留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MXene电磁屏蔽材料的研究

梅婷 冉娅 蔡雄睿 孟诗云 李晓丹

梅婷, 冉娅, 蔡雄睿, 等. 基于MXene电磁屏蔽材料的研究[J]. 复合材料学报, 2024, 41(5): 2280-2293. doi: 10.13801/j.cnki.fhclxb.20231019.005
引用本文: 梅婷, 冉娅, 蔡雄睿, 等. 基于MXene电磁屏蔽材料的研究[J]. 复合材料学报, 2024, 41(5): 2280-2293. doi: 10.13801/j.cnki.fhclxb.20231019.005
MEI Ting, RAN Ya, CAI Xiongrui, et al. Research on electromagnetic shielding materials based on MXene[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2280-2293. doi: 10.13801/j.cnki.fhclxb.20231019.005
Citation: MEI Ting, RAN Ya, CAI Xiongrui, et al. Research on electromagnetic shielding materials based on MXene[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2280-2293. doi: 10.13801/j.cnki.fhclxb.20231019.005

基于MXene电磁屏蔽材料的研究

doi: 10.13801/j.cnki.fhclxb.20231019.005
基金项目: 国家自然科学基金项目(42172321;51403025);重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX0474);重庆市技术创新与应用发展专项面上项目(cstc2019jscx-msxmX0050);重庆市教委科学技术研究项目(KJZDK202200807;KJQN202100830);重庆工商大学青年项目(1952015)
详细信息
    通讯作者:

    李晓丹,博士,教授,研究方向为功能复合材料 E-mail: 12345ruby@163.com

  • 中图分类号: TB34;TB332

Research on electromagnetic shielding materials based on MXene

Funds: National Natural Science Foundation of China (42172321; 51403025); Chongqing Natural Science Foundation Upper Level Project (CSTB2023NSCQ-MSX0474); Chongqing Municipal Technological Innovation and Application Development Special Top-level Project (cstc2019jscx-msxmX0050); Scientific and Technological Research Project of Chongqing Municipal Education Commission (KJZDK202200807; KJQN202100830); Chongqing Business University Youth Programme (1952015)
  • 摘要: 电子设备的电磁辐射问题日益严重,开发高性能电磁屏蔽材料是现实的迫切需求。MXene由于其独特的层状结构、丰富的表面基团、优异的力学性能和突出的导电性,被认为在电磁屏蔽方面具有潜在的应用前景。为获得轻质、高效、稳定的电磁屏蔽材料,多种改性方法被用于提高MXene材料的电磁屏蔽效能,如通过定量控制MXene层状结构构建三维多孔、多层和插层等多种形态,通过氧化、掺杂、热处理和接枝等手段调控MXene表面终止基团及将MXene与其他材料杂化组装获得其他性能等。本文从结构设计、表面改性、复合杂化三方面综述了近几年国内外对MXene材料改性的研究进展,并对其提高电磁屏蔽效能进行了比较。

     

  • 图  1  疏水性和柔性MXene泡沫的制造示意图[15]

    Figure  1.  Schematic of the fabrication of hydrophobic and flexible MXene foam[15]

    图  2  用于制备MXene基复合膜的逐层旋喷(SSLbL)工艺的示意图[18]

    CNT—Carbon nanotube; DI H2O—Deionised water

    Figure  2.  Schematic of the spin spray layer by layer (SSLbL) process for the preparation of MXene-based composite films[18]

    图  3  微型超级电容器(MSCs)的制造工艺示意图[21]

    PVA—Polyvinyl alcohol

    Figure  3.  Schematic of the fabrication process for micro-supercapacitors (MSCs)[21]

    图  4  基于组装的Ag-MXene杂化三元纳米结构电磁屏蔽机制示意图[28]

    EM—Electromagnetic; WAX—Paraffinic

    Figure  4.  Schematic diagram of electromagnetic shielding mechanism of Ag-MXene hybridized ternary nanostructures based on assembled[28]

    图  5  掺氮Ti3C2Tx的合成工艺[32]

    Figure  5.  Synthesis process of nitrogen-doped Ti3C2Tx[32]

    图  6  Ti3C2Tx MXene退火后表面改性示意图[35]

