留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米PTFE对低密度聚乙烯空间电荷特性与直流介电性能的影响

韩冰 郑昌佶 杨佳明 赵洪

韩冰, 郑昌佶, 杨佳明, 等. 纳米PTFE对低密度聚乙烯空间电荷特性与直流介电性能的影响[J]. 复合材料学报, 2024, 41(5): 2404-2416. doi: 10.13801/j.cnki.fhclxb.20231025.004
引用本文: 韩冰, 郑昌佶, 杨佳明, 等. 纳米PTFE对低密度聚乙烯空间电荷特性与直流介电性能的影响[J]. 复合材料学报, 2024, 41(5): 2404-2416. doi: 10.13801/j.cnki.fhclxb.20231025.004
HAN Bing, ZHENG Changji, YANG Jiaming, et al. Effect of nanometer PTFE on space charge characteristics and DC dielectric properties of low density polyethylene[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2404-2416. doi: 10.13801/j.cnki.fhclxb.20231025.004
Citation: HAN Bing, ZHENG Changji, YANG Jiaming, et al. Effect of nanometer PTFE on space charge characteristics and DC dielectric properties of low density polyethylene[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2404-2416. doi: 10.13801/j.cnki.fhclxb.20231025.004

纳米PTFE对低密度聚乙烯空间电荷特性与直流介电性能的影响

doi: 10.13801/j.cnki.fhclxb.20231025.004
基金项目: 国家自然科学基金 (U20 A20307)
详细信息
    通讯作者:

    郑昌佶,博士,讲师,硕士生导师,研究方向为高压电气绝缘材料及绝缘在线检测 E-mail: zcj5210@qq.com

  • 中图分类号: TB332

Effect of nanometer PTFE on space charge characteristics and DC dielectric properties of low density polyethylene

Funds: National Natural Science Foundation of China (U20 A20307)
  • 摘要: 为研究驻极体材料纳米聚四氟乙烯(PTFE)对低密度聚乙烯(LDPE)空间电荷特性及直流介电性能的影响,选用纳米PTFE粉末与LDPE共混,制备得到不同填料质量分数(0.1wt%、0.3wt%、0.5wt%)的纳米PTFE/LDPE复合材料。SEM图像表明,粒径为20 nm左右的PTFE粒子在LDPE基体中分散性良好,结晶尺寸减小。FTIR表明,掺杂纳米PTFE粒子不会改变LDPE原有的化学结构。DSC结果表明,纳米PTFE粒子作为异相成核剂促进了材料的异相成核,提高了复合材料的结晶度。利用电声脉冲法(PEA)测试了室温下纳米复合材料的空间电荷分布,并测试了纳米复合材料的电导电流特性及直流击穿特性,结果表明,较低掺杂含量的纳米复合材料能明显抑制材料内部的空间电荷积聚,并且提高了复合材料空间电荷注入的阈值场强和材料的耐电强度。热刺激电流(TSC)结果表明掺杂含量较少时,纳米复合材料的陷阱能级最深,并随着掺杂含量的增加,纳米复合材料的陷阱能级逐渐变浅,浅陷阱密度逐渐增大。最后利用Materials Studio软件仿真分析F原子对LDPE陷阱能级的影响,表明F原子较强的电负性是影响纳米PTFE/LDPE复合材料陷阱能级的重要因素。

     

  • 图  1  LDPE及PTFE/LDPE纳米复合材料的红外图谱

    Figure  1.  Infrared spectra of LDPE and PTFE/LDPE nanocomposites

    图  2  LDPE及PTFE/LDPE纳米复合材料的结晶形态

    Figure  2.  Crystal morphologies of LDPE and PTFE/LDPE nanocomposites

    图  3  LDPE及其纳米PTFE/LDPE复合材料的DSC曲线

    Figure  3.  DSC curves of LDPE and PTFE/LDPE nanocomposites

    图  4  加压极化时LDPE及其纳米复合材料的空间电荷分布

    Figure  4.  Space charge distribution of LDPE and its nanocomposites under pressure polarization

    图  5  短路去极化时LDPE及其纳米复合材料空间电荷分布

    Figure  5.  Space charge distribution of LDPE and its nanocomposites during short-circuit depolarization

    图  6  LDPE及其纳米复合材料短路时空间电荷平均体密度

    Figure  6.  Average bulk density of space charge during short circuit of LDPE and its nanocomposites

