留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

医用镁合金性能及其合金化改善途径研究进展

石尘尘 苑克真 高冬芳 乔阳

石尘尘, 苑克真, 高冬芳, 等. 医用镁合金性能及其合金化改善途径研究进展[J]. 复合材料学报, 2024, 41(2): 640-655. doi: 10.13801/j.cnki.fhclxb.20231018.001
引用本文: 石尘尘, 苑克真, 高冬芳, 等. 医用镁合金性能及其合金化改善途径研究进展[J]. 复合材料学报, 2024, 41(2): 640-655. doi: 10.13801/j.cnki.fhclxb.20231018.001
SHI Chenchen, YUAN Kezhen, GAO Dongfang, et al. Research progress of medical magnesium alloy properties and its alloying improvement path[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 640-655. doi: 10.13801/j.cnki.fhclxb.20231018.001
Citation: SHI Chenchen, YUAN Kezhen, GAO Dongfang, et al. Research progress of medical magnesium alloy properties and its alloying improvement path[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 640-655. doi: 10.13801/j.cnki.fhclxb.20231018.001

医用镁合金性能及其合金化改善途径研究进展

doi: 10.13801/j.cnki.fhclxb.20231018.001
基金项目: 山东省自然科学基金(ZR2023ME077; ZR2023MC140);山东省高等学校青创科技支持计划(2019KJB021)
详细信息
    通讯作者:

    乔阳,博士,副教授,硕士生导师,研究方向为生物医用材料的制备及高性能加工 E-mail: me_qiaoy@ujn.edu.cn

  • 中图分类号: TG146.2;TB33

Research progress of medical magnesium alloy properties and its alloying improvement path

Funds: Shandong Provincial Natural Science Foundation (ZR2023ME077; ZR2023MC140); Shandong Higher Education Youth Innovation and Technology Support Program (2019KJB021)
  • 摘要: 医用镁合金耐腐蚀性能和强度相较于传统医用金属材料较差,严重限制了其在医疗器械领域中的应用。研究表明,合金化可以显著改善医用镁合金的性能,但是由于不同合金元素的加入对镁合金力学性能、耐腐蚀性能和生物相容性的影响不同,并且元素对合金的改善效果也存在差异。因此,研究不同元素的添加对医用镁合金性能影响具有重要的意义。本文首先综述了近年来对镁基合金力学性能、腐蚀降解性能及其生物相容性的综合研究,其次分析了镁基合金在添加了不同合金元素下的性能差异,并针对合金化后医用镁基合金材料的局限性,提出了未来发展建议,期望为今后的临床应用提供宝贵经验。

     

  • 图  1  ((a), (b)) 附着在不同表面上的血小板的SEM图像和数量;(c) 不同样品上血小板的环鸟苷单磷酸(cGMP)表达;((d), (e)) 不同样品的溶血率和活化部分凝血活酶时间(APTT)[36]

    Significance level *P<0.05 indicates statistical differences compared to Mg; **P<0.05 indicates statistical differences compared to all other groups; PHA—Calcium hydroxyapatite; GOCS—Graphene oxide cholesterol sulfate; Pro—Protein; cGMP—Cyclic guanosine monophosphate; APTT—Activated partial thromboplastin time

    Figure  1.  ((a), (b)) SEM images and number of platelets attached to different surfaces; (c) cGMP expression of platelets on different samples; ((d), (e)) Haemolysis rate and APTT of different samples[36]

    图  2  镁离子通过促进增殖和分化来增强成骨示意图:(a) Mg2+通过Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase途径(控制干细胞成骨分化的信号通路之一)促进干细胞分化为成骨细胞;(b) Mg2+通过改善成骨分化促进新骨形成;(c) Mg2+通过上调骨髓间充质干细胞中的愈合骨骼中的细胞外基质成分(COL10 A1)和血管内皮生长因子(VEGF)的表达来增强骨再生;(d) Mg2+激活Wingless/Integrated信号通路(在细胞间进行通信和调控的机制)以上调β-连环蛋白及其下游基因(LEF1、DKK1)的表达[37]

    MagT1—Magnesium transporter 1; MAPK/ERK—Mitogen-activated protein kinase/extracellular signal-regulated kinase; NFAT—Nuclear factor of activated T-cells; PGC-1α—Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; ERRα—Estrogen-related receptor alpha; VEGF—Vascular endothelial growth factor; hBMSCs—Bone marrow stromal cells; DRG—Dorsal root ganglion; MAGT1—Magnesium transporter 1; TRPM7—Transient receptor potential melastatin 7; CGRP—Calcitonin gene-related peptide; CALCRL-RAMP1—Calcitonin receptor-like receptor-receptor activity-modifying protein 1; PDSC—Periosteum-derived stem cells; cAMP—Cyclic adenosine monophosphate; P—Phosphate; CREM1—cAMP responsive element modulator 1; CTNNB1—Catenin beta 1; LEF1—Lymphoid enhancer-binding factor 1; DKK1—Dickkopf-1; Wnt—Wingless/Integrated

    Figure  2.  Schematic diagram of magnesium ions enhancing osteogenesis by promoting proliferation and differentiation: (a) Mg2+ promotes differentiation of stem cells into osteoblasts via Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase pathway (one of the signaling pathways controlling osteogenic differentiation of stem cells); (b) Mg2+ promotes new bone formation by improving osteogenic differentiation; (c) Mg2+ enhances bone regeneration by upregulating extracellular matrix components in healing bone (COL10 A1) and vascular endothelial growth factor (VEGF) expression in bone marrow mesenchymal stem cells; (d) Mg2+ activates Wingless/Integrated signaling pathway (mechanisms for communication and regulation between cells) upregulates the expression of β-linked protein and its down-stream genes (LEF1, DKK1)[37]

