留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理木材性能改良与工艺优化研究进展

蒋军 杜静静 徐信武 梅长彤

蒋军, 杜静静, 徐信武, 等. 热处理木材性能改良与工艺优化研究进展[J]. 复合材料学报, 2024, 41(4): 1712-1725. doi: 10.13801/j.cnki.fhclxb.20231019.004
引用本文: 蒋军, 杜静静, 徐信武, 等. 热处理木材性能改良与工艺优化研究进展[J]. 复合材料学报, 2024, 41(4): 1712-1725. doi: 10.13801/j.cnki.fhclxb.20231019.004
JIANG Jun, DU Jingjing, XU Xinwu, et al. Research progress on performance improvement and process optimization of thermally treated wood[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1712-1725. doi: 10.13801/j.cnki.fhclxb.20231019.004
Citation: JIANG Jun, DU Jingjing, XU Xinwu, et al. Research progress on performance improvement and process optimization of thermally treated wood[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1712-1725. doi: 10.13801/j.cnki.fhclxb.20231019.004

热处理木材性能改良与工艺优化研究进展

doi: 10.13801/j.cnki.fhclxb.20231019.004
基金项目: 国家自然科学基金 (31901248); 中国博士后基金面上资助(2018M642258)
详细信息
    通讯作者:

    蒋军,博士,副教授,硕士生导师,研究方向为木材功能性改良 E-mail: jiangjun@njfu.edu.cn

  • 中图分类号: TS6;TB332

Research progress on performance improvement and process optimization of thermally treated wood

Funds: National Natural Science Foundation of China (31901248); China Postdoctoral Science Foundation (2018M642258)
  • 摘要: 热处理木材是一种环保无污染且绿色可持续材料。但木材经过热处理会导致其部分力学性能下降、表面润湿性能不足及容易发生光老化等问题。传统的热处理技术所需要的高温环境会产生大量能耗,导致生产成本较高。针对以上热处理木材存在的性能缺陷和生产工艺不足,从热处理木材性能改良和工艺优化两个角度,概述了国内外热处理木材的性能改良研究进展。具体内容涉及热处理木材力学性能改良、表面润湿性能改良、耐光老化性能改良和热处理工艺优化4个方面。分析了热处理木材相关性能改良方法的局限性和改进措施,提出了木材热处理改性应在结合改性机制和实际应用的基础上,对热处理造成的潜在木材性能劣化进行规避,以更好地体现其综合性能优势,提高附加值并拓展应用范围。

     

  • 图  1  木材热处理过程中细胞壁组分变化及其对木材性质的影响[3]

    Figure  1.  Changes of cell wall components in wood during heat treatment and their effects on properties[3]

    图  2  (a) 表层密实化木材的密度分布;(b) 木材抗弯受力分析[30]

    Figure  2.  (a) Density distribution in surface-densified wood; (b) Diagram of wood during bending test[30]

    R—Radius; Δy—Distance change during loading; PD—Peak density

    图  3  (a)热处理木材的光降解机制;热处理木材的耐光老化性能改良方法:(b)有机紫外线吸收剂将光能转化为化学能和热能;(c)无机纳米粒子反射紫外线;(d)抗氧化剂破坏或者消除自由基

    Figure  3.  (a) Mechanism of photodegradation of heat-treated wood; Methods for improving light aging resistance of thermally treated wood: (b) Organic ultraviolet absorbers convert light energy into chemical energy and heat energy; (c) Inorganic nanoparticles reflect ultraviolet light; (d) Antioxidants destroy or eliminate free radicals

    图  4  (a) 热处理过程中半纤维素受热发生脱乙酰化反应产生乙酸的反应式;(b) 酸催化多糖解聚的可能路径[72-73]

    Figure  4.  (a) Formula for deacetylation of hemicellulose to produce acetic acid during heat treatment; (b) Potential routes for acid catalyzed polysaccharide depolymerization[72-73]