    图  7  LDPE及其纳米复合材料的电导电流

    Figure  7.  Conductive current of LDPE and its nanocomposites

    图  8  LDPE及其纳米复合材料的电导特性

    Figure  8.  Conductivity characteristics of LDPE and its nanocomposites

    图  9  LDPE及其纳米复合材料直流击穿场强Weibull分布图

    Figure  9.  Weibull distribution of DC breakdown field strength of LDPE and its nanocomposites

    图  10  LDPE及其纳米复合材料TSC温度谱(a)与陷阱能级分布(b)

    Figure  10.  TSC temperature spectra (a) and trap energy level distribution (b) of LDPE and its nanocomposite materials

    图  11  LDPE及不同数目F原子取代H原子的电子态密度

    Figure  11.  Density of electronic states of LDPE and different numbers of F atoms replacing H atoms

    图  12  LDPE及其纳米复合材料的离子跳跃电导拟合曲线(a)与跳跃距离(b)

    Figure  12.  Fitting curves of ion jump conductivity (a) and jump distance (b) of LDPE and its nanocomposite materials

    表  1  低密度聚乙烯(LDPE)及纳米聚四氟乙烯(PTFE)/LDPE复合材料组成

    Table  1.   Components of low density polyethylene (LDPE) and nano polytetrafluoroethylene (PTFE)/LDPE composite materials

    Materials LDPE/g nano-PTFE/g 1010/g
    LDPE 39.88 0 0.12
    0.1wt%PTFE/LDPE 39.84 0.04 0.12
    0.3wt%PTFE/LDPE 39.76 0.12 0.12
    0.5wt%PTFE/LDPE 39.68 0.20 0.12
    Note: 1010—Antioxygen 1010.
    下载: 导出CSV

    表  2  LDPE及其复合材料的DSC数据

    Table  2.   DSC data of LDPE and its nanocomposites

    SampleTc/℃Tm/℃Wc/%
    LDPE95.15110.6635.75
    0.1wt%PTFE/LDPE96.06112.5437.07
    0.3wt%PTFE/LDPE94.87111.2536.64
    0.5wt%PTFE/LDPE95.96110.0536.13
    Notes:$ T\mathrm{_c} $, $ T\mathrm{_m} $—Melting and crystallization peak temperatures of the material, respectively; $ W_{\mathrm{c}} $—Crystallinity of the material.
    下载: 导出CSV

    表  3  各试样的电导斜率和过度阈值场强

    Table  3.   Conductivity slope and transition threshold field strength of each sample

    Sample $ j $ $ E $/(kV·mm–1)
    $ j_{{\Omega}} $ $ {j}_{{\mathrm{t}}} $ $ {j}_{{\mathrm{c}}} $ $ {E}_{\Omega {\text{-}}{\mathrm{t}}} $ $ {E}_{{\mathrm{t}}{\text{-}}{\mathrm{c}}} $
    LDPE 2.13 7.01 2.68 9.8 24.9
    0.1wt%PTFE/LDPE 0.71 3.94 12.5
    0.3wt%PTFE/LDPE 0.95 3.66 10.3
    0.5wt%PTFE/LDPE 1.11 3.51 9.1
    Notes:$ j $, E—Slope and electric field strength; $ {j}_{\Omega } $ , $ {j}_{{\mathrm{t}}} $, $ {j}_{{\mathrm{c}}} $—Slope of the conductivity current; $ {E}_{\Omega {\text{-}}{\mathrm{t}}} $, $ E_{\mathrm{t}\text{-}\mathrm{c}} $—Threshold electric field of transition.
    下载: 导出CSV

    表  4  各试样的特征击穿场强E0和形状参数β

    Table  4.   Characteristic breakdown field strength E0 and shape parameters β of each sample

    Sample $ {E}_{0} $/(kV·mm–1) $ \beta $
    LDPE 370.2 13.17
    0.1wt%PTFE/LDPE 440.3 13.87
    0.3wt%PTFE/LDPE 410.0 10.03
    0.5wt%PTFE/LDPE 395.6 12.14
    下载: 导出CSV
  • [1] 周孝信, 鲁宗相, 刘应梅, 等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报, 2014, 34(29): 4999-5008.

    ZHOU Xiaoxin, LU Zongxiang, LIU Yingmei, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008(in Chinese).
    [2] 李盛涛, 王诗航, 李建英. 高压直流电缆料的研发进展与路径分析[J]. 高电压技术, 2018, 44(5): 1399-1411.

