars after 21 d immersion in corrosion simulation of pore fluid (CSF) (b)

    图  11  两组钢筋不同腐蚀龄期下的Nyquist图((a1)~(e1))和Bode图((a2)~(e2))

    Z'—Real part of impedance; –Z''—Negative of the imaginary part of the impedance; f—Frequency; |Z|—Impedance modulus

    Figure  11.  Nyquist ((a1)-(e1)) and Bode ((a2)-(e2)) diagrams for two groups of steel rebars at different ages of corrosion

    图  12  不同腐蚀龄期下的EIS模拟等效电路图

    Rs—Resistance of the electrolyte solution; Rf—Film resistance of the conversion film on the surface of the steel rebars; Rct—Resistance of the charge transfer during the corrosion of the steel rebars; CPEf—Membrane capacitor; CPEdl—Double layer capacitor

    Figure  12.  Equivalent circuit diagrams for EIS simulations at different corrosion ages

    表  1  碳纳米管(CNTs)的主要物理性能指标

    Table  1.   Main physical property indexes of carbon nanotubes (CNTs)

    Diameter/nm Length/μm Purity/% Amorphous
    carbon/%
    Specific surface
    area/(m2·g−1)
    Thermal
    conductivity/(W·(m·K)−1)
    Resistivity/
    (Ω·cm)
    20-40 5-15 ≥90 ≤3 40-300 1.60 <5
    下载: 导出CSV

    表  2  两组钢筋的极化曲线拟合数据

    Table  2.   Fitting data of polarization curves for two groups of steel rebars

    Group Ecorr/V Icorr/(μA·cm−2) Corrosion rate/(mm·a−1)
    CSF-NP −0.762 1.56×10 1.83×10−1
    CSF-CP −0.336 7.58×10−2 8.91×10−4
    Note: IcorrCorrosion current density.
    下载: 导出CSV

    表  3  不同腐蚀龄期下钢筋的EIS拟合数据

    Table  3.   EIS fitting data for steel rebars at differentcorrosion ages

    Group Corrosion
    age/d
    Rs/(Ω·cm2) Rf/(kΩ·cm2) Rct/(kΩ·cm2)
    CSF-NP 03.24101.38
    32.85126.42 236.51
    72.88154.36 180.04
    142.84 7.20 62.92
    213.07 1.07 29.26
    CSF-CP 02.97123.77
    32.95253.70 302.64
    72.80501.48 447.21
    142.83245.733125.21
    212.95102.313232.93
    下载: 导出CSV
  • [1] QU F, LI W, DONG W, et al. Durability deterioration of concrete under marine environment from material to structure: A critical review[J]. Journal of Building Engineering, 2021, 35: 102074. doi: 10.1016/j.jobe.2020.102074
    [2] JIN Z, CHANG H, DU F, et al. Influence of SAP on the chloride penetration and corrosion behavior of steel bar in concrete[J]. Corrosion Science, 2020, 171: 108714. doi: 10.1016/j.corsci.2020.108714
    [3] WANG Z, YU J, LI G, et al. Corrosion behavior of steel rebar embedded in hybrid CNTs-OH/polyvinyl alcohol modified concrete under accelerated chloride attack[J]. Cement and Concrete Composites, 2019, 100: 120-129. doi: 10.1016/j.cemconcomp.2019.02.013
    [4] MONTEMOR M F, SIMOES A M P, FERREIRA M G S. Chloride-induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques[J]. Cement and Concrete Composites, 2003, 25: 491-502. doi: 10.1016/S0958-9465(02)00089-6
    [5] ZAKI A, CHAI H K, AGGELIS D G, et al. Non-destructive evaluation for corrosion monitoring in concrete: A review and capability of acoustic emission technique[J]. Sensors, 2015, 15(8): 19069-19101. doi: 10.3390/s150819069
    [6] CAIRNS J, DU Y, LAW D. Structural performance of corrosion-damaged concrete beams[J]. Magazine of Concrete Research, 2008, 60(5): 359-370. doi: 10.1680/macr.2007.00102
    [7] HU J Y, ZHANG S S, CHEN E, et al. A review on corrosion detection and protection of existing reinforced concrete (RC) structures[J]. Construction and Building Materials, 2022, 325: 126718. doi: 10.1016/j.conbuildmat.2022.126718
    [8] KOLEVA D A, GUO Z, VAN BREUGEL K, et al. Conventional and pulse cathodic protection of reinforced concrete: Electrochemical behavior of the steel reinforcement after corrosion and protection[J]. Materials and Corrosion, 2009, 60(5): 344-354. doi: 10.1002/maco.200805150
    [9] 邱玉婷, 鲁翰宸, 金阳, 等. 热电复合材料的研究进展[J]. 复合材料学报, 2022, 39(9): 4213-4226.

    QIU Yuting, LU Hanchen, JIN Yang, et al. Research progress in thermoelectric composites[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4213-4226(in Chinese).
    [10] WEI J, FAN Y, ZHAO L, et al. Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear[J]. Ceramics International, 2018, 44(6): 5829-5833. doi: 10.1016/j.ceramint.2018.01.074
    [11] JI T, ZHANG X Y, ZHANG X, et al. Effect of manganese dioxide nanorods on the thermoelectric properties of cement composites[J]. Journal of Materials in Civil Engineering, 2018, 30(9): 04018224. doi: 10.1061/(ASCE)MT.1943-5533.0002401
    [12] 崔一纬, 魏亚. 水泥基复合材料热电效应综述: 机制、材料、影响因素及应用[J]. 复合材料学报, 2020, 37(9): 2077-2093.