    Figure  6.  Schematic representation of Ti3C2Tx MXene surface modification after annealing[35]

    图  7  MXene接枝氧化石墨烯(MXene-g-GO)的制备[40]

    mMXene—Monolayer MXene sheet; mGO—Graphene oxide

    Figure  7.  Preparation of MXene-grafted graphene oxide (MXene-g-GO)[40]

    图  8  (a) Ti3C2Tx MXene/碳纤维织物(CFf)/热塑性聚氨酯(TPU)复合材料制备工艺示意图;(b) 电流体动力雾化(EHDA)沉积示意图;(c) 碳纤维(CF)面料表面的化学反应[47]

    LbL—Layer by layer; EMI—Electromagnetic interference

    Figure  8.  (a) Schematic diagram of the Ti3C2Tx MXene/carbon fibre fabric (CFf)/thermoplastic polyurethane (TPU) composite preparation process; (b) Schematic of electrohydrodynamic atomisation (EHDA) deposition; (c) Chemical reactions on the surface of carbon fibre (CF) fabrics[47]

    图  9  Ti3C2Tx薄片连续导电路径的分层多孔聚酰亚胺(PI)/Ti3C2Tx复合薄膜的制备工艺[50]

    T—Temperature

    Figure  9.  Preparation of hierarchical porous polyimide (PI)/Ti3C2Tx composite films with continuous conductive paths in Ti3C2Tx sheets[50]

    图  10  纳米片银纳米线(AgNW)-复合透明导电薄膜(TCF)的制备工艺(a)和以聚氨酯(PU)为衬底制备的MXene-AgNW复合TCF的照片(b) (在弯曲或扭转下仍能导电)[62]

    Figure  10.  Preparation process of nanosheet silver nanowires (AgNW)-composite transparent conductive film (TCF) (a) and photographs of MXene-AgNW composite TCF prepared on polyurethane (PU) substrate (b) (Conductive under bending or twisting)[62]

    图  11  Fe3O4@Ti3C2Tx/石墨烯泡沫(GF)/聚二甲基硅氧烷(PDMS)复合材料的制备工艺示意图[66]

    CVD—Chemical vapour deposition; NPs—Nanoparticle

    Figure  11.  Schematic of the preparation process of Fe3O4@Ti3C2Tx/graphene foam (GF)/polydimethylsiloxane (PDMS) composites[66]

  • [1] ABBASI H, ANTUNES M, VELASCO J I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding[J]. Progress in Materials Science, 2019, 103: 319-373. doi: 10.1016/j.pmatsci.2019.02.003
    [2] SHUKLA V. Review of electromagnetic interference shielding materials fabricated by iron ingredients[J]. Nanoscale Advances, 2019, 1(5): 1640-1671. doi: 10.1039/C9NA00108E
    [3] 柳瑞芳. 电磁辐射下中波广播电台对环境的影响[J]. 进展: 科学视界, 2022(6): 87-88.

    LIU Ruifang. Environmental impact of medium-wave radio stations under electromagnetic radiation[J]. Progress: Scientific Perspectives, 2022(6): 87-88(in Chinese).
    [4] 张如强, 龙柱, 张丹. 高性能聚酰亚胺电磁屏蔽材料的研究进展[J]. 精细化工, 2023, 40(1): 10-20, 43.