    LI Shengtao, WANG Shihang, LI Jianying. Research progress and path analysis of insulating materials used in HVDC cable[J]. High Voltage Engineering, 2018, 44(5): 1399-1411(in Chinese).
    [3] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191.

    DU Boxue, HAN Chenlei, LI Jin, et al. Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of the China Electrotechnical Society, 2019, 34(1): 179-191(in Chinese).
    [4] SU R, WU K, CHENG C, et al. Carrier transport in LDPE and its nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 368-376. doi: 10.1109/TDEI.2019.008319
    [5] 巫运辉, 查俊伟, 王思蛟, 等. 多层介孔纳米MgO/低密度聚乙烯复合材料的制备及其绝缘性能[J]. 复合材料学报, 2016, 33(3): 503-509.

    WU Yunhui, ZHA Junwei, WANG Sijiao, et al. Preparation and insulating electrical properties of multilayer mesoporous nano MgO/low density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2016, 33(3): 503-509(in Chinese).
    [6] 田付强, 马万里. 挤塑高压直流电缆绝缘中空间电荷问题研究进展[J]. 高电压技术, 2019, 45(7): 2231-2239.

    TIAN Fuqiang, MA Wanli. Research progress in space charge problems in extruded HVDC cable insulations[J]. High Voltage Engineering, 2019, 45(7): 2231-2239(in Chinese).
    [7] YAO Z, PENG S, HU J, et al. Polymeric insulation materials for HVDC cables: Development, challenges and future perspective[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(3): 1308-1318.
    [8] 姜洪涛, 张晓虹, 高俊国, 等. SiO2粒子的尺度因素对聚乙烯基复合材料的结晶行为及电学性能的影响[J]. 复合材料学报, 2022, 39(2): 645-655.

    JIANG Hongtao, ZHANG Xiaohong, GAO Junguo, et al. Influence of SiO2 particle size factors on the crystallization behavior and electrical properties of polyethylene matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 645-655(in Chinese).
    [9] 王猛, 成如如, 高俊国, 等. 微纳米SiO2/低密度聚乙烯复合材料的空间电荷性能[J]. 复合材料学报, 2019, 36(11): 2541-2551.

    WANG Meng, CHENG Ruru, GAO Junguo, et al. Space charge properties of micro and nano SiO2/low density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2019, 36(11): 2541-2551(in Chinese).
    [10] LEWIS T J. Nanometric dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 812-825.
    [11] TAKADA T, HAYASE Y, TANAKA Y, et al. Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 152-160. doi: 10.1109/T-DEI.2008.4446746
    [12] WANG W, MIN D, LI S. Understanding the conduction and breakdown properties of polyethylene nanodielectrics: Effect of deep traps[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1): 564-572.
    [13] 吴建东, 尹毅, 兰莉, 等. 纳米填充浓度对LDPE/Silica纳米复合介质中空间电荷行为的影响[J]. 中国电机工程学报, 2012, 32(28): 177-183, 2.

    WU Jiandong, YIN Yi, LAN Li, et al. The influence of nano-filler concentration on space charge behavior in LDPE/silica nanocomposites[J]. Proceedings of the CSEE, 2012, 32(28): 177-183, 2(in Chinese).
    [14] 何金良, 彭思敏, 周垚, 等. 聚合物纳米复合材料的界面特性[J]. 中国电机工程学报, 2016, 36(24): 6596-6605, 6911.

    HE Jinliang, PENG Simin, ZHOU Yao, et al. Interface properties of polymer nanocomposites[J]. Proceedings of the CSEE, 2016, 36(24): 6596-6605, 6911(in Chinese).
    [15] 赵洪, 闫志雨, 杨佳明, 等. 纳米复合聚乙烯材料中的两相界面及其荷电行为[J]. 高电压技术, 2017, 43(9): 2781-2790.

    ZHAO Hong, YAN Zhiyu, YANG Jiaming, et al. Two-phase interface and its charging behavior in polyethylene nanocomposite[J]. High Voltage Engineering, 2017, 43(9): 2781-2790(in Chinese).
    [16] 张城城, 任兆辉, 任强, 等. 纳米粒子形貌对聚吡咯/LDPE纳米复合材料直流介电性能的影响[J]. 复合材料学报, 2023, 40(5): 2598-2608.

