留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米限域强化催化降解典型环境污染物的研究进展

李子涵 张武翔 郭庆勇 史明月 包美烁 杨福 潘建明

李子涵, 张武翔, 郭庆勇, 等. 纳米限域强化催化降解典型环境污染物的研究进展[J]. 复合材料学报, 2024, 41(4): 1726-1736. doi: 10.13801/j.cnki.fhclxb.20231025.003
引用本文: 李子涵, 张武翔, 郭庆勇, 等. 纳米限域强化催化降解典型环境污染物的研究进展[J]. 复合材料学报, 2024, 41(4): 1726-1736. doi: 10.13801/j.cnki.fhclxb.20231025.003
LI Zihan, ZHANG Wuxiang, GUO Qingyong, et al. Advances in nano-confined enhanced catalytic degradation of typical environmental pollutants: A review[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1726-1736. doi: 10.13801/j.cnki.fhclxb.20231025.003
Citation: LI Zihan, ZHANG Wuxiang, GUO Qingyong, et al. Advances in nano-confined enhanced catalytic degradation of typical environmental pollutants: A review[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1726-1736. doi: 10.13801/j.cnki.fhclxb.20231025.003

纳米限域强化催化降解典型环境污染物的研究进展

doi: 10.13801/j.cnki.fhclxb.20231025.003
基金项目: 国家自然科学基金青年基金项目(22306076);江苏省自然科学基金青年基金项目(BK20230676);江苏省高等学校基础科学研究面上基金项目(22KJB610011)
详细信息
    通讯作者:

    张武翔,博士,讲师,研究方向为环境功能材料的开发与环境催化 E-mail: wxz133@just.edu.cn

    潘建明,博士,教授,博士生导师,研究方向为绿色分离化学与化工新技术及功能高分子材料 E-mail: pjm@ujs.edu.cn

  • 中图分类号: TQ09;TB332

Advances in nano-confined enhanced catalytic degradation of typical environmental pollutants: A review

Funds: National Natural Science Foundation of China Youth Fund Project (22306076); Natural Science Foundation of Jiangsu Province (BK20230676); Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB610011)
  • 摘要: 环境水污染对人类健康和生态环境构成了潜在的威胁,水资源的保护和污染治理是当前全球面临的重要环境问题。然而,传统水处理技术在处理水体中有机污染物时存在一定的限制,如去除机制、去除效率、选择性和稳定性等。近年来,纳米限域催化作为一种新兴技术在水处理领域引起了广泛关注。该技术通过纳米限域介导的强化催化,能够实现纳米材料内部的催化调控,在降解环境污染物方面展现了独特的优势。本文综述了纳米限域在热强化催化、光强化催化、电强化催化和膜强化催化降解典型环境污染物方面的研究进展。其中,对催化原理、催化效率及影响因素等进行总结,并展望了限域催化未的来研究方向和挑战。

     

  • 图  1  限域强化在催化反应的应用及优势

    Figure  1.  Application and advantages of confinement effect in catalytic reactions

    图  2  调控Fe2O3生长在FCNT内/外表面的实验设计图[37]

    Figure  2.  Experimental design for regulating Fe2O3 growth on FCNT inner/outer surfaces [37]

    FCNT-L—Distribution of Fe2O3 nanoparticles on the outer surface of carbon nanotube (CNT); FCNT-H—Anchoring of Fe2O3 nanoparticles inside the CNT for nanoconfinement

    图  3  Co3O4/金属有机骨架材料(MOFs)活化过一硫酸盐(PMS)降解4-氯酚(4-CP)[39]

    Figure  3.  Degradation of 4-chlorophenol (4-CP) by activated peroxymonosulfate (PMS) with Co3O4/metal organic frameworks (MOFs)[39]

    图  4  核-壳结构的Co/C纳米反应器(YSCCNs)对双酚A (BPA)协同催化降解机制[41]