    ZHANG Ruqiang, LONG Zhu, ZHANG Dan. Research progress of higher performance polyimide electromagnetic shielding materials[J]. Fine Chemicals, 2023, 40(1): 10-20, 43(in chinese).
    [5] FENG A H, YU Y, WANG Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2[J]. Materials & Design, 2017, 114: 161-166.
    [6] NAGUIB M, BARSOUM M W, GOGOTSI Y. Ten years of progress in the synthesis and development of MXene[J]. Advanced Materials, 2021, 33(39): 2103393. doi: 10.1002/adma.202103393
    [7] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23: 4248-4253. doi: 10.1002/adma.201102306
    [8] LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Material, 2019, 29(44): 1905197. doi: 10.1002/adfm.201905197
    [9] ZENG Z H, WANG C X, SIQUEIR A G, et al. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance[J]. Advanced Science, 2020, 7(15): 2000979. doi: 10.1002/advs.202000979
    [10] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXene)[J]. Science, 2016, 353(6304): 1137-1140. doi: 10.1126/science.aag2421
    [11] IQBAL A, SHAHZAD F, HANTANASIRISAKUL K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene)[J]. Science, 2020, 369: 446-450. doi: 10.1126/science.aba7977
    [12] ZHANG Z W, CAI Z H, ZHANG Y, et al. The recent progress of MXene-based microwave absorption materials[J]. Carbon, 2021, 174: 484-499. doi: 10.1016/j.carbon.2020.12.060
    [13] LIU J, ZHANG H B, SUN R H, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Dvanced Materials, 2017, 29: 1702367. doi: 10.1002/adma.201702367
    [14] LIN Z H, LIU J, PENG W, et al. Highly stable 3D Ti3C2T x MXene-based foam architectures toward high-performance terahertz radiation shielding[J]. ACS Nano, 2020, 14: 2109-2117.
    [15] YANG Y F, LI B, WU N, et al. Biomimetic porous MXene-based hydrogel for high-performance and multifunctional electromagnetic interference shielding[J]. ACS Materials Letters, 2022, 4(11): 2352-2361. doi: 10.1021/acsmaterialslett.2c00778
    [16] TIAN M W, DU M Z, QU L J, et al. Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route[J]. Royal Society of Chemistry Advances, 2017, 7: 42641-42652.
    [17] YIN G, WANG Y, WANG W, et al. Multilayer structured PANI/MXene/CF fabric for electromagnetic interference shielding constructed by layer-by-layer strategy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, A601: 125047.
    [18] WENG G M, LI J Y, ALHABEB M, et al. Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding[J]. Advanced Functional Materials, 2018, 28: 1803360. doi: 10.1002/adfm.201803360
    [19] ZHOU B, ZHANG Z, LI Y L, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. American Chemical Society Applied Materials & Interfaces, 2020, 12: 4895-4905.
    [20] WANG Y T, LI T T, SHIU B C, et al. MXene-coated multi-response conductive film based on layer-by-layer assembly strategy for electromagnetic interference shielding[J]. Journal of Materials Research and Technology, 2021, 15: 6011-6024. doi: 10.1016/j.jmrt.2021.11.050
    [21] FENG X, NING J, WANG B Y, et al. Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2T x MXene[J]. Nano Energy, 2020, 72: 104741. doi: 10.1016/j.nanoen.2020.104741
    [22] LI X, YOU W B, WANG L, et al. Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44536-44544.
    [23] ZHAN Z Y, SONG Q C, ZHOU Z H, et al. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2019, 7(32): 9820-9829. doi: 10.1039/C9TC03309B
    [24] MIAO M, LIU R T, THAIBOONROD S, et al. Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2020, 8(9): 3120-3126. doi: 10.1039/C9TC06361G
    [25] QIAN K P, LI S, FANG J H, et al. C60 intercalating Ti3C2T x MXene assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability[J]. Journal of Materials Science & Technology, 2022, 127: 71-77.
    [26] HAN M K, XIAO W Y, XIN L L, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band[J]. Journal of the American Chemical Society-Applied Materials & Interfaces, 2017, 9(23): 20038-20045.
    [27] GAO X T, XIE Y, ZHU X D, et al. Ultrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries[J]. Small, 2018, 14: 1802443.