    图  3  合金元素强化镁合金特性的研究进展[53]

    RE—Rare earth elements; MMC—Metal matrix composites; CP—Commercially pure; HP—High purity; UHP—Ultra high purity

    Figure  3.  Magnesium alloys progression with strengthening their characteristics with alloying elements[53]

    图  4  Mg-4Zn-0.5Ca-xMn合金在Hank'溶液中30天的腐蚀速率及其飞行时间二次离子质谱法(ToF-SIMS)对氯离子、MnO和MnO2薄膜进行2D成像分析:(a) Mg-4Zn-0.5Ca;(b) Mg-4Zn-0.5Ca-0.4Mn;(c) 4 h后Hank'溶液中的Mg-0Zn-5.0Ca-8.2Mn合金[69]

    Figure  4.  Depicts the corrosion rate of Mg-4Zn-0.5Ca-xMn alloy in the Hank's solution for 30 days, along with the 2D imaging analysis of chloride ions, MnO, and MnO2 thin films using time-of-flight secondary ion mass spectrometry (ToF-SIMS): (a) Mg-4Zn-0.5Ca; (b) Mg-4Zn-0.5Ca-0.4Mn;(c) Mg-0Zn-5.0Ca-8.2Mn alloy after 4 h in Hank's solution[69]

    图  5  植入前后肝肾功能的主要血清生化指标水平:(a) 丙氨酸氨基转移酶;(b) 天冬氨酸氨基转移酶;(c) 肌酐;(d) 血尿素氮;(e)血清镁[75]

    Figure  5.  Levels of the main serum biochemical indicators of liver and kidney function before and after implantation: (a) Alanine aminotransferase; (b) Aspartate aminotransferase; (c) Creatinine; (d) Blood urea nitrogen; (e) Serum magnesium[75]

    ALT—Alanine aminotransferase

    图  6  镁铟合金腐蚀过程中电化学置换反应的横截面机制示意图:(a)铟离子在镁表面的吸附和置换反应等腐蚀过程;(b) 短时间(25天)浸泡后形成的腐蚀层;(c)长期(200天)浸泡后形成的腐蚀层[79]

    Figure  6.  Cross-sectional mechanism of electrochemical replacement reactions during corrosion of magnesium-indium alloys: (a) Corrosion processes such as adsorption of indium ions on the magnesium surface and replacement reactions; (b) Corrosion layer formed after a short period of time (25 days) of immersion; (c) Corrosion layer formed after a long period of time (200 days) of immersion[79]

    表  1  不同医用植入材料的力学性能对比[20]

    Table  1.   Comparison of mechanical properties of different medical implant materials[20]

    Performance indicators Density/(g·cm−3) Elasticity modulus/GPa Yield strength/MPa Fracture toughness/MPa
    Natural bone 1.8-2.1 3-20 130-180 3-6
    Mg 1.74-2.0 41-45 65-100 15-40
    Ti alloy 4.4-4.5 110-117 758-1117 55-115
    Co-Cr alloy 8.3-9.2 230 450-1000 N/A
    Stainless steel 7.9-8.1 189-205 170-310 50-200
    Hydroxyapatite 3.1 73-117 600 0.7
    D, L-polylactic acid 1.26 1.9-2.4 Not available Not available
    β-calcium phosphate 3.07 33-90 140-154 Not available
    Note: N/A—Not available.
    下载: 导出CSV

    表  2  医用镁合金器材植入标准

    Table  2.   Criteria for implantation of medical magnesium alloy devices

    Medical use Yield strength/MPa Tensile strength/MPa Compression strength/MPa Modulus of elasticity/GPa Corrosion rate/ (mm·year−1) Biodegradation rate/month Ref.
    Vascular stents 100-300 200-500 200-500 5-20 Less than 0.5 Based on specific clinical needs [42-44]
    Splint 150-300 200-400 250-500 45-60 Less than 0.2 4-12 [45-46]
    Bone screw 50-200 100-300 150-300 40-60 Less than 0.2 Based on specific clinical needs [47-49]
    下载: 导出CSV

    表  3  Mg-Zn合金的力学性能与腐蚀速率

    Table  3.   Mechanical properties and corrosion rate of Mg-Zn alloy

    Alloy/wt% Fabrication method Yield strength/MPa Ultimate tensile strength/MPa Elongation/% Corrosion rate/ (mm·year−1) Immersion test solution Ref.
    Mg-1Zn As-Cast 110 211 [82]
    Mg-1Zn-0.5Sn 115 239
    Mg-4Zn As-extruded 118 223 15.4 1.87 Phosphate buffered saline (PBS) [83]
    Mg-4Zn-1Sn 133 234 18 0.62
    Mg-4Zn-1.5Sn 142 238 20.9 0.45
    Mg-4Zn-2Sn 147 250 19.8 0.77
    Mg-4Zn-0.5Ni As-cast 17 0.32 3.5wt%KCl solution [84]
    Mg-4Zn-1Ni 22.1 1.72
    Mg-4Zn-2Ni 20.3 62.08
    Mg-4Zn-4Ni 20.1 76.27
    Mg-0.5Zn-0.2Ca As-extruded 119 224 25 0.22 0.5wt%NaCl solution [85]
    Mg-0.5Zn-0.2Ge 171 249 10 0.21
    Mg-6Zn-0.5Ce As-extruded 183 286 18.16 [86]
    Mg-3Zn-0.2Ca As-extruded 298.17 15.75 [87]
    Mg-0.5Zn-0.5Nd As-cast 126 213 32.2 [88]
    Mg-2Zn-0.5Ca As-extruded 326 25.1 15.02 Simulated body fluid (72 h) [74]
    Mg-8Li-2Al As-extruded 115 12.8 19.43 [89]
    下载: 导出CSV