    表  1  热处理对木材表面润湿性和漆膜附着力的影响

    Table  1.   Effect of heat treatment on surface wettability and adhesion of wood

    Wood
    species
    Treatment
    condition
    Film adhesion grade Contact angle Ref.
    Waterborne wood coating Oil-based wood coating Diiodomethane Water Ethyl alcohol
    Poplar
    wood
    Control 1 34.9° 71.6° [37]
    160℃, 2 h 1 37.6° 80.7°
    180℃, 2 h 1 37.9° 79.5°
    200℃, 2 h 3 41.1° 87.7°
    220℃, 2 h 3 42.1° 90.3°
    Rubber
    wood
    Control 1 1 62.1° [38]
    200℃, 2 h 2 1 107.1°
    Pometia
    pinnata
    Control 1 43.8° 22.9° [39]
    200℃, 6 h 2 52.9° 46.9°
    Rubber
    wood
    Control 1 2 [31]
    200℃, 2 h 2 1
    Notes: According to the national standard, the adhesion of the paint film can be divided into 6 grades. 1: A little coating falls off at the intersection of the incision, but the affected cross-cutting area is obviously not more than 5%; 2: A little coating falls off at the intersection of the incision, and the affected cross-cutting area is greater than 5%, but not greater than 15%; 3: There is a little coating falls of at the intersection of the incision, and/or partial or total peeling at different parts of the grid, and the affected cross-cutting area is significantly greater than 15%, but not greater than 35%.
    下载: 导出CSV

    表  2  等离子体中粒子能量和木材表面常见化学键的键能

    Table  2.   Particle energy in plasma and bond energy of chemical bonds on wood surfaces

    ParticleParticle energy/eVChemical bondBond energy/eVChemical bondBond energy/eV
    Electron0-20C—H3.2-4.7C=O5.5
    Metastable particle0-2C—C2.6-5.2C=C3.3-7.5
    Ion0.03-0.05C—O0.95-3.0C≡C10
    Photon3-40O—H3.4-5.2
    下载: 导出CSV

    表  3  常见热处理工艺条件

    Table  3.   Common conditions used during heat treatment

    Process Source Medium Temperature/℃ Duration/h Drawback Ref.
    Thermowood Finland Water vapour 150-240 0.5-4 [66]
    Plato Netherlands Water vapour 160-190 4-5 Complicated process and
    long duration
    [67]
    Torrefaction France Water vapour (comes from the
    evaporation of water in wood)
    200-240 [68]
    Retification France Nitrogen 210-240 High requirements on
    equipment accuracy
    [68]
    Hot oil treatment Germany Oil
    180-220 2-4 Wood absorbs oil and waste
    oil utilization and disposal difficulties
    [69]
    Smoke heating
    treatment
    Japan Smoke 80-200 Waste gas [70]
    下载: 导出CSV
  • [1] RAUTKARI L, HILL C A, CURLING S, et al. What is the role of the accessibility of wood hydroxyl groups in controlling moisture content?[J]. Journal of Materials Science, 2013, 48(18): 6352-6356. doi: 10.1007/s10853-013-7434-2
    [2] WANG D, FU F, LIN L. Molecular-level characterization of changes in the mechanical properties of wood in response to thermal treatment[J]. Cellulose, 2022, 8: 1-12.
    [3] 顾炼百, 丁涛, 江宁. 木材热处理研究及产业化进展[J]. 林业工程学报, 2019, 4(4): 1-11.

    GU Lianbai, DING Tao, JIANG Ning. Development of wood heat treatment research and industrialization[J]. Journal of Forestry Engineering, 2019, 4(4): 1-11(in Chinese).
    [4] JIANG J, LI H, PANG J, et al. Heat treatment induces chemical changes and silica sol penetration in wood for properties improvement: Hydrophobicity, thermal stability, and surface hardness[J]. Journal of Wood Chemistry and Technology, 2022, 42(2): 104-113. doi: 10.1080/02773813.2022.2036193
    [5] TJEERDSMA B, BOONSTRA M, PIZZI A, et al. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement[J]. Holzals Rohund Werkstoff, 1998, 56(3): 149-153. doi: 10.1007/s001070050287
    [6] BAYANI S, TAGHIYARI H R, PAPADOPOULOS A N. Physical and mechanical properties of thermally-modified beech wood impregnated with silver nano-suspension and their relationship with the crystallinity of cellulose[J]. Polymers, 2019, 11(10): 1538. doi: 10.3390/polym11101538
    [7] BORŮVKA V, ZEIDLER A, HOLEČEK T, et al. Elastic and strength properties of heat-treated beech and birch wood[J]. Forests, 2018, 9(4): 197. doi: 10.3390/f9040197
    [8] BEHR G, BOLLMUS S, GELLERICH A, et al. Improvement of mechanical properties of thermally modified hardwood through melamine treatment[J]. Wood Material Science & Engineering, 2018, 13(5): 262-270.
    [9] LI W, ZHANG Z, YANG K, et al. Understanding the effect of combined thermal treatment and phenol-formaldehyde resin impregnation on the compressive stress of wood[J]. Wood Science and Technology, 2022, 56(4): 1071-1086. doi: 10.1007/s00226-022-01400-2
    [10] BEKHTA P. Effect of heat treatment on some physical and mechanical properties of birch plywood[J]. European Journal of Wood and Wood Products, 2020, 78(4): 683-691. doi: 10.1007/s00107-020-01560-7
    [11] WANG X, CHEN X, XIE X, et al. Multi-scale evaluation of the effect of phenol formaldehyde resin impregnation on the dimensional stability and mechanical properties of Pinus massoniana lamb[J]. Forests, 2019, 10(8): 646. doi: 10.3390/f10080646
    [12] 张银亮, 刘明利, 李春风. 硅溶胶/酚醛树脂浸渍与热处理改性杨木的力学性能[J]. 北华大学学报(自然科学版), 2021, 22(6): 815-819. doi: 10.11713/j.issn.1009-4822.2021.06.023