    [28] RAJAVELA K, HUA Y G, ZHUA P L, et al. MXene/metal oxides-Ag ternary nanostructures for electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 399: 125791. doi: 10.1016/j.cej.2020.125791
    [29] HE L, WENIGER F, NEUMANN H, et al. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry[J]. Angewandte Chemie International Edition, 2016, 55: 12582-12594. doi: 10.1002/anie.201603198
    [30] MATEEN A, ANSARI M Z, ABBAS Q, et al. In situ nitrogen functionalization of Ti3C2T x MXene for high-performance Zn-ion supercapacitor[J]. Molecules, 2022, 27(21): 7446. doi: 10.3390/molecules27217446
    [31] ZHOU Y, WANG Y H, WANG Y J, et al. MXene Ti3C2T x derived nitrogen-functionalized heterophase TiO2 homojunctions for room-temperature trace ammonia gas sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(47): 56485-56497.
    [32] XU X D, WANG Y X, YUE Y, et al. Dopants versus defects: Intense confrontation of nitrogen-doped Ti3C2T x for enhanced electromagnetic interference shielding[J]. Composites Communications, 2022, 35: 101301. doi: 10.1016/j.coco.2022.101301
    [33] WANG X H, ZHANG F, HU F Y, et al. N-doped honeycomb-like Ag@N-Ti3C2T x foam for electromagnetic interference shielding[J]. Nano Materials, 2022, 12: 2967.
    [34] RAKHI R, AHMED B, HEDHILI M N, et al. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti3C2T x MXene electrodes for supercapacitor applications[J]. Chemistry of Materials, 2015, 27: 5314-5323. doi: 10.1021/acs.chemmater.5b01623
    [35] HAN M K, YIN X W, WU H, et al. Ti3C2 MXene with modified surface for high-performance electromagnetic absorption and shielding in the X-Band[J]. ACS Applied Materials & Interfaces, 2016, 8: 21011-21019.
    [36] SEREDYCH M, SHUCK C E, PINTO D, et al. High-temperature behavior and surface chemistry of carbide MXene studied by thermal analysis[J]. Chemistry of Materials, 2019, 31: 3324-3332. doi: 10.1021/acs.chemmater.9b00397
    [37] LEE G S, YUN T, KIM H, et al. Mussel inspired highly aligned Ti3C2T x MXene film with synergistic enhancement of mechanical strength and ambient stability[J]. ACS Nano, 2020, 14(9): 11722-11732.
    [38] HABIBPOUR S, ZARSHENAS K, ZHANG M W, et al. Greatly enhanced electromagnetic interference shielding effectiveness and mechanical properties of polyaniline-grafted Ti3C2T x MXene-PVDF composites[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21521-21534.
    [39] DENG Z M, LI L L, TANG P P, et al. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications[J]. ACS Nano, 2022, 16(10): 16976-16986.
    [40] LEE D E, LEE G H, SON N R, et al. Polyamide 6/MXene-grafted graphene oxide hybrid nanocomposites[J]. Iranian Polymer Journal, 2023, 32: 377-388. doi: 10.1007/s13726-022-01119-8
    [41] XIA Y, MATHIS T S, ZHAO M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes[J]. Nature, 2018, 557(7705): 409-412. doi: 10.1038/s41586-018-0109-z
    [42] ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXene)[J]. ACS Nano, 2015, 9(10): 9507-9516.
    [43] PARK S, HEO S W, LEE W, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics[J]. Nature, 2018, 561: 516-521. doi: 10.1038/s41586-018-0536-x
    [44] LEI Z Y, WU P Y. A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation[J]. Nature Communications, 2019, 10: 3429. doi: 10.1038/s41467-019-11364-w
    [45] YUAN W J, YANG J Z, YIN F X, et al. Flexible and stretchable MXene/polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process[J]. Composites Communications, 2020, 19: 90-98. doi: 10.1016/j.coco.2020.03.003
    [46] WANG Y Q, LIU R T, ZHANG J F, et al. Vulcanization of Ti3C2T x MXene/natural rubber composite films for enhanced electromagnetic interference shielding[J]. Applied Surface Science, 2021, 546: 149143. doi: 10.1016/j.apsusc.2021.149143
    [47] DUAN N M, SHI Z Y, WANG Z H, et al. Mechanically robust Ti3C2T x MXene/carbon fiber fabric/thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications[J]. Materials & Design, 2022, 214: 110382.
    [48] CAO W T, MA C, TAN S, et al. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding[J]. Nano-Micro Letters, 2019, 11: 72. doi: 10.1007/s40820-019-0304-y
    [49] ZHANG Y, CHENG W H, TIAN W X, et al. Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance[J]. ACS Applied Materials & Interfaces, 2020, 12: 6371-6382.