    表  4  Mg-RE合金的力学性能与腐蚀速率

    Table  4.   Mechanical properties and corrosion rate of Mg-RE alloy

    Alloy/wt% Fabrication method Yield strength/MPa Ultimate tensile strength/MPa Elongation/% Corrosion rate/ (mm·year−1) Immersion test solution Ref.
    Mg-7Y-0.5Nd As-Cast 151 257 14 36.75 3.5wt% NaCl solution (72 h) [90]
    Mg-7Y-1Nd 157 269 13 25.51
    Mg-7Y-1.5Nd 165 285 10 19.69
    Mg-1Y As-extruded 72 174 48 2.153 3.5wt% NaCl solution (168 h) [91]
    Mg-1Y-0.3Gd 84 188 59 1.985
    Mg-1Y-0.6Gd 86 188 52 0.575
    Mg-2Gd As-extruded 115 189 49 [92]
    Mg-2Gd-0.5Mn 84 172 51
    Mg-2Gd-1.3Mn 132 206 45
    Mg-2Gd-1.5Mn 154 219 42
    Mg-2Gd-2Mn 189 243 33
    Mg-0.3Sc As-extruded 50 162 16 [93]
    Mg-0.3Sc-1Zn 111 228 19
    Mg-0.3Sc-3Zn 113 250 21
    Mg-0.3Sc-6Zn 117 260 25
    Mg-2Gd As-extruded 111 191 23.1 [94]
    Mg-2Gd-0.1Ni 142 212 20.8
    Mg-2Gd-0.2Ni 168 239 19.1
    Mg-2Gd-0.3Ni 234 287 18.1
    下载: 导出CSV

    表  5  镁基四元合金的力学性能与腐蚀速率

    Table  5.   Mechanical properties and corrosion rate of magnesium-based tetrameric alloys