    Figure  4.  Mechanism of synergistic catalytic degradation of bisphenol A (BPA) by yolk-shell Co/C nanoreactors (YSCCNs)[41]

    HA—Humic acid

    图  5  FeCo@氮掺杂碳(NC)降解BPA机制[42]

    Figure  5.  Mechanism of BPA degradation of FeCo@N-doped carbon (NC)[42]

    ANCYNs—FeCo alloy@N-doped carbon yolk-shell nanoreactors

    图  6  SiO2-Fe2O3@TiO2 (SFT)的光降解作用增强光催化机制图[49]

    Figure  6.  Enhanced photocatalytic mechanism map of photodegradation by SiO2-Fe2O3@TiO2 (SFT)[49]

    图  7  纳米管埃洛石(HNTs)@MoS2/Fe催化转化机制[51]

    Figure  7.  Mechanism of catalytic conversion of halloysite nanotubes (HNTs)@MoS2/Fe[51]

    VB—Valence band; CB—Conduction band; ROS—Reactive oxygen species

    图  8  β-环糊精包覆聚苯胺纤维(CDP)@Ag3PO4@NC光催化苯酚机制示意图[53]

    Figure  8.  Schematic diagram of the mechanism of β-cyclodextrin wrapped the PANI fibers (CDP)@Ag3PO4@NC photocatalytic phenolization[53]

    NHE—Normal hydrogen electrode; LUMO—Lower unoccupied molecular orbital; HUMO—Higher occupied molecular orbital

    图  9  Fe@N, B共掺杂碳纳米管(BN-C)阴极电催化过程的机制示意图[54]

    Figure  9.  Schematic diagram of the mechanism of Fe@N, B-codoped carbon nanotubes (BN-C) cathode electrocatalytic process[54]

    h-BN—Hexagonal boron nitride

    图  10  Fe2O3-in-CNT和Fe2O3-out-CNT系统降解污染物的机制示意图[55]

    Figure  10.  Schematic mechanism of pollutant degradation by Fe2O3-in-CNT and Fe2O3-out-CNT systems[55]

    图  11  MoS2膜类芬顿降解污染物示意图[61]

    Figure  11.  Schematic diagram of Fenton-like degradation of pollutants by MoS2 membranes[61]

    ROS—Reactive oxygen species

    图  12  超滤膜(UF)限域膜反应器催化作用示意图[62]

    Figure  12.  Schematic diagram of the catalytic action of a ultrafiltration (UF) limited area membrane reactor[62]

    NOM—Natural organic matter; AOPs—Advanced oxidation technology; CM—Confined membrane

    图  13  工程化限域反应器薄膜的降解示意图[65]

    Figure  13.  Schematic degradation of engineered confined reactor membranous[65]