    [50] CHEN Y, LI X Y, QIN Y X, et al. Hierarchically porous polyimide/Ti3C2T x film with stable electromagnetic interference shielding after resisting harsh conditions[J]. Science Advances, 2021, 7: eabj1663. doi: 10.1126/sciadv.abj1663
    [51] NGUYEN V T, NGUYEN Q D, MIN B K, et al. Ti3C2T x MXene/carbon nanotubes/waterborne polyurethane based composite ink for electromagnetic interference shielding and sheet heater applications[J]. Chemical Engineering Journal, 2022, 430: 133171. doi: 10.1016/j.cej.2021.133171
    [52] QIAN K P, ZHOU Q F, THAIBOONROD S, et al. Highly thermally conductive Ti3C2T x/h-BN hybrid films via coulombic assembly for electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2022, 613: 488-498. doi: 10.1016/j.jcis.2022.01.060
    [53] LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. PNAS, 2014, 111: 16676-16681. doi: 10.1073/pnas.1414215111
    [54] SHAHZAD F, KUMAR P, KIM Y H, et al. Biomass-derived thermally annealed interconnected sulfur-doped graphene as a shield against electromagnetic interference[J]. Journal of the American Chemical Society, 2016, 8: 9361-9369. doi: 10.1021/acsami.6b00418
    [55] BAI S C, GUO X, CHEN T R, et al. Solution process fabrication of silver nanowire composite transparent conductive films with tunable work function[J]. Thin Solid Films, 2020, 709: 138096.
    [56] YANG H, BAI S C, CHEN T R, et al. Facile fabrication of large-scale silver nanowire-PEDOT:PSS composite flexible transparent electrodes for flexible touch panels[J]. Materials Research Express, 2019, 6(8): 86315. doi: 10.1088/2053-1591/ab20d5
    [57] SU D Y, HSU C C, LAI W S, et al. Fabrication, mechanisms, and properties of high-performance flexible transparent conductive gas-barrier films based on Ag nanowires and atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34212-34221.
    [58] LAN L Y, YIN T H, JIANG C M, et al. Highly conductive 1D-2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator[J]. Nano Energy, 2019, 62: 319-328. doi: 10.1016/j.nanoen.2019.05.041
    [59] FATHINEZHAD M, ABBASITARIGHAT M, DASTAN D. Degradation of cytostatics methotrexate and cytarabine through physico-chemical and advanced oxidative processes: Influence of pH and combined processes on the treatment efficiency[J]. Environmental Technology, 2020, 14: 100307.
    [60] DAS S R, NIAN Q, SAEI M, et al. Single-layer graphene as a barrier layer for intense UV laser-induced damages for silver nanowire network[J]. ACS Nano, 2015, 9(11): 21-33.
    [61] DENG B, HSU P, CHEN G C, et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes[J]. Nano Letters, 2015, 15(6): 4206-4213. doi: 10.1021/acs.nanolett.5b01531
    [62] BAI S C, GUO X Z, ZHANG X Y, et al. Ti3C2T x MXene-AgNW composite flexible transparent conductive films for EMI shielding[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106545. doi: 10.1016/j.compositesa.2021.106545
    [63] LI B S, LUO S H, ANWER S, et al. Heterogeneous films assembled from Ti3C2T x MXene and porous double-layered carbon nanosheets for high-performance electromagnetic interference shielding[J]. Applied Surface Science, 2022, 599: 153944. doi: 10.1016/j.apsusc.2022.153944
    [64] WEI F D, LIU Q H, LIU H Q, et al. Advanced Ti3C2T x MXene-modified cement nanocomposites toward high efficiency electromagnetic functional materials for green buildings[J]. Journal of Applied Ceramic Technology, 2023, 20(1): 251-260. doi: 10.1111/ijac.14202
    [65] LI H Y, RU X H, SONG Y, et al. Flexible and self-healing MXene/reduced graphene oxide/polyurethane composites for high-performance electromagnetic interference shielding[J]. Composites Science and Technology, 2022, 227: 109602. doi: 10.1016/j.compscitech.2022.109602
    [66] NGUYEN V T, MIN B K, YI Y, et al. MXene (Ti3C2T x)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins[J]. Chemical Engineering Journal, 2020, 393: 12460.
  • 加载中
图(11)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  278
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-19
  • 修回日期:  2023-09-24
  • 录用日期:  2023-10-11
  • 网络出版日期:  2023-10-20
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回