High toughness and self-healing conductive hydrogels of chitosan-poly acrylic acid-MXene and capability for strain sensors
-
摘要: 壳聚糖基导电水凝胶在电子皮肤、健康监测和柔性穿戴电子等领域得到广泛关注。本文将MXene分散到丙烯酸-壳聚糖水溶液中,丙烯酸原位聚合成聚丙烯酸,制备了壳聚糖-聚丙烯酸-MXene导电水凝胶(CS-PAA-MXene)。CS-PAA-MXene具有优异的力学性能,其断裂应变为1450%,断裂应力为0.6 MPa,韧性达到2.6 MJ·m−3。CS-PAA-MXene能够粘附于多种物体表面,包括玻璃、塑料、橡胶、铜片和铝片等,其中对玻璃的最大剥离力可达到175 N·m−1;CS-PAA-MXene具有优异的自修复性能,切断的CS-PAA-MXene相互接触2.5 s后,其电阻恢复到切断前数值。CS-PAA-MXene应变传感器被成功用于检测人体各类活动,如手指、手肘和膝盖等关节弯曲活动。基于壳聚糖的阳离子电荷及其抗菌特性,CS-PAA-MXene将在自粘附和高延展的柔性传感器具有良好的应用前景。Abstract: Chitosan-based conductive hydrogels have attracted extensive attention in electronic skins, human health monitoring, and flexible wearable sensors. In this work, MXene was dispersed in acrylic acid-chitosan solution, and then the acrylic acid monomer was in situ polymerized to synthesis the chitosan-poly(acrylic acid)-MXene hydrogels (CS-PAA-MXene). CS-PAA-MXene shows excellent mechanical properties. The tensile strength of the CS-PAA-MXene is as high as 0.6 MPa, and its elongation at break and toughness reach 1450% and 2.6 MJ·m−3, respectively. CS-PAA-MXene can adhere to various surfaces, including glass, plastic, rubber, copper and aluminum, etc. The maximum peeling force on the glass can reach 175 N·m−1. After the cut CS-PAA-MXene contacts each other for 2.5 s, its resistance value returns to the pre-cut value, suggesting CS-PAA-MXene has excellent self-healing performance. CS-PAA-MXene strain sensors have been successfully used to detect a wide range of human movements, such as the joint flexions of finger, elbow and knee. Due to the cationic charge and antibacterial properties of chitosan, CS-PAA-MXene conductive hydrogels will have a good application prospect in self-adhesive and high-extensibility flexible sensors.
-
Key words:
- chitosan /
- MXene /
- conductive hydrogels /
- mechanical properties /
- strain sensor
-
图 1 (a) 壳聚糖-聚丙烯酸-MXene水凝胶(CS-PAA-MXene)的制备过程和网络结构示意图;(b) CS-PAA-MXene水凝胶的氢键相互作用示意图
Figure 1. (a) Schematic preparation process and network structure of chitosan-poly(acrylic acid)-MXene hydrogels (CS-PAA-MXene); (b) Schematic of hydrogen bond interaction of CS-PAA-MXene hydrogel
KPS—Potassium persulfate; AAc—Acrylic acid; Gly—Glycerol; MBA—N, N'-methylene diacrylamide
图 4 (a) CS-PAA和CS-PAA-MXene水凝胶的应力-应变曲线;(b) CS-PAA和CS-PAA-MXene水凝胶的弹性模量与韧性;(c) CS-PAA-MXene水凝胶及其扭转和拉伸的照片;(d) 本工作与类似水凝胶材料的韧性和断裂应力对比图[33-37]
Figure 4. (a) Tensile stress-strain curves of the CS-PAA and CS-PAA-MXene hydrogels; (b) Elastic modulus and toughness of the CS-PAA and CS-PAA-MXene hydrogels; (c) Photos of CS-PAA-MXene hydrogel and its torsion and stretching; (d) Comparison diagram of toughness and fracture stress of this work and similar hydrogel materials[33-37]
PAN—Polyacrylonitrile; SA—Sodium alginate
图 5 (a) CS-PAA-MXene水凝胶粘附于玻璃、塑料、橡胶、铝片、铜片、木材的照片;(b) 粘附性能测试示意图;(c) CS-PAA-MXene水凝胶对不同物体的粘附性能
Figure 5. (a) Photos of CS-PAA-MXene hydrogel adhering to glass, plastic, rubber, aluminum sheet, copper sheet and wood; (b) Schematic diagram of adhesion performance test; (c) Adhesion performance of CS-PAA-MXene hydrogel in different substrates