    ZHANG Chengcheng, REN Zhaohui, REN Qiang, et al. Influence of nanoparticle morphology on the direct current dielectric properties of polypyrrole/LDPE nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2598-2608(in Chinese).
    [17] 张晓虹, 石泽祥, 李琳, 等. 蒙脱土-SiO2/低密度聚乙烯复合材料结晶行为及电树枝化特性[J]. 复合材料学报, 2018, 35(11): 3034-3043.

    ZHANG Xiaohong, SHI Zexiang, LI Lin, et al. Crystallization behavior and electrical tree resistance property of momtmorillonite-SiO2/low density polyethylene composite[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3034-3043(in Chinese).
    [18] 夏钟福, 王丽, 李军. 聚合物驻极体材料研究的新进展[J]. 材料导报, 2003(5): 48-50.

    XIA Zhongfu, WANG Li, LI Jun. New progress in polymeric electret materials[J]. Materials Reports, 2003(5): 48-50(in Chinese).
    [19] SCHWÖDIAUER R, BAUER-GOGONEA S, BAUER S, et al. Charge stability of pulsed-laser deposited polytetrafluoroethylene film electrets[J]. Applied Physics Letters, 1998, 73(20): 2941-2943. doi: 10.1063/1.122637
    [20] 陈亚丁, 吴建东, 戴畅, 等. 方波电场下介质内部空间电荷的直接检测方法[J]. 高电压技术, 2019, 45(6): 1767-1774.

    CHEN Yading, WU Jiandong, DAI Chang, et al. Direct detection method of space charge in dielectrics under square wave electrical field[J]. High Voltage Engineering, 2019, 45(6): 1767-1774 (in Chinese).
    [21] 于宏伟, 韩卫荣, 刘磊, 等. 聚四氟乙烯F—C—F伸缩振动二维红外光谱研究[J]. 材料导报, 2014, 28(24): 95-98.

    YU Hongwei, HAN Weirong, LIU Lei, et al. Two-dimensional infrared spectroscopy study on polytetrafluoroethylene F—C—F stretching vibration[J]. Materials Reports, 2014, 28(24): 95-98(in Chinese).
    [22] 吴建东, 兰莉, 尹毅, 等. 纳米颗粒填充对LDPE/silica纳米复合介质阈值电场的影响[J]. 中国电机工程学报, 2013, 33(22): 201-206, 29.

    WU Jiandong, LAN Li, YIN Yi, et al. Influence of nano-filler on high field threshold property in LDPE/silica nanocomposites[J]. Proceedings of the CSEE, 2013, 33(22): 201-206, 29(in Chinese).
    [23] 田付强. 聚乙烯基无机纳米复合电介质的陷阱特性与电性能研究[D]. 北京: 北京交通大学, 2012.

    TIAN Fuqiang. Investigation on the trap characteristics and electrical properties of polyethylene based nanocomposite[D]. Beijing: Beijing Jiaotong University, 2012(in Chinese).
    [24] 高俊国, 赵贺, 李霞, 等. 纳米SiO2/低密度聚乙烯复合材料的陷阱特性与电击穿机制[J]. 复合材料学报, 2019, 36(4): 801-810.

    GAO Junguo, ZHAO He, LI Xia, et al. Trap characteristics and electrical breakdown mechanism of nano-SiO2/low-density polyethylene composites[J]. Acta Composite Materials, 2019, 36(4): 801-810(in Chinese).
    [25] MEUNIER M, QUIRKE N. Molecular modeling of electron trapping in polymer insulators[J]. The Journal of Chemical Physics, 2000, 113(1): 369-376. doi: 10.1063/1.481802
    [26] 梁家杰, 王少杰, 罗臻, 等. 聚合物纳米复合电介质界面微区原位测试研究进展[J]. 中国电机工程学报, 2022, 42(8): 3055-3065.

    LIANG Jiajie, WANG Shaojie, LUO Zhen, et al. Research progress of in-situ testing of the interfacial region in dielectric polymer nanocomposites[J]. Proceedings of the CSEE, 2022, 42(8): 3055-3065(in Chinese).
    [27] KRIVDA A, TANAKA T, FRECHETTE M, et al. Characterization of epoxy microcomposite and nanocomposite materials for power engineering applications[J]. IEEE Electrical Insulation Magazine, 2012, 28(2): 38-51. doi: 10.1109/MEI.2012.6159180
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  167
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-25
  • 修回日期:  2023-09-08
  • 录用日期:  2023-10-10
  • 网络出版日期:  2023-10-26
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回