    d—Diameter

  • [1] GIANNAKIS S, LIN K Y A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406: 127083. doi: 10.1016/j.cej.2020.127083
    [2] ZHANG W X, LI Z H, LUO R, et al. Design of tandem CuO/CNTs composites for enhanced tetracycline degradation and antibacterial activity[J]. Separation and Purification Technology, 2023, 306: 122548. doi: 10.1016/j.seppur.2022.122548
    [3] PIMENTEL D, BERGER B, FILIBERTO D, et al. Water resources: Agricultural and environmental issues[J]. BioScience, 2004, 54(10): 909-918.
    [4] DONG G H, CHEN B, LIU B, et al. Advanced oxidation processes in microreactors for water and wastewater treatment: Development, challenges, and opportunities[J]. Water Research, 2022, 211: 118047. doi: 10.1016/j.watres.2022.118047
    [5] XU F, ZHANG W, WANG X, et al. Multi-level FeCo/N-doped carbon nanosheet for peroxymonosulfate oxidation and sterilization inactivation[J]. Journal of Colloid and Interface Science, 2024, 661: 840-852.
    [6] LI X Y, JIE B R, LIN H D, et al. Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): Recent advances and prospects[J]. Journal of Environmental Management, 2022, 308: 114664. doi: 10.1016/j.jenvman.2022.114664
    [7] LI Z H, ZHANG W X, LIU X Y, et al. Iron-cobalt magnetic porous carbon beads activated peroxymonosulfate for enhanced degradation and Microbial inactivation[J]. Journal of Colloid and Interface Science, 2023, 652: 1878-1888. doi: 10.1016/j.jcis.2023.09.018
    [8] ZHANG H Y, TIAN W J, DUAN X G, et al. Catalysis of a single transition metal site for water oxidation: From mononuclear molecules to single atoms[J]. Advanced Materials, 2020, 32(18): 1904037. doi: 10.1002/adma.201904037
    [9] DUAN X G, TIAN W J, ZHANG H Y, et al. Interfacial-engineered cobalt@carbon hybrids for synergistically boosted evolution of sulfate radicals toward green oxidation[J]. Applied Catalysis B: Environmental, 2019, 256: 117795. doi: 10.1016/j.apcatb.2019.117795
    [10] LI J L, ZHU W H, GAO Y, et al. The catalyst derived from the sulfurized Co-doped metal-organic framework (MOF) for peroxymonosulfate (PMS) activation and its application to pollutant removal[J]. Separation and Purification Technology, 2022, 285: 120362. doi: 10.1016/j.seppur.2021.120362
    [11] PENG Q, DING Y B, ZHU L H, et al. Fast and complete degradation of norfloxacin by using Fe/Fe3C@NG as a bifunctional catalyst for activating peroxymonosulfate[J]. Separation and Purification Technology, 2018, 202: 307-317. doi: 10.1016/j.seppur.2018.03.049
    [12] KAJAL N, SINGH V, GUPTA R, et al. Metal organic frameworks for electrochemical sensor applications: A review[J]. Environmental Research, 2022, 204: 112320. doi: 10.1016/j.envres.2021.112320
    [13] FU Q, YANG F, BAO X H. Interface-confined oxide nanostructures for catalytic oxidation reactions[J]. Accounts of Chemical Research, 2013, 46(8): 1692-1701. doi: 10.1021/ar300249b
    [14] FU Q, BAO X H. Surface chemistry and catalysis confined under two-dimensional materials[J]. Chemical Society Reviews, 2017, 46(7): 1842-1874. doi: 10.1039/C6CS00424E
    [15] PAN X L, BAO X H. The effects of confinement inside carbon nanotubes on catalysis[J]. Accounts of Chemical Research, 2011, 44(8): 553-562. doi: 10.1021/ar100160t
    [16] ZHANG S W, GAO H H, XU X T, et al. MOF-derived CoN/N-C@SiO2 yolk-shell nanoreactor with dual active sites for highly efficient catalytic advanced oxidation processes[J]. Chemical Engineering Journal, 2020, 381: 122670. doi: 10.1016/j.cej.2019.122670
    [17] LI X M, WU D H, HUA T, et al. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment[J]. Science of the Total Environment, 2022, 804: 150096. doi: 10.1016/j.scitotenv.2021.150096