    Alloy/wt% Fabrication method Yield strength/MPa Ultimate tensile strength/MPa Elongation/% Corrosion rate/(mm·year−1) Immersion test solution Ref.
    Mg-6Zn-0.5Ce-1Mn As-extruded 232 304 14.7 [86]
    Mg-3Zn-0.2Ca-0.1Ag As-extruded 300.45 15.72 [87]
    Mg-3Zn-0.2Ca-0.3Ag 305.33 16.47
    Mg-3Zn-0.2Ca-0.5Ag 282.64 14.93
    Mg-3Zn-0.2Ca-0.7Ag 293.25 16.06
    Mg-0.5Zn-0.5Nd-3Sc As-Cast 82 174 17.1 [88]
    Mg-0.5Zn-0.5Nd-6Sc 101 180 14.4
    Mg-0.5Zn-0.5Nd-3Sc As-extruded 110 207 29.8
    Mg-0.5Zn-0.5Nd-6Sc 153 223 21.7
    Mg-2Zn-0.5Ca-0.5Sr As-extruded 340 19 14.26 [74]
    Mg-2Zn-0.5Ca-1.0Sr 334 20.4 17.9
    Mg-8Li-2Al-1.5Sn As-extruded 136 10.4 10.49 [89]
    Mg-8Li-2Al-1.5Nd 129 10 41
    Mg-8Li-2Al-1.5Ca 125 8 14.88
    Mg-0.6Zr-0.5Sr-0.5Sc As-Cast 63 73 32.9 Hank's balanced salt solution
    (2 h)
    [95]
    Mg-0.6Zr-0.5Sr-1Sc 54 72 22.4
    Mg-0.6Zr-0.5Sr-2Sc 77 81 18.1
    Mg-0.6Zr-0.5Sr-3Sc 74 95 14.5
    Mg-8.5Gd-5Y-0.2Al As-extruded 263 376 12.82 3.8 3.5wt% NaCl solution [96]
    Mg-8.5Gd-5Y-0.5Al 264 363 7.71 8.11
    Mg-8.5Gd-5Y-0.8Al 276 377 5.29 18.61
    Mg-8.5Gd-5Y-1.1Al 289 390 3.05 33.84
    下载: 导出CSV
  • [1] HEDAYATI R, AHMADI S M, MIETAERT K, et al. Fatigue and quasistatic mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys[J]. Journal of Biomedical Materials Research Part A, 2018, 106(7): 1798-1811. doi: 10.1002/jbm.a.36380
    [2] SU Y C, FU J Y, ZHOU J C, et al. Blending with transition metals improves bioresorbable zinc as better medical implants[J]. Bioactive Materials, 2023, 20: 243-258. doi: 10.1016/j.bioactmat.2022.05.033
    [3] UPPAL G, THAKUR A, CHAUHAN A, et al. Magnesium based implants for functional bone tissue regeneration—A review[J]. Journal of Magnesium and Alloys, 2022, 10(2): 356-386. doi: 10.1016/j.jma.2021.08.017
    [4] CHATTERJEE S, SAXENA M, PADMANABHAN D, et al. Futuristic medical implants using bioresorbable materials and devices[J]. Biosensors and Bioelectronics, 2019, 142: 111489. doi: 10.1016/j.bios.2019.111489
    [5] GAO X Z, DAI C Y, JIA Q, et al. In vivo corrosion behavior of biodegradable magnesium alloy by MAF treatment[J]. Scanning, 2021, 2021: 1-9.
    [6] SU Y C, LIN J X, SU Y C, et al. Investigation on composition, mechanical properties, and corrosion resistance of Mg-0.5Ca-X (Sr, Zr, Sn) biological alloy[J]. Scanning, 2018, 2018: 6519310.
    [7] DAROONPARVAR M, KHAN M F, SAADEH Y, et al.Enhanced corrosion resistance and surface bioactivity of AZ31B Mg alloy by high pressure cold sprayed monolayer Ti and bilayer Ta/Ti coatings in simulated body fluid[J]. Materials Chemistry and Physics, 2020, 256: 123627. doi: 10.1016/j.matchemphys.2020.123627
    [8] SONG G, LI T T, CHEN L. The mechanical properties and interface bonding mechanism of immiscible Mg/steel by laser-tungsten inert gas welding with filler wire[J]. Materials Science and Engineering: A, 2018, 736: 306-315. doi: 10.1016/j.msea.2018.08.078
    [9] SONG M S, ZENG R C, DING Y F, et al. Recent advances in biodegradation controls over Mg alloys for bone fracture management: A review[J]. Journal of Materials Science & Technology, 2019, 35(4): 535-544.
    [10] ZHAO D W, WITTE F, LU F Q, et al. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective[J]. Biomaterials, 2017, 112: 287-302. doi: 10.1016/j.biomaterials.2016.10.017
    [11] LIN D, CHAI Y J, MA Y F, et al. Rapid initiation of guided bone regeneration driven by spatiotemporal delivery of IL-8 and BMP-2 from hierarchical MBG-based scaffold[J]. Biomaterials, 2019, 196: 122-137. doi: 10.1016/j.biomaterials.2017.11.011
    [12] BAIRAGI D, MANDAL S. A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: Current status, challenges, and future prospects[J]. Journal of Magnesium and Alloys, 2022, 10(3): 627-669. doi: 10.1016/j.jma.2021.09.005
    [13] LIU Y X, CURIONI M, DONG S Y, et al. Understanding the effects of excimer laser treatment on corrosion behavior of biodegradable Mg-1Ca alloy in simulated body fluid[J]. Journal of Magnesium and Alloys, 2022, 10(4): 1004-1023. doi: 10.1016/j.jma.2021.11.011
    [14] WINDHAGEN H, RADTKE K, WEIZBAUER A, et al. Biodegradable to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomedical Engineering Online, 2013, 12: 1-10. doi: 10.1186/1475-925X-12-1
    [15] WAN Y C, XU S Y, LIU C M, et al. Enhanced strength and corrosion resistance of Mg-Gd-Y-Zr alloy with ultrafine grains[J]. Materials Letters, 2018, 213: 274-277. doi: 10.1016/j.matlet.2017.11.096
    [16] SHARMA R C, DABRA V, SINGH G, et al. Multi-response optimization while machining of stainless steel 316L using intelligent approach of grey theory and grey-TLBO[J]. World Journal of Engineering, 2022, 19(3): 329-339. doi: 10.1108/WJE-06-2020-0226
    [17] ALI M, HUSSEIN M A, AL-AQEELI N. Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties[J]. Journal of Alloys and Compounds, 2019, 792: 1162-1190. doi: 10.1016/j.jallcom.2019.04.080
    [18] JOOST W J, KRAJEWSKI P E. Towards magnesium alloys for high-volume automotive applications[J]. Scripta Materialia, 2017, 128: 107-112. doi: 10.1016/j.scriptamat.2016.07.035
    [19] TSAKIRIS V, TARDEI C, CLICINSCHI F M. Biodegradable Mg alloys for orthopedic implants—A review[J]. Journal of Magnesium and Alloys, 2021, 9(6): 1884-1905. doi: 10.1016/j.jma.2021.06.024
    [20] KUMAR R, KATYAL P. Effects of alloying elements on performance of biodegradable magnesium alloy[J]. Materials Today: Proceedings, 2022, 56: 2443-2450. doi: 10.1016/j.matpr.2021.08.233
    [21] ZENG R, DIETZEL W, WITTE F, et al. Progress and challenge for magnesium alloys as biomaterials[J]. Advanced Engineering Materials, 2008, 10(8): B3-B14. doi: 10.1002/adem.200800035
    [22] ZENG R, ZHANG J, HUANG W, et al. Review of studies on corrosion of magnesium alloys[J]. Transactions of Nonferrous Metals Society of China, 2006, 16: s763-s771. doi: 10.1016/S1003-6326(06)60297-5
    [23] GHALI E. Corrosion resistance of aluminum and magnesium alloys: Understanding, performance, and testing[M]. Hoboken: John Wiley & Sons, 2010: 169-172.
    [24] SONG G, ATRENS A. Understanding magnesium corrosion—A framework for improved alloy performance[J]. Advanced Engineering Materials, 2003, 5(12): 837-858. doi: 10.1002/adem.200310405
    [25] LIU L J, SCHLESINGER M. Corrosion of magnesium and its alloys[J]. Corrosion Science, 2009, 51(8): 1733-1737. doi: 10.1016/j.corsci.2009.04.025
    [26] POINERN G E J, BRUNDAVANAM S, FAWCETT D. Biomedical magnesium alloys: A review of material properties, surface modifications and potential as a biodegradable orthopaedic implant[J]. American Journal of Biomedical Engineering, 2012, 2(6): 218-240.
    [27] LIU Y, ZHENG Y F, CHEN X H, et al. Fundamental theory of biodegradable metals-definition, criteria, and design[J]. Advanced Functional Materials, 2019, 29(18): 1805402. doi: 10.1002/adfm.201805402
    [28] 任伊宾, 黄晶晶, 杨柯, 等. 纯镁的生物腐蚀研究[J]. 金属学报, 2005, 41(11): 1228-1232. doi: 10.3321/j.issn:0412-1961.2005.11.018