    ZHAGN Yinliang, LIU Mingli, LI Chunfeng. Mechanical properties of poplar wood modified by silica-sol/phenol-formaldehyde resin impregnation and heat treatment[J]. Journal of Beihua University (Natural Science), 2021, 22(6): 815-819(in Chinese). doi: 10.11713/j.issn.1009-4822.2021.06.023
    [13] 罗名春, 刘付建, 赵斌. 浸渍高温热处理改性桉木力学性能分析[J]. 林产工业, 2019, 46(3): 45-49.

    LUO Mingchun, LIU Fujian, ZHAO Bin. Analysis of mechanical properties of eucalyptus woods immersed in high temperature treatment[J]. China Forest Products Industry, 2019, 46(3): 45-49(in Chinese).
    [14] XUE J, XU W, ZHOU J, et al. Effects of high-temperature heat treatment modification by impregnation on physical and mechanical properties of poplar[J]. Materials, 2022, 15(20): 7334. doi: 10.3390/ma15207334
    [15] JIANG J, WANG C, EBRAHIMI M, et al. Eco-friendly preparation of high-quality mineralized wood via thermal modification induced silica sol penetration[J]. Industrial Crops and Products, 2022, 183: 115003. doi: 10.1016/j.indcrop.2022.115003
    [16] LIU M L, LI C F, LIU Y L. Physical and mechanical properties of modified poplar wood by heat treatment and impregnation of sodium silicate solution[J]. Wood Research, 2019, 64(1): 145-153.
    [17] ZHANG N, XU M, CAI L. Improvement of mechanical, humidity resistance and thermal properties of heat-treated rubber wood by impregnation of SiO2 precursor[J]. Scientific Reports, 2019, 9: 982.
    [18] 张南南. 二氧化硅改性热处理橡胶木性能研究[D]. 哈尔滨: 东北林业大学, 2019.

    ZHAGN Nannan. Study on the properties of heat-treated rubber wood modified by silica impregnation[D]. Harbin: Northeast Forestry University, 2019(in Chinese).
    [19] LEE S H, ASHAARI Z, LUM W C, et al. Thermal treatment of wood using vegetable oils: A review[J]. Construction and Building Materials, 2018, 181: 408-419. doi: 10.1016/j.conbuildmat.2018.06.058
    [20] SURI I F, PURUSATAMA B D, KIM J H, et al. Comparison of physical and mechanical properties of Paulownia tomentosa and Pinus koraiensis wood heat-treated in oil and air[J]. European Journal of Wood and Wood Products, 2022, 80(6): 1389-1399. doi: 10.1007/s00107-022-01840-4
    [21] BAAR J, BRABEC M, SLÁVIK R, et al. Effect of hemp oil impregnation and thermal modification on European beech wood properties[J]. European Journal of Wood and Wood Products, 2021, 79(1): 161-175. doi: 10.1007/s00107-020-01615-9
    [22] HE L, ZHANG T, ZHAO Y, et al. Effect of natural tung oil on wood shrinkage during the thermal modification process[J]. Journal of Cleaner Production, 2022, 379: 134450. doi: 10.1016/j.jclepro.2022.134450
    [23] HE L, ZHANG T, ZHAO X, et al. Synergistic effect of tung oil and heat treatment on surface characteristics and dimensional stability of wood[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 665: 131233. doi: 10.1016/j.colsurfa.2023.131233
    [24] HAN L, KUTNAR A, COUCEIRO J, et al. Creep properties of densified wood in bending[J]. Forests, 2022, 13(5): 757. doi: 10.3390/f13050757
    [25] 李任. 预热条件对毛白杨层状压缩木材形成及其性能影响研究[D]. 北京: 北京林业大学, 2019.