    CUI Yiwei, WEI Ya. A review of thermoelectric effect of cement-based composites: Mechanism, material, factor and application[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2077-2093(in Chinese).
    [13] WEN S, CHUNG D D L. Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers[J]. Cement and Concrete Research, 2000, 30(8): 1295-1298. doi: 10.1016/S0008-8846(00)00341-0
    [14] MIAO T, SHI S, YAN S, et al. Integrative characterization of the thermoelectric performance of an individual multiwalled carbon nanotube[J]. Journal of Applied Physics, 2016, 120(12): 124302. doi: 10.1063/1.4962942
    [15] JI T, ZHANG X, LI W. Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings[J]. Construction and Building Materials, 2016, 115: 576-581. doi: 10.1016/j.conbuildmat.2016.04.035
    [16] WALIA S, BALENDHRAN S, NILI H, et al. Transition metal oxides—Thermoelectric properties[J]. Progress in Materials Science, 2013, 58(8): 1443-1489. doi: 10.1016/j.pmatsci.2013.06.003
    [17] CHIRITESCU C, CAHILL D, NGUYENI N, et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals[J]. Science, 2007, 315(5810): 351-353. doi: 10.1126/science.1136494
    [18] LI W, LIAO X, JI T, et al. Thermoelectric property of cement composites with MnO2 added[J]. Journal of Building Materials, 2017, 20(5): 770-773.
    [19] HOU X, ZHOU Y, WANG L, et al. Growth and thermoelectric properties of Ba8Ga16Ge30 clathrate crystals[J]. Journal of Alloys and Compounds, 2009, 482(1): 544-547.
    [20] SONG F, WU L, LIANG S. Giant Seebeck coefficient thermoelectric device of MnO2 powder[J]. Nanotechnology, 2012, 23(8): 085401. doi: 10.1088/0957-4484/23/8/085401
    [21] ISLAM A K M, ISLAM R, KHAN K A. Studies on the thermoelectric effect in semiconducting MnO2 thin films[J]. Journal of Materials Science: Materials in Electronics, 2005, 16(4): 203-207. doi: 10.1007/s10854-005-0766-1
    [22] HEDDEN M, FRANCIS N, HARALDSEN J T, et al. Thermoelectric properties of nano- meso- micro β-MnO2 powders as a function of electrical resistance[J]. Nanoscale Research Letters, 2015, 10(1): 292-300. doi: 10.1186/s11671-015-1000-6
    [23] 中国建筑材料联合会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    China Building Materials Federation. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: China Standards Press, 2021(in Chinese).
    [24] HAN B, GUAN X, OU J. Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors[J]. Sensors and Actuators A: Physical, 2007, 135(2): 360-369. doi: 10.1016/j.sna.2006.08.003
    [25] 中国建筑科学研究院. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    China Academy of Building Research. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [26] CAO G, SU L, ZHANG X, et al. Hydrothermal synthesis and catalytic properties of α- and β-MnO2 nanorods[J]. Materials Research Bulletin, 2010, 45(4): 425-428. doi: 10.1016/j.materresbull.2009.12.016
    [27] MAKAR J M, CHAN G W. Growth of cement hydration products on single walled carbon nanotubes[J]. Journal of the American Ceramic Society, 2010, 92(6): 1303-1310.
    [28] CARRICO A, BOGAS J A, HAWREEN A, et al. Durability of multi-walled carbon nanotube reinforced concrete[J]. Construction and Building Materials, 2018, 164: 121-133. doi: 10.1016/j.conbuildmat.2017.12.221
    [29] TYSON B M, ABU AI-RUB R K, YAZDANBAKHSH A, et al. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials[J]. Journal of Materials in Civil Engineering, 2011, 23(7): 1028-1035. doi: 10.1061/(ASCE)MT.1943-5533.0000266
    [30] ASTM International. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete: ASTM C876—2009[S]. West Conshohocken: ASTM International, 2009.
    [31] ZENG Y. Passive film properties and their influence on hydrogen absorption into titanium[D]. London: University of Western Ontario, 2009.
    [32] ANDRADE C, ALONSO C. Corrosion rate monitoring in the laboratory and on-site[J]. Construction Building Materials, 1996, 10(5): 315-328. doi: 10.1016/0950-0618(95)00044-5
    [33] 刘昂. 水滑石基功能化缓蚀-涂层防护体系构建和机制研究[D]. 青岛: 中国科学院大学, 2020.

    LIU Ang. The protection system construction and mechanism research of functional corrosion inhibition-coating based on layered double hydroxides[D]. Qingdao: University of Chinese Academy of Sciences, 2020(in Chinese).
    [34] SUN Z W, KONG G, CHE C S, et al. Growth behaviour of cerium-based conversion coating on ZnAl alloy[J]. Surface and Interface Analysis, 2018, 51(4): 465-474.
    [35] 中国钢铁工业协会. 金属和合金的腐蚀 混凝土用钢筋的阴极保护: GB/T 39154—2020[S]. 北京: 中国标准出版社, 2020.

    China Iron and Steel Association. Corrosion of metals and alloys-cathodic protection of and alloys-cathodic protection of steel in concrete: GB/T 39154—2020[S]. Beijing: China Standards Press, 2020(in Chinese).
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  153
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-31
  • 修回日期:  2023-09-24
  • 录用日期:  2023-10-26
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回