    REN Yibin, HUANG Jingjing, YANG Ke, et al. Study on biological corrosion of pure magnesium[J]. Acta Metallurgica Sinica, 2005, 41(11): 1228-1232(in Chinese). doi: 10.3321/j.issn:0412-1961.2005.11.018
    [29] LIANG M J, WU C, MA Y, et al. Influences of aggressive ions in human plasma on the corrosion behavior of AZ80 magnesium alloy[J]. Materials Science and Engineering: C, 2021, 119: 111521. doi: 10.1016/j.msec.2020.111521
    [30] XIN Y C, HU T, CHU P K. Influence of test solutions on in vitro studies of biomedical magnesium alloys[J]. Journal of the Electrochemical Society, 2010, 157(7): C238. doi: 10.1149/1.3421651
    [31] POKHAREL D B, WU L P, DONG J H, et al. Effect of glycine addition on the in-vitro corrosion behavior of AZ31 magnesium alloy in Hank’s solution[J]. Journal of Materials Science & Technology, 2021, 81: 97-107.
    [32] LIU S Y, WANG B. Electrochemical corrosion behavior of a magnesium calcium alloy in simulated body fluids with different glucose concentrations[J]. Journal of Materials Research and Technology, 2020, 9(3): 6612-6619. doi: 10.1016/j.jmrt.2020.04.052
    [33] 张文毓. 生物医用金属材料研究现状与应用进展[J]. 金属世界, 2020 (1): 21-27. doi: 10.3969/j.issn.1000-6826.2020.01.007

    ZHANG Wenyu. Research status and application progress of biomedical metal materials[J]. Metal World, 2020 (1): 21-27(in Chinese). doi: 10.3969/j.issn.1000-6826.2020.01.007
    [34] PENG H Z, FAN K, ZAN R, et al. Degradable magnesium implants inhibit gallbladder cancer[J]. Acta Biomaterialia, 2021, 128: 514-522. doi: 10.1016/j.actbio.2021.04.051
    [35] 陈宝林, 王东安. 用于心血管医疗装置的聚合物表面构建与生物相容性研究Ⅲ-聚合物生物材料表面的凝血及抗凝血涂层改性[J]. 中国组织工程研究, 2015 (8): 1277-1283. doi: 10.3969/j.issn.2095-4344.2015.08.024

    CHEN Baolin, WANG Dongan. Study on polymer surface construction and biocompatibility of cardiovascular medical devices III-Coagulation and anticoagulation coating modification on the surface of polymer biomaterials[J]. Chinese Journal of Tissue Engineering Research, 2015 (8): 1277-1283(in Chinese). doi: 10.3969/j.issn.2095-4344.2015.08.024
    [36] PAN C J, ZHAO Y J, YANG Y, et al. Immobilization of bioactive complex on the surface of magnesium alloy stent material to simultaneously improve anticorrosion, hemocompatibility and antibacterial activities[J]. Colloids and Surfaces B: Biointerfaces, 2021, 199: 111541. doi: 10.1016/j.colsurfb.2020.111541
    [37] ZHOU H, LIANG B, JIANG H T, et al. Magnesium-based biomaterials as emerging agents for bone repair and regeneration: From mechanism to application[J]. Journal of Magnesium and Alloys, 2021, 9(3): 779-804. doi: 10.1016/j.jma.2021.03.004
    [38] ZHANG Y F, XU J K, RUAN Y C, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nature Medicine, 2016, 22(10): 1160-1169. doi: 10.1038/nm.4162
    [39] 杨婷婷. 生物可降解镁合金的制备、表征及体外生物活性评价[D]. 长春: 吉林大学, 2014.

    YANG Tingting. Preparation, characterization, and in vitro bioactivity evaluation of biodegradable magnesium alloys[D]. Changchun: Jilin University, 2014(in Chinese).
    [40] LIU C, FU X K, PAN H B, et al. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects[J]. Scientific Reports, 2016, 6: 27374. doi: 10.1038/srep27374
    [41] 王健, 马翔宇, 冯亚非, 等. 镁离子对成骨细胞活力和分化的促进作用及其机制研究[J]. 现代生物医学进展, 2015, 15(15): 2836-2839. doi: 10.13241/j.cnki.pmb.2015.15.009

    WANG Jian, MA Xiangyu, FENG Yafei, et al. Study on the promoting effect and mechanism of magnesium ions on the viability and differentiation of osteoblasts[J]. Progress in Modern Biomedicine, 2015, 15(15): 2836-2839(in Chinese). doi: 10.13241/j.cnki.pmb.2015.15.009
    [42] 陈亚楠. 生物可吸收冠脉支架的弹塑性变形及动力学行为研究[D]. 北京: 北京科技大学, 2023.