    LI Ren. Effects of preheating conditions on the formation and properties of sandwish compressed wood of white poplar[D]. Beijing: Beijing Forestry University, 2019(in Chinese).
    [26] TAKAMURA N. Studies on hot pressing and drying process in the production of fibre board. III softening of fiber components in hot pressing of fibre mat[J]. Wood Research Society, 1968, 14(2): 75.
    [27] 张刚. 基于超疏水和热改性技术的杨木尺寸稳定化研究[D]. 泰安: 山东农业大学, 2018.

    ZHANG Gang. Study on dimensional stabilization of poplar wood based on superhydrophobic and thermal modification techniques[D]. Taian: Shandong Agricultural University, 2018(in Chinese).
    [28] GUO J, SONG K, SALMÉN L, et al. Changes of wood cell walls in response to hygro-mechanical steam treatment[J]. Carbohydrate Polymers, 2015, 115: 207-214. doi: 10.1016/j.carbpol.2014.08.040
    [29] YIN J, YUAN T, LU Y, et al. Effect of compression combined with steam treatment on the porosity, chemical compositon and cellulose crystalline structure of wood cell walls[J]. Carbohydrate Polymers, 2017, 155: 163-172. doi: 10.1016/j.carbpol.2016.08.013
    [30] XIANG E, LI J, HUANG R, et al. Effect of superheated steam pressure on the physical and mechanical properties of sandwich-densified wood[J]. Wood Science and Technology, 2022, 56(3): 899-919. doi: 10.1007/s00226-022-01383-0
    [31] 王立朝. 表层压缩/热处理协效改性橡胶木的工艺与性能研究[D]. 哈尔滨: 东北林业大学, 2022.

    WANG Licao. Study on technology and properties of rubber wood modified by surface compression/heat treatment[D]. Harbin: Northeast Forestry University, 2022(in Chinese).
    [32] GAO Z, HUANG R, LU J, et al. Sandwich compression of wood: Control of creating density gradient on lumber thickness and properties of compressed wood[J]. Wood Science and Technology, 2016, 50(4): 833-844. doi: 10.1007/s00226-016-0824-2
    [33] TU Y, LIANG J, YU L, et al. Effects of plasma treatment on the surface characteristics and bonding performance of Pinus massoniana wood[J]. Forests, 2023, 14(7): 1346. doi: 10.3390/f14071346
    [34] 郝丹. 热处理胶合木层间界面粘结性能研究[D]. 南京: 南京林业大学, 2021.

    HAO Dan. Study on interface layer bonding properties of heat-treated glulam[D]. Nanjing: Nanjing Forestry University, 2021(in Chinese).
    [35] 孟素戎, 王慧珊, 王梦蕾, 等. 炭化处理对橄榄木渗透性、胶合及涂饰性能的影响[J]. 林业机械与木工设备, 2020, 48(3): 36-40.

    MENG Surong, WANG Huishan, WANG Menglei, et al. Effects of carbonization on permeability, gluing and finishing properties of olive wood[J]. Forestry Machinery & Woodworking Equipment, 2020, 48(3): 36-40(in Chinese).
    [36] LIU J, WANG C, YANG X, et al. Interlaminar shear properties of glulam made of heat-treated laminates[J]. European Journal of Wood and Wood Products, 2023, 81(4): 887-896.
    [37] 储德淼. 基于阻燃/热处理联合改性杨木表面功能层构建与性能研究[D]. 北京: 北京林业大学, 2019.

    CHU Demiao. Manufacturing and characterizing of the surface functional layer on poplar using combined treatment of fire retardancy and thermal modification[D]. Beijing: Beijing Forestry University, 2019(in Chinese).
    [38] 林鑫. 聚乙二醇改性热处理橡胶木及性能研究[D]. 哈尔滨: 东北林业大学, 2021.