    [18] LY Q V, CUI L L, ASIF M B, et al. Membrane-based nanoconfined heterogeneous catalysis for water purification: A critical review[J]. Water Research, 2023, 230: 119577.
    [19] MA H R, WANG G L, XU Z H, et al. Confining peroxymonosulfate activation in carbon nanotube intercalated nitrogen doped reduced graphene oxide membrane for enhanced water treatment: The role of nanoconfinement effect[J]. Journal of Colloid and Interface Science, 2022, 608: 2740-2751. doi: 10.1016/j.jcis.2021.11.007
    [20] ZHU J L, WANG J, SHAN C, et al. Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO4 via charge redistribution for atrazine degradation[J]. Chemical Engineering Journal, 2019, 375: 122009. doi: 10.1016/j.cej.2019.122009
    [21] LI C L, WU M C, LIU R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles[J]. Applied Catalysis B: Environmental, 2019, 244: 150-158. doi: 10.1016/j.apcatb.2018.11.039
    [22] LIU D S, LI M N, LI X C, et al. Core-shell Zn/Co MOFs derived Co3O4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation[J]. Chemical Engineering Journal, 2020, 387: 124008. doi: 10.1016/j.cej.2019.124008
    [23] LI X M, YAN X L, HU X Y, et al. Hollow Cu-Co/N-doped carbon spheres derived from ZIFs as an efficient catalyst for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2020, 397: 125533. doi: 10.1016/j.cej.2020.125533
    [24] WANG G L, NIE X W, JI X J, et al. Enhanced heterogeneous activation of peroxymonosulfate by Co and N codoped porous carbon for degradation of organic pollutants: The synergism between Co and N[J]. Environmental Science: Nano, 2019, 6(2): 399-410. doi: 10.1039/C8EN01231H
    [25] HOU C C, ZOU L L, XU Q. A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites[J]. Advanced Materials, 2019, 31(46): 1904689. doi: 10.1002/adma.201904689
    [26] TIAN W J, ZHANG H Y, DUAN X G, et al. Porous carbons: Structure-oriented design and versatile applications[J]. Advanced Functional Materials, 2020, 30(17): 1909265. doi: 10.1002/adfm.201909265
    [27] CHEN X, OH W D, ZHANG P H, et al. Surface construction of nitrogen-doped chitosan-derived carbon nanosheets with hierarchically porous structure for enhanced sulfacetamide degradation via peroxymonosulfate activation: Maneuverable porosity and active sites[J]. Chemical Engineering Journal, 2020, 382: 122908. doi: 10.1016/j.cej.2019.122908
    [28] LIU C, LIU S Q, LIU L Y, et al. Novel carbon-based Fe-Co oxides derived from prussian blue analogues activating peroxymonosulfate: Refractory drugs degradation without metal leaching[J]. Chemical Engineering Journal, 2020, 379: 122274. doi: 10.1016/j.cej.2019.122274
    [29] ZHANG Y J, HUANG G X, CHEN J J, et al. Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination[J]. Nature Communications, 2022, 13(1): 3005. doi: 10.1038/s41467-022-30560-9
    [30] XIONG Z K, JIANG Y N, WU Z L, et al. Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: A review[J]. Chemical Engineering Journal, 2021, 421: 127863. doi: 10.1016/j.cej.2020.127863
    [31] LI X R, WANG P X, LU Q Y, et al. A hierarchical porous aerohydrogel for enhanced water evaporation[J]. Water Research, 2023, 244: 120447.
    [32] DUAN X G, AO Z M, ZHANG H Y, et al. Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: Core-shell layer dependence[J]. Applied Catalysis B: Environmental, 2018, 222: 176-181. doi: 10.1016/j.apcatb.2017.10.007
    [33] YI Y Y, ZHAO W, ZENG Z H, et al. ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage[J]. Small, 2020, 16(7): 1906566. doi: 10.1002/smll.201906566
    [34] CHEN J H, LIU J W, XIE J Q, et al. Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range[J]. Nano Energy, 2019, 56: 225-233. doi: 10.1016/j.nanoen.2018.11.051