    CHEN Yanan. Elastic-plastic deformation and dynamic behaviour of bioresorbable coronary scaffolds[D]. Beijing: University of Science and Technology Beijing, 2023(in Chinese).
    [43] GAO Y M, WANG L Z, GU X N, et al. A quantitative study on magnesium alloy stent biodegradation[J]. Journal of Biomechanics, 2018, 74: 98-105. doi: 10.1016/j.jbiomech.2018.04.027
    [44] 陈晨忻. 可降解镁合金血管支架的结构优化设计和实验验证研究[D]. 上海: 上海交通大学, 2023.

    CHEN Chenxin. Structural optimisation design and experimental validation of degradable magnesium alloy vascular scaffolds[D]. Shanghai: Shanghai Jiao Tong University, 2023(in Chinese).
    [45] 梁文强. 新型镁合金对成骨细胞黏附及增殖的影响及作用机制研究[D]. 兰州: 兰州大学, 2023.

    LIANG Wenqiang. Study on the effect and mechanism of action of new magnesium alloy on osteoblast adhesion and proliferation[D]. Lanzhou: Lanzhou University, 2023(in Chinese).
    [46] SHIRURKAR A, TAMBOLI A, JAGTAP P N, et al. Mechanical behavior of ZM21 magnesium alloy locking plates—An experimental and finite element study[J]. Materials Today: Proceedings, 2017, 4(6): 6728-6736. doi: 10.1016/j.matpr.2017.06.448
    [47] 孟晓丽, 吕萍, 崔旭东, 等. 生物可降解锌合金用于骨植入物的研究进展[J]. 表面技术, 2022, 51(10): 66-75. doi: 10.16490/j.cnki.issn.1001-3660.2022.10.008

    MENG Xiaoli, LYU Ping, CUI Xudong, et al. Research progress on biodegradable zinc alloys for bone implants[J]. Surface Technology, 2022, 51(10): 66-75(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2022.10.008
    [48] WOLFF M, SCHAPER J G, SUCKERT M R, et al. Magnesium powder injection molding (MIM) of orthopedic implants for biomedical applications[J]. JOM, 2016, 68: 1191-1197. doi: 10.1007/s11837-016-1837-x
    [49] 李敬瑶. 医用镁合金表面涂层制备及其体外降解特性和细胞相容性研究[D]. 广州: 暨南大学, 2022.

    LI Jingyao. Preparation of medical magnesium alloy surface coating and its in vitro degradation characteristics and cytocompatibility[D]. Guangzhou: Jinan University, 2022(in Chinese).
    [50] DUAN Y N, GAO Q F, ZHANG Z J, et al. Chemical ordering induced strengthening in lightweight Mg alloys[J]. Nanomaterials, 2022, 12(19): 3488. doi: 10.3390/nano12193488
    [51] ZHOU H Y, HOU R Q, YANG J J, et al. Influence of zirconium (Zr) on the microstructure, mechanical properties and corrosion behavior of biodegradable zinc-magnesium alloys[J]. Journal of Alloys and Compounds, 2020, 840: 155792. doi: 10.1016/j.jallcom.2020.155792
    [52] SUN J P, XU B Q, YANG Z Q, et al. Mediating the strength, ductility and corrosion resistance of high aluminum containing magnesium alloy by engineering hierarchical precipitates[J]. Journal of Alloys and Compounds, 2021, 857: 158277. doi: 10.1016/j.jallcom.2020.158277
    [53] ESMAILY M, SVENSSON J E, FAJARDO S, et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89: 92-193. doi: 10.1016/j.pmatsci.2017.04.011
    [54] CORMICK G, BELIZÁN M J. Calcium intake and health[J]. Nutrients, 2019, 11(7): 1606. doi: 10.3390/nu11071606
    [55] 王昌, 崔亚军, 刘汉源, 等. 可生物降解医用镁合金的合金化研究进展[J]. 材料导报, 2015, 29(11): 55-60.

    WANG Chang, CUI Yajun, LIU Hanyuan, et al. Research progress on alloying of biodegradable medical magnesium alloys[J]. Materials Reports, 2015, 29(11): 55-60(in Chinese).
    [56] MA D, LUAN S, JIN P, et al. The effects of Ca on the microstructure, mechanical and corrosion properties of extruded Mg-2Zn-0.5Mn alloy[J]. Journal of Materials Research and Technology, 2023, 25: 2880-2889. doi: 10.1016/j.jmrt.2023.06.075
    [57] ZHANG Y, LI J X, LI J Y. Effects of calcium addition on phase characteristics and corrosion behaviors of Mg-2Zn-0.2Mn-xCa in simulated body fluid[J]. Journal of Alloys and Compounds, 2017, 728: 37-46. doi: 10.1016/j.jallcom.2017.08.264
    [58] MOHAMED A, El-AZIZ A M, BREITINGER H G. Study of the degradation behavior and the biocompatibility of Mg-0.8Ca alloy for orthopedic implant applications[J]. Journal of Magnesium and Alloys, 2019, 7(2): 249-257. doi: 10.1016/j.jma.2019.02.007
    [59] KIM S Y, KIM Y K, KWANG-KYUN Y, et al. Determination of ideal Mg-35Zn-xCa alloy depending on Ca concentration for biomaterials[J]. Journal of Alloys and Compounds, 2018, 766: 994-1002. doi: 10.1016/j.jallcom.2018.06.088
    [60] RADHA R, SREEKANTH D. Insight of magnesium alloys and composites for orthopedic implant applications—A review[J]. Journal of Magnesium and Alloys, 2017, 5(3): 286-312. doi: 10.1016/j.jma.2017.08.003
    [61] 申广鑫, 张代东, 张晓茹, 等. 锌对稀土镁合金组织与力学性能的影响[J]. 中国稀土学报, 2019, 37(6): 739-745.