    LIN Xin. Properties study of heat-treated rubber wood modified by polyethylene glycol[D]. Harbin: Northeast Forestry University, 2021(in Chinese).
    [39] 于家豪. 增强热处理木材漆膜附着性能的研究[D]. 北京: 中国林业科学研究院, 2016.

    YU Jiahao. Study on coating adhesion improvment of heat-treated wood[D]. Beijing: Chinese Academy of Forestry, 2016(in Chinese).
    [40] SAKATA I, MORITA M, TSURUTA N, et al. Activation of wood surface by corona treatment to improve adhesive bonding[J]. Journal of Applied Polymer Science, 1993, 49(7): 1251-1258. doi: 10.1002/app.1993.070490714
    [41] HUBER H, HAAS R, PETUTSCHNIGG A, et al. Changes in wettability of wood surface using electron beam irradiation[J]. Wood Material Science & Engineering, 2020, 15(4): 237-240.
    [42] 曹倚中. 低温等离子体改性木质单板高效胶合机理研究[D]. 南京: 南京林业大学, 2020.

    CAO Yizhong. Mechanism of low temperature plasma modified wood veneer to achieve high adhesive efficiency[D]. Nanjing: Nanjing Forestry University, 2020(in Chinese).
    [43] CAO Y, HUA H, YANG P, et al. Investigation into the reaction mechanism underlying the atmospheric low-temperature plasma-induced oxidation of cellulose[J]. Carbohydrate Polymers, 2020, 233: 115632. doi: 10.1016/j.carbpol.2019.115632
    [44] GALMIZ O, TALVISTE R, PANÁČEK R, et al. Cold atmospheric pressure plasma facilitated nano-structuring of thermally modified wood[J]. Wood Science and Technology, 2019, 53: 1339-1352. doi: 10.1007/s00226-019-01128-6
    [45] HUANG Y, WANG J, ZHAN X, et al. Effect of plasma treatment on the surface characteristics and adhesive penetration performance of heat-treated wood[J]. Holzforschung, 2022, 76(10): 941-953. doi: 10.1515/hf-2022-0031
    [46] SEDLIAČIKOVÁ M, MORESOVÁ M. Are consumers interested in colored beech wood and furniture products?[J]. Forests, 2022, 13(9): 1470. doi: 10.3390/f13091470
    [47] XU J W, LI C C, HUNG K C, et al. Physicomechanical properties of hydrothermally treated Japanese cedar timber and their relationships with chemical compositions[J]. Journal of Materials Research and Technology, 2022, 21: 4982-4993. doi: 10.1016/j.jmrt.2022.11.092
    [48] 卢翠香, 蒋汇川, 刘媛, 等. 高温热处理对低龄桉树木材颜色变化的影响[J]. 桉树科技, 2021, 38(2): 9-16. doi: 10.13987/j.cnki.askj.2021.02.002

    LU Cuixiang, JIANG Huichuan, LIU Yuan, et al. Effects of high temperature heat-treatment on color variance in young eucalyptus timber[J]. Eucalypt Science & Technology, 2021, 38(2): 9-16(in Chinese). doi: 10.13987/j.cnki.askj.2021.02.002
    [49] 陈凯文. 基于金属活化的热处理杉木耐光老化性能研究[D]. 南京: 南京林业大学, 2022.

    CHEN Kaiwen. Study on the anti-weathering of heat-treated fir wood (Cunninghamia lanceolate) based on metal activation[D]. Nanjing: Nanjing Forestry University, 2022(in Chinese).
    [50] HUANG X, KOCAEFE D, KOCAEFE Y, et al. Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation[J]. Polymer Degradation and Stability, 2012, 97(7): 1197-1214. doi: 10.1016/j.polymdegradstab.2012.03.022
    [51] ANISH M C, GIRIDHAR B N, NAIR S, et al. Influences of extractives and thermal modification on the UV resistance of Albizia lebbeck wood[J]. Wood Material Science & Engineering, 2023, 18(2): 540-548.
    [52] NZOKOU P, KAMDEM D P. Influence of wood extractives on the photo-discoloration of wood surfaces exposed to artificial weathering[J]. Color Research and Application, 2006, 31(5): 425-434.
    [53] 沈海颖. 热改性木材的光作用机理及其耐光老化性能改良[D]. 北京: 北京林业大学, 2019.