图 6 (a) 实时测量CS-PAA-MXene水凝胶在切割愈合过程中的电阻恢复周期;(b) CS-PAA-MXene水凝胶切割后的自修复行为(LED在水凝胶切割-修复后亮度变化)
Figure 6. (a) Resistance recovery of the CS-PAA-MXene hydrogel during the cutting-healing cycle; (b) Self-healing behavior of the CS-PAA-MXene hydrogel after cutting (Brightness change of LED under the cutting healing process)
表 1 不同MXene浓度的样品名称
Table 1. Sample names for different MXene concentrations
Sample Concentration of MXene in glycerol
aqueous solution/(mg·mL−1)CS-PAA 0 CS-PAA-MXene1 1 CS-PAA-MXene5 5 CS-PAA-MXene10 10 -
[1] LI G, HUANG K X, DENG J E, et al. Highly conducting and stretchable double-network hydrogel for soft bioelectronics[J]. Advanced Materials, 2022, 34(15): 2200261. doi: 10.1002/adma.202200261 [2] GAMBOA J, PAULO-MIRASOL S, ESTRANY F, et al. Recent progress in biomedical sensors based on conducting polymer hydrogels[J]. ACS Applied Bio Materials, 2023, 6(5): 1720-1741. doi: 10.1021/acsabm.3c00139 [3] 江文静, 廖静文, 张雪慧, 等. 导电复合水凝胶的分类及其在柔性可穿戴设备中的应用[J]. 复合材料学报, 2023, 40(4): 1879-1895. doi: 10.13801/j.cnki.fhclxb.20220926.002JIANG Wenjing, LIAO Jingwen, ZHANG Xuehui, et al. Classification of conductive composite hydrogels and their application in flexible wearable devices[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1879-1895(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220926.002 [4] LIU Y P, WANG L L, MI Y Y, et al. Transparent stretchable hydrogel sensors: Materials, design and applications[J]. Journal of Materials Chemistry C, 2022, 10(37): 13351-13371. doi: 10.1039/D2TC01104B [5] ZHANG S P, ZHAO B, ZHANG D, et al. Conductive hydrogels incorporating carbon nanoparticles: A review of synthesis, performance and applications[J]. Particuology, 2023, 83: 212-231. doi: 10.1016/j.partic.2023.06.002 [6] ZHANG Q, CHEN Y J, WEI P D, et al. Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures[J]. Materials Today, 2021, 51: 27-38. doi: 10.1016/j.mattod.2021.10.030 [7] SAHARIAH P, MÁSSON M. Antimicrobial chitosan and chitosan derivatives: A review of the structure-activity relationship[J]. Biomacromolecules, 2017, 18(11): 3846-3868. doi: 10.1021/acs.biomac.7b01058 [8] SARMAH D, AHMAD RATHER M, SARKAR A, et al. Self-cross-linked starch/chitosan hydrogel as a biocompatible vehicle for controlled release of drug[J]. International Journal of Biological Macromolecules, 2023, 237: 124206. doi: 10.1016/j.ijbiomac.2023.124206 [9] HUANG W J, WANG Y X, HUANG Z Q, et al. On-demand dissolvable self-healing hydrogel based on carboxymethyl chitosan and cellulose nanocrystal for deep partial thickness burn wound healing[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 41076-41088. doi: 10.1021/acsami.8b14526 [10] DUAN J J, LIANG X C, GUO J H, et al. Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks[J]. Advanced Materials, 2016, 28(36): 8037-8044. doi: 10.1002/adma.201602126 [11] SUGINTA W, KHUNKAEWLA P, SCHULTE A. Electrochemical biosensor applications of polysaccharides chitin and chitosan[J]. Chemical Reviews, 2013, 113(7): 5458-5479. doi: 10.1021/cr300325r [12] CAO J F, LI J H, CHEN Y M, et al. Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness[J]. Advanced Functional Materials, 2018, 28(23): 1800739. doi: 10.1002/adfm.201800739 [13] JIANG X C, XIANG N P, WANG J Q, et al. Preparation and characterization of hybrid double network chitosan/poly (acrylic amide-acrylic acid) high toughness hydrogel through Al3+ crosslinking[J]. Carbohydrate Polymers, 2017, 173: 701-706. doi: 10.1016/j.carbpol.2017.06.003 [14] FENG Y, GAO H L, WU D, et al. Biomimetic lamellar chitosan scaffold for soft gingival tissue regeneration[J]. Advanced Functional Materials, 2021, 31(43): 2105348. doi: 10.1002/adfm.202105348 [15] LEI D D, LIU N S, SU T Y, et al. Roles of MXene in pressure sensing: Preparation, composite structure design, and mechanism[J]. Advanced Materials, 2022, 34(52): 2110608. doi: 10.1002/adma.202110608 [16] AMARA U, HUSSAIN I, AHMAD M, et al. 2D MXene-based biosensing: A review[J]. Small, 2023, 19(2): 2205249. doi: 10.1002/smll.202205249 [17] LI M K, ZHANG Y F, LIAN L, et al. Flexible accelerated-wound-healing antibacterial MXene-based epidermic sensor for intelligent wearable human-machine interaction[J]. Advanced Functional Materials, 2022, 32(47): 2208141. doi: 10.1002/adfm.202208141 [18] HO D H, CHOI Y Y, JO S B, et al. Sensing with MXenes: Progress and prospects[J]. Advanced Materials, 2021, 33(47): 2005846. doi: 10.1002/adma.202005846 [19] 李明展, 李恩, 潘亚敏, 等. 电磁屏蔽导电涂料的研究与应用进展[J]. 复合材料学报, 2024, 41(2): 573-592.LI Mingzhan, LI En, PAN Yamin, et al. Research and application of electromagnetic shielding conductive coating[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 573-592(in Chinese). [20] 张文枭, 左杏薇, 曲丽君, 等. 基于导电纤维的柔性电子器件研究进展[J]. 复合材料学报, 2023, 40(2): 688-709. doi: 10.13801/j.cnki.fhclxb.20220511.002ZHANG Wenxiao, ZUO Xingwei, QU Lijun, et al. Research progress of flexible electronic devices based on conductive fibers[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 688-709(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220511.002 [21] ZHAI H L, WANG T T, YUE C, et al. Self-healing, adhesive, and antioxidant MXene-reinforced conductive hydrogels for stain sensor[J]. Materials Today Communications, 2023, 35: 106245. doi: 10.1016/j.mtcomm.2023.106245 [22] LI Q Q, ZHI X R, XIA Y F, et al. Ultrastretchable high-conductivity MXene-based organohydrogels for human health monitoring and machine-learning-assisted recognition[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 19435-19446. doi: 10.1021/acsami.3c00432 [23] LI Y X, YAN J H, LIU Y J, et al. Super tough and intelligent multibond network physical hydrogels facilitated by Ti3C2T x MXene nanosheets[J]. ACS Nano, 2022, 16(1): 1567-1577. doi: 10.1021/acsnano.1c10151 [24] GE G, ZHANG Y Z, ZHANG W L, et al. Ti3C2T x MXene-activated fast gelation of stretchable and self-healing hydrogels: A molecular approach[J]. ACS Nano, 2021, 15(2): 2698-2706. doi: 10.1021/acsnano.0c07998 [25] LI X B, HE L Z, LI Y F, et al. Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors[J]. ACS Nano, 2021, 15(4): 7765-7773. doi: 10.1021/acsnano.1c01751 [26] WANG Y X, YUE Y, CHENG F, et al. Ti3C2T x MXene-based flexible piezoresistive physical sensors[J]. ACS Nano, 2022, 16(2): 1734-1758. doi: 10.1021/acsnano.1c09925 [27] GUO W Y, MAI T A, HUANG L Z, et al. Multifunctional MXene conductive zwitterionic hydrogel for flexible wearable sensors and arrays[J]. ACS Applied Materials & Interfaces, 2023, 15(20): 24933-24947. doi: 10.1021/acsami.3c03919 [28] LIU Y Q, XU D R, DING Y, et al. A conductive polyacrylamide hydrogel enabled by dispersion-enhanced MXene@chitosan assembly for highly stretchable and sensitive wearable skin[J]. Journal of Materials Chemistry B, 2021, 9(42): 8862-8870. doi: 10.1039/D1TB01798E [29] ZHANG Y T, LI S H, HUANG R, et al. Stabilizing MXene-based nanofiltration membrane by forming analogous semi-interpenetrating network architecture using flexible poly(acrylic acid) for effective wastewater treatment[J]. Journal of Membrane Science, 2022, 648: 120360. doi: 10.1016/j.memsci.2022.120360 [30] LI S N, YU Z R, GUO B F, et al. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2T x MXene hydrogels for wide-temperature strain sensing[J]. Nano Energy, 2021, 90: 106502. doi: 10.1016/j.nanoen.2021.106502 [31] BIESINGER M C, LAU L W M, GERSON A R, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn[J]. Applied Surface Science, 2010, 257(3): 887-898. doi: 10.1016/j.apsusc.2010.07.086 [32] LI N, SHAO L P, XIA Q, et al. Long-term stable and catalytic 2D MXene nanosheets wrapped with dialdehyde xylan for ultrafast gelation[J]. Green Chemistry, 2023, 25(11): 4309-4318. doi: 10.1039/D3GC00363A [33] WANG H, GUO M L, WU Y P, et al. Tough, highly stretchable and self-healing poly(acrylic acid) hydrogels reinforced by functionalized basalt fibers[J]. Materials Research Express, 2020, 7(6): 065307. doi: 10.1088/2053-1591/ab9857 [34] ZENG L Y, WANG X C, WEN Y, et al. Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors[J]. Carbohydrate Polymers, 2023, 300: 120229. doi: 10.1016/j.carbpol.2022.120229 [35] CAO J F, CAI Y, YU L S, et al. Dual physically crosslinked hydrogels based on the synergistic effects of electrostatic and dipole-dipole interactions[J]. Journal of Materials Chemistry B, 2019, 7(4): 676-683. doi: 10.1039/C8TB03032D [36] ZHAO Z J, QIN X Z, CAO L L, et al. Chitosan-enhanced nonswelling hydrogel with stable mechanical properties for long-lasting underwater sensing[J]. International Journal of Biological Macromolecules, 2022, 212: 123-133. doi: 10.1016/j.ijbiomac.2022.05.102 [37] FAN C H, WANG D, HUANG J Y, et al. A highly sensitive epidermal sensor based on triple-bonded hydrogels for strain/pressure sensing[J]. Composites Communications, 2021, 28: 100951. doi: 10.1016/j.coco.2021.100951 [38] ZHENG H Y, LIN N, HE Y Y, et al. Self-healing, self-adhesive silk fibroin conductive hydrogel as a flexible strain sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40013-40031. doi: 10.1021/acsami.1c08395