    SHEN Guangxin, ZHANG Daidong, ZHANG Xiaoru, et al. The influence of zinc on the microstructure and mechanical properties of rare earth magnesium alloys[J]. Journal of the Chinese Society of Rare Earths, 2019, 37(6): 739-745(in Chinese).
    [62] CAI S, LEI T, LI N, et al. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys[J]. Materials Science and Engineering: C, 2012, 32(8): 2570-2577. doi: 10.1016/j.msec.2012.07.042
    [63] WEI L Y, LI J Y, ZHANG Y, et al. Effects of Zn content on microstructure, mechanical and degradation behaviors of Mg-xZn-0.2Ca-0.1 Mn alloys[J]. Materials Chemistry and Physics, 2020, 241: 122441. doi: 10.1016/j.matchemphys.2019.122441
    [64] HE Y H, TAO H R, ZHANG Y, et al. Biocompatibility of bio-Mg-Zn alloy within bone with heart, liver, kidney and spleen[J]. Chinese Science Bulletin, 2009, 54(3): 484-491. doi: 10.1007/s11434-009-0080-z
    [65] CAO X, LI C, WU B, et al. Research of dynamic corrosion behavior, microstructure, and biocompatibility of Mg-Zn-Ca-Zr alloys in simulated body fluid solution induced by Zn element addition[J]. Advanced Engineering Materials, 2023, 25(8): 2201402. doi: 10.1002/adem.202201402
    [66] MIAH M R, IJOMONE O M, OKOH C O A, et al. The effects of manganese overexposure on brain health[J]. Neurochemistry International, 2020, 135: 104688. doi: 10.1016/j.neuint.2020.104688
    [67] ABDIYAN F, MAHMUDI R, GHASEMI H M. Effect of Mn addition on the microstructure, mechanical properties and corrosion resistance of a biodegradable Mg-Gd-Zn alloy[J]. Materials Chemistry and Physics, 2021, 271: 124878. doi: 10.1016/j.matchemphys.2021.124878
    [68] LIU Y, CHENG W, GU X, et al. Tailoring the microstructural characteristic and improving the corrosion resistance of extruded dilute Mg-0.5Bi-0.5Sn alloy by microalloying with Mn[J]. Journal of Magnesium and Alloys, 2021, 9(5): 1656-1668. doi: 10.1016/j.jma.2020.07.010
    [69] 赵德华, 李斌伟, 朴建英, 等. Mn添加对可生物降解Mg-4Zn-0.5Ca-xMn合金腐蚀性能的影响[J]. 合金与化合物学报, 2017, 695: 1166-1174. doi: 10.1016/j.jallcom.2016.10.244

    ZHAO Dehua, LI Binwei, PIAO Jianying, et al. Influence of Mn addition on the corrosion behavior of biodegradable Mg-4Zn-0.5Ca-xMn alloys[J]. Journal of Alloys and Compounds, 2017, 695: 1166-1174(in Chinese). doi: 10.1016/j.jallcom.2016.10.244
    [70] SHI L, YAN Y, SHAO C, et al. The influence of yttrium and manganese additions on the degradation and biocompatibility of magnesium-zinc-based alloys: In vitro and in vivo studies[J]. Journal of Magnesium and Alloys, 2022.
    [71] MARTINS JR A C, MORCILLO P, IJOMONE O M, et al. New insights on the role of manganese in Alzheimer’s disease and Parkinson’s disease[J]. International Journal of Environmental Research and Public Health, 2019, 16(19): 3546. doi: 10.3390/ijerph16193546
    [72] DING D, ROTH J, SALVI R. Manganese is toxic to spiral ganglion neurons and hair cells in vitro[J]. Neurotoxicology, 2011, 32(2): 233-241. doi: 10.1016/j.neuro.2010.12.003
    [73] DING Y, WEN C, HODGSON P, et al. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review[J]. Journal of Materials Chemistry B, 2014, 2(14): 1912-1933. doi: 10.1039/C3TB21746A
    [74] QIN J, CHANG L, SU X. Influence of Sr on microstructure evolution, mechanical and corrosion properties of extruded Mg-2Zn-0.5Ca alloy[J]. Journal of Magnesium and Alloys, 2023.
    [75] WEN Y F, LIU Q S, WANG J F, et al. Improving in vitro and in vivo corrosion resistance and biocompatibility of Mg-1Zn-1Sn alloys by microalloying with Sr[J]. Bioactive Materials, 2021, 6(12): 4654-4669. doi: 10.1016/j.bioactmat.2021.04.043
    [76] 杨淼, 邢砾云, 刘晓波, 等. 稀土Gd改性镁合金在溶液中的应力腐蚀行为研究[J/OL]. 中国稀土学报:1-15[2023-11-29].