    SHEN Haiying. Study on mechanism of photic action and improvement on anti-weathering properties of thermally-modified wood[D]. Beijing: Beijing Forestry University, 2019(in Chinese).
    [54] XING D, WANG S, LI J. Effect of artificial weathering on the properties of industrial-scale thermally modified wood[J]. BioResources, 2015, 10(4): 8238-8252.
    [55] NIKAFSHAR S, NEJAD M. Evaluating efficacy of different UV-stabilizers/absorbers in reducing UV-degradation of lignin[J/OL]. Holzforschung: 2021-10-21[2024-01-27]. https://doi.org/10.1515/hf-2021-0147.
    [56] PÁNEK M, HÝSEK Š, DVOŘÁK O, et al. Durability of the exterior transparent coatings on nano-photostabilized english oak wood and possibility of its prediction before artificial accelerated weathering[J]. Nanomaterials, 2019, 9(11): 1568. doi: 10.3390/nano9111568
    [57] SHEN H, CAO J, JIANG J, et al. Antiweathering properties of a thermally treated wood surface by two-step treatment with titanium dioxide nanoparticle growth and polydimethylsiloxane coating[J]. Progress in Organic Coatings, 2018, 125: 1-7. doi: 10.1016/j.porgcoat.2018.08.011
    [58] 华杰琼. 基于热处理和氧化锌协同作用的杨木改性研究[D]. 哈尔滨: 东北林业大学, 2016.

    HUA Jieqiong. Modification of Populus adenopoda maxim based on heat treatment and zinc oxide[D]. Harbin: Northeast Forestry University, 2016(in Chinese).
    [59] SAEI A M, MOHEBBY B, ABDEH M R. Effects of oleothermal treatment and polydimethylsiloxane (PDMS) coating on natural weathering of beech and fir woods[J]. Maderas Cienciay Tecnología, 2015, 17(4): 905-918.
    [60] 曲丽洁. 杉木硫酸铝预处理热改性机理及耐老化性能研究[D]. 北京: 北京林业大学, 2021.

    QU Lijie. Study on the thermal modification mechanism and aging resistance property of chinese fir pretreated with aluminum[D]. Beijing: Beijing Forestry University, 2021(in Chinese).
    [61] 王亚男. 磁控溅射沉积无机纳米薄膜的木材功能性研究[D]. 哈尔滨: 东北林业大学, 2021.

    WANG Yanan. Research on wood function of depositing inorganic nano-film based on magnetron sputtering[D]. Harbin: Northeast Forestry University, 2021(in Chinese).
    [62] GEORGE B, SUTTIE E, MERLIN A, et al. Photodegradation and photostabilisation of wood–The state of the art[J]. Polymer Degradation and Stability, 2005, 88(2): 268-274. doi: 10.1016/j.polymdegradstab.2004.10.018
    [63] SAHA S, KOCAEFE D, BOLUK Y, et al. Enhancing exterior durability of jack pine by photo-stabilization of acrylic polyurethane coating using bark extract. Part 1: Effect of UV on color change and ATR–FT-IR analysis[J]. Progress in Organic Coatings, 2011, 70(4): 376-382. doi: 10.1016/j.porgcoat.2010.09.034
    [64] PENG Y, WANG Y, ZHANG R, et al. Improvement of wood against UV weathering and decay by using plant origin substances: Tannin acid and tung oil[J]. Industrial Crops and Products, 2021, 168: 113606. doi: 10.1016/j.indcrop.2021.113606
    [65] 程亚飞. 轻度热处理柞木性能变化及改性机制[D]. 南京: 南京林业大学, 2022.

    CHENG Yafei. Mild heat treatment of Mongolian oak wood: Property evaluation and mechanism investigation[D]. Nanjing: Nanjing Forestry University, 2022(in Chinese).
    [66] VIITANIEMI P, JAMSA S, EK P, et al. Method for improving biodegradation resistance and dimensional stability of cellulosic products: US patent, 5678324A[S]. 1997-10-21.
    [67] HOMAN W, TJEERDSMA B, BECKERS E, et al. Structural and other properties of modified wood[C]//Proceedings of the World Conference on Timber Engineering 2000. British Columbia: World Conference Timber Enginnering, 2000.
    [68] VERNOIS M. Heat treatment of wood in France: State of the art[C]//Proceedings of Special Seminar. Antibes: Citeseer, 2001.
    [69] RAPP A O. Review on heat treatments of wood[C]//Proceedings of Special Seminar. Antibes: Citeseer, 2001.
    [70] 刘丽丽, 张宏, 张文标, 等. 熏烟热处理技术在国内及日本的发展与应用研究[J]. 浙江林业科技, 2010, 30(5): 76-81.