    [35] ZHANG W X, SONG H, CHENG Y, et al. Core-shell prussian blue analogs with compositional heterogeneity and open cages for oxygen evolution reaction[J]. Advanced Science, 2019, 6(7): 1801901. doi: 10.1002/advs.201801901
    [36] YUAN H D, NAI J W, FANG Y J, et al. Double-shelled C@MoS2 structures preloaded with sulfur: An additive reservoir for stable lithium metal anodes[J]. Angewandte Chemie International Edition, 2020, 59(37): 15839-15843. doi: 10.1002/anie.202001989
    [37] YANG Z C, QIAN J S, YU A Q, et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement[J]. Proceedings of the National Academy of Sciences, 2019, 116(14): 6659-6664. doi: 10.1073/pnas.1819382116
    [38] ZHANG H C, KANG Z X, HAN J J, et al. Photothermal nanoconfinement reactor: Boosting chemical reactivity with locally high temperature in a confined space[J]. Angewandte Chemie International Edition, 2022, 61(26): e202200093. doi: 10.1002/anie.202200093
    [39] ZENG T, ZHANG X L, WANG S H, et al. Spatial confinement of a Co3O4 catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants[J]. Environmental Science & Technology, 2015, 49(4): 2350-2357.
    [40] WU Z L, XIONG Z K, LIU R, et al. Pivotal roles of N-doped carbon shell and hollow structure in nanoreactor with spatial confined Co species in peroxymonosulfate activation: Obstructing metal leaching and enhancing catalytic stability[J]. Journal of Hazardous Materials, 2022, 427: 128204. doi: 10.1016/j.jhazmat.2021.128204
    [41] ZHANG M, XIAO C M, YAN X, et al. Efficient removal of organic pollutants by metal-organic framework derived Co/C yolk-shell nanoreactors: Size-exclusion and confinement effect[J]. Environmental Science & Technology, 2020, 54(16): 10289-10300. doi: 10.1021/acs.est.0c00914
    [42] ZHANG W X, YANG M, ZHANG H, et al. A confinement approach to fabricate hybrid PBAs-derived FeCo@NC yolk-shell nanoreactors for bisphenol A degradation[J]. Chemical Engineering Journal, 2022, 428: 131080. doi: 10.1016/j.cej.2021.131080
    [43] FANG C, HAO Z X, WANG Y L, et al. Carbon nanotube as a nanoreactor for efficient degradation of 3-aminophenol over CoO x/CNT catalyst[J]. Journal of Cleaner Production, 2023, 405: 136912. doi: 10.1016/j.jclepro.2023.136912
    [44] LI C Y, YANG L, WANG J, et al. A newly-integrated FeCo-layered double hydroxides photocatalytic system for UV-induced degradation of various heterocyclic amines against complex sample matrix[J]. Separation and Purification Technology, 2023, 304: 122341. doi: 10.1016/j.seppur.2022.122341
    [45] YANG Y, ZENG Z T, ZHANG C, et al. Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight[J]. Chemical Engineering Journal, 2018, 349: 808-821. doi: 10.1016/j.cej.2018.05.093
    [46] VINOD K G, TAWFIK A S, JAIN R, et al. Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions[J]. Materials Science and Engineering: C, 2012, 32(1): 12-17. doi: 10.1016/j.msec.2011.08.018
    [47] YANG X X, CAO C D, ERICKSON L, et al. Photo-catalytic degradation of rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation[J]. Applied Catalysis B: Environmental, 2009, 91(3-4): 657-662. doi: 10.1016/j.apcatb.2009.07.006
    [48] DU C Y, ZHANG Z, YU G L, et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis[J]. Chemosphere, 2021, 272: 129501. doi: 10.1016/j.chemosphere.2020.129501
    [49] ZHANG S, YI J J, CHEN J R, et al. Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics[J]. Chemical Engineering Journal, 2020, 380: 122583. doi: 10.1016/j.cej.2019.122583
    [50] MA Y Y, PENG Q, SUN M, et al. Photocatalytic oxidation degradation of tetracycline over La/Co@TiO2 nanospheres under visible light[J]. Environmental Research, 2022, 215: 114297. doi: 10.1016/j.envres.2022.114297