    YANG Miao, XING Liyun, LIU Xiaobo, et al. Stress corrosion behaviour of rare earth Gd-modified magnesium alloys in solution[J/OL]. Chinese Journal of Rare Earths: 1-15[2023-11-29](in Chinese).
    [77] ZHAO L, MA G J, JIN P P, et al. Role of Y on the microstructure, texture and mechanical properties of Mg-Zn-Zr alloys by powder metallurgy[J]. Journal of Alloys and Compounds, 2019, 810: 151843. doi: 10.1016/j.jallcom.2019.151843
    [78] LIU J N, BIAN D, ZHENG Y F, et al. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems[J]. Acta Biomaterialia, 2020, 102: 508-528. doi: 10.1016/j.actbio.2019.11.013
    [79] YIN M, HOU L F, WANG Z W, et al. Self-generating construction of applicable corrosion-resistant surface structure of magnesium alloy[J]. Corrosion Science, 2021, 184: 109378. doi: 10.1016/j.corsci.2021.109378
    [80] XING F J, GUO F, SU J, et al. The existing forms of Zr in Mg-Zn-Zr magnesium alloys and its grain refinement mechanism[J]. Materials Research Express, 2021, 8(6): 066516. doi: 10.1088/2053-1591/ac083c
    [81] WAN D Q, WANG H B, YE S T, et al. The damping and mechanical properties of magnesium alloys balanced by aluminum addition[J]. Journal of Alloys and Compounds, 2019, 782: 421-426. doi: 10.1016/j.jallcom.2018.11.393
    [82] ZHAO W K, WANG J F, JIANG W Y, et al. A novel biodegradable Mg-1Zn-0.5 Sn alloy: Mechanical properties, corrosion behavior, biocompatibility, and antibacterial activity[J]. Journal of Magnesium and Alloys, 2020, 8(2): 374-386. doi: 10.1016/j.jma.2020.02.008
    [83] JIANG W Y, WANG J F, ZHAO W K, et al. Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg-4Zn based alloys[J]. Journal of Magnesium and Alloys, 2019, 7(1): 15-26. doi: 10.1016/j.jma.2019.02.002
    [84] NIU H Y, DENG K K, NIE K B, et al. Microstructure, mechanical properties and corrosion properties of Mg-4Zn-xNi alloys for degradable fracturing ball applications[J]. Journal of Alloys and Compounds, 2019, 787: 1290-1300. doi: 10.1016/j.jallcom.2019.02.089
    [85] JIANG P L, BLAWERT C, HOU R Q, et al. A comprehensive comparison of the corrosion performance, fatigue behavior and mechanical properties of micro-alloyed MgZnCa and MgZnGe alloys[J]. Materials & Design, 2020, 185: 108285.
    [86] HOU C H, CAO H S, QI F G, et al. Investigation on microstructures and mechanical properties of Mg-6Zn-0.5Ce- xMn ( x= 0 and 1) wrought magnesium alloys[J]. Journal of Magnesium and Alloys, 2022, 10(4): 993-1003. doi: 10.1016/j.jma.2020.09.019
    [87] YU L T, ZHAO Z H, TANG C K, et al. The mechanical and corrosion resistance of Mg-Zn-Ca-Ag alloys: The influence of Ag content[J]. Journal of Materials Research and Technology, 2020, 9(5): 10863-10875. doi: 10.1016/j.jmrt.2020.07.088
    [88] XIN L N, ZHOU J Q, MEI D, et al. Effects of Sc on microstructure, mechanical properties and corrosion behavior of Mg-0.5Zn-0.5Nd-xSc alloys[J]. Journal of Alloys and Compounds, 2023, 934: 168044. doi: 10.1016/j.jallcom.2022.168044
    [89] ACIKGOZ S, KURNAZ S C. The effects of individual addition of Sn, Nd, and Ca on the microstructure, mechanical properties, and corrosion behavior of the Mg-Li-Al alloy[J]. International Journal of Metalcasting, 2023, 17(3): 1580-1595. doi: 10.1007/s40962-022-00869-8
    [90] JIANG Q T, LYU X Z, LU D Z, et al. The corrosion behavior and mechanical property of the Mg-7Y-xNd ternary alloys[J]. Journal of Magnesium and Alloys, 2018, 6(4): 346-355. doi: 10.1016/j.jma.2018.09.002
    [91] CI W J, DENG L L, CHEN X H, et al. Effect of minor Gd addition on micro-structure, mechanical performance, and corrosion behavior of Mg-Y-Gd alloys[J]. Journal of Materials Research and Technology, 2023, 26: 4107-4120. doi: 10.1016/j.jmrt.2023.08.166
    [92] ZHAO T S, HU Y B, HE B, et al. Effect of manganese on microstructure and properties of Mg-2Gd magnesium alloy[J]. Materials Science and Engineering: A, 2019, 765: 138292. doi: 10.1016/j.msea.2019.138292
    [93] CI W J, CHEN X H, SUN Y, et al. Effect of Zn on mechanical and corrosion properties of Mg-Sc-Zn alloys[J]. Journal of Materials Science & Technology, 2023, 158: 31-42.
    [94] WANG Y Q, ZHANG D F, ZHONG S Y, et al. Effect of minor Ni addition on the microstructure, mechanical properties and corrosion behavior of Mg-2Gd alloy[J]. Journal of Materials Research and Technology, 2022, 20: 3735-3749. doi: 10.1016/j.jmrt.2022.08.051
    [95] MUNIR K, LIN J X, WEN C E, et al. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications[J]. Acta Biomaterialia, 2020, 102: 493-507. doi: 10.1016/j.actbio.2019.12.001
    [96] SU C, WANG J F, HU H, et al. Enhanced strength and corrosion resistant of Mg-Gd-Y-Al alloys by LPSO phases with different Al content[J]. Journal of Alloys and Compounds, 2021, 885: 160557. doi: 10.1016/j.jallcom.2021.160557
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  551
  • HTML全文浏览量:  402
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-09-23
  • 录用日期:  2023-09-27
  • 网络出版日期:  2023-10-19
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回