    LIU Lili, ZHANG Hong, ZHANG Wenbiao, et al. Research and utilization of smoke heating treatment technology in China and Japan[J]. Journal of Zhejiang Forestry Science and Technology, 2010, 30(5): 76-81(in Chinese).
    [71] MITCHELL P H. Irreversible property changes of small Loblolly pine specimens heated in air, nitrogen, or oxygen[J]. Wood and Fiber Science, 1988, 20(3): 320-335.
    [72] HILL C, ALTGEN M, RAUTKARI L. Thermal modification of wood—A review: Chemical changes and hygroscopicity[J]. Journal of Materials Science, 2021, 56(11): 6581-6614. doi: 10.1007/s10853-020-05722-z
    [73] FENGEL D, WEGENER G. Wood: Chemistry, ultrastructure, reactions[M]. Berlin and New York: Walter de Gruyter, 2011.
    [74] WANG X, LUO C, MU J, et al. Effects of aluminum chloride impregnating pretreatment on physical and mechanical properties of heat-treated poplar wood under mild temperature[J]. Forests, 2022, 13(8): 1170. doi: 10.3390/f13081170
    [75] GROSSE C, GRIGSBY W J, NOËL M, et al. Optimizing chemical wood modification with oligomeric lactic acid by screening of processing conditions[J]. Journal of Wood Chemistry and Technology, 2019, 39(6): 385-398. doi: 10.1080/02773813.2019.1601739
    [76] QU L, WANG Z, QIAN J, et al. Effects of aluminum sulfate soaking pretreatment on dimensional stability and thermostability of heat-treated wood[J]. European Journal of Wood and Wood Products, 2021, 79(1): 189-198. doi: 10.1007/s00107-020-01616-8
    [77] QU L, QIAN J, HE L, et al. Improving color stabilization in thermally modified wood by pretreatment with aluminum sulfate vacuum impregnation[J]. European Journal of Wood and Wood Products, 2022, 80(2): 331-343. doi: 10.1007/s00107-021-01760-9
    [78] YAN L, MORRELL J J. Kinetic color analysis for assessing the effects of borate and glycerol on thermal modification of wood[J]. Wood Science and Technology, 2019, 53(1): 263-274. doi: 10.1007/s00226-018-1072-4
    [79] SIVRIKAYA H, HOSSEINPOURPIA R, AHMED S A, et al. Vacuum-heat treatment of Scots pine (Pinus sylvestris L.) wood pretreated with propanetriol[J]. Wood Material Science & Engineering, 2022, 17(5): 328-336.
    [80] YAN L, CHEN Z. Dynamic viscoelastic properties of heat-treated glycerol-impregnated poplar wood[J]. European Journal of Wood and Wood Products, 2018, 76(2): 611-616. doi: 10.1007/s00107-017-1210-y
    [81] GAO J, QU L, QIAN J, et al. Effects of combined acid-alkali and heat treatment on the physiochemical structure of Moso bamboo[J]. Scientific Reports, 2020, 10(1): 1-7. doi: 10.1038/s41598-019-56847-4
    [82] HE Z, QU L, WANG Z, et al. Effects of zinc chloride-silicone oil treatment on wood dimensional stability, chemical components, thermal decomposition and its mechanism[J]. Scientific Reports, 2019, 9: 1601.
    [83] BAYANI S, BAZYAR B, MIRSHOKRAIE S A, et al. Effects of heat treatment on the relative amounts of cellulose in nanosilver-impregnated and untreated poplar wood (Populus alba)[J]. Floresta e Ambiente, 2019, 26(4): e20160398.
    [84] TAGHIYARI H R, HOSSEINI G, TARMIAN A, et al. Fluid flow in nanosilver-impregnated heat-treated beech wood in different mediums[J]. Applied Sciences, 2020, 10(6): 1919. doi: 10.3390/app10061919
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  691
  • HTML全文浏览量:  230
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-10
  • 修回日期:  2023-09-27
  • 录用日期:  2023-10-07
  • 网络出版日期:  2023-10-20
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回