    [51] LIU W, DONG Y B, LIU J F, et al. Halloysite nanotube confined interface engineering enhanced catalytic oxidation of photo-Fenton reaction for aniline aerofloat degradation: Defective heterojunction for electron transfer regulation[J]. Chemical Engineering Journal, 2023, 451: 138666. doi: 10.1016/j.cej.2022.138666
    [52] DANG T J, LU G H, JIANG R R, et al. Bi-etched MIL-125 promotes visible-light-driven photocatalytic performance based on the surface plasmon resonance and spatial confinement effects[J]. Separation and Purification Technology, 2023, 306: 122597. doi: 10.1016/j.seppur.2022.122597
    [53] YUAN J W, LI H, WANG G, et al. Adsorption, isolated electron/hole transport, and confined catalysis coupling to enhance the photocatalytic degradation performance[J]. Applied Catalysis B: Environmental, 2022, 303: 120892. doi: 10.1016/j.apcatb.2021.120892
    [54] SU P, FU W Y, DU X D, et al. Cost-effective degradation of pollutants by in-situ electrocatalytic process on Fe@BN-C bifunctional cathode: Formation of 1O2 with high selectivity under nanoconfinement[J]. Chemical Engineering Journal, 2023, 452: 139693. doi: 10.1016/j.cej.2022.139693
    [55] GUO D L, YAO Y, YOU S J, et al. Ultrafast degradation of micropollutants in water via electro-periodate activation catalyzed by nanoconfined Fe2O3[J]. Applied Catalysis B: Environmental, 2022, 309: 121289. doi: 10.1016/j.apcatb.2022.121289
    [56] GUO D L, JIANG S T, JIN L M, et al. CNT encapsulated MnO x for an enhanced flow-through electro-Fenton process: The involvement of Mn(IV)[J]. Journal of Materials Chemistry A, 2022, 10: 15981-15989. doi: 10.1039/D2TA03445J
    [57] XU H, CHEN J L, ZHANG Z H, et al. In situ confinement of ultrasmall metal nanoparticles in short mesochannels for durable electrocatalytic nitrate reduction with high efficiency and selectivity[J]. Advanced Materials, 2023, 35(2): 2207522. doi: 10.1002/adma.202207522
    [58] SUN M, WANG X X, LEA R W, et al. Electrified membranes for water treatment applications[J]. ACS ES&T Engineering, 2021, 1(4): 725-752.
    [59] MENG C C, DING B F, ZHANG S Z, et al. Angstrom-confined catalytic water purification within Co-TiO(x) laminar membrane nanochannels[J]. Nature Communications, 2022, 13(1): 4010. doi: 10.1038/s41467-022-31807-1
    [60] ZHANG Z H, ZHANG S Z, QIU L, et al. Ultrahigh-permeance functionalized boron nitride membrane for nanoconfined heterogeneous catalysis[J]. Chemical Catalysis, 2022, 2(3): 550-562. doi: 10.1016/j.checat.2022.01.003
    [61] CHEN Y, ZHANG G, LIU H J, et al. Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the Interspacing of MoS2 membranes[J]. Angewandte Chemie International Edition, 2019, 58(24): 8134-8138. doi: 10.1002/anie.201903531
    [62] ZHANG S, HEDTKE T, ZHU Q H, et al. Membrane-confined iron oxychloride nanocatalysts for highly efficient heterogeneous Fenton water treatment[J]. Environmental Science & Technology, 2021, 55(13): 9266-9275.
    [63] HAN Y H, JIANG B, ZHANG C C, et al. Co@N-C nanocatalysts anchored in confined membrane pores for instantaneous pollutants degradation and antifouling via peroxymonosulfate activation[J]. Journal of Water Process Engineering, 2022, 47: 102639. doi: 10.1016/j.jwpe.2022.102639
    [64] ZHANG S, SUN M, HEDTKE T, et al. Mechanism of heterogeneous Fenton reaction kinetics enhancement under nanoscale spatial confinement[J]. Environmental Science & Technology, 2020, 54(17): 10868-10875.
    [65] ZHANG S, HEDTKE T, WANG L, et al. Engineered nanoconfinement accelerating spontaneous manganese-catalyzed degradation of organic contaminants[J]. Environmental Science & Technology, 2021, 55(24): 16708-16715.
  • 加载中
图(13)
计量
  • 文章访问数:  645
  • HTML全文浏览量:  395
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-09-25
  • 录用日期:  2023-10-12
  • 网络出版日期:  2023-10-26
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回