Research progress on crystal structures and properties of superlattice La-Mg/Y-Ni composite hydrogen storage alloys
-
摘要: 超晶格La-Mg/Y-Ni复合储氢合金具有放电容量大、能量密度高和成本低等优点,是一种重要的氢能存储和转换材料,目前主要用做镍氢电池负极材料和直接硼氢化物燃料电池阳极催化剂。La-Mg-Ni复合合金最初是在La-Ni基储氢合金的基础上,通过用部分Mg替代La而发展起来的。由于La-Mg-Ni复合合金中金属Mg熔点、沸点低,易挥发,导致采用常规熔炼法很难制备;同时合金中的Mg在碱性电解液中容易腐蚀、氧化,导致合金的循环稳定性差。为克服La-Mg-Ni复合合金制备困难和循环稳定性差等问题,研究者又在La-Ni基储氢合金的基础上,通过用部分Y替代La开发出了La-Y-Ni合金。La-Mg-Ni和La-Y-Ni复合合金具有非常相似的超晶格结构,均能表现出很好的储氢性能,均属于同一类新型超晶格结构储氢合金。本文对La-Mg/Y-Ni储氢合金近20多年的研究成果进行了梳理。本文首先介绍超晶格La-Mg-Ni和La-Y-Ni复合合金的相结构组成及相结构的演变规律,同时分析了Mg元素和Y元素部分替代La元素分别对La-Mg/Y-Ni合金结构和性能的影响,然后讨论了La-Mg/Y-Ni复合合金中的相结构对合金性能的影响。最后,指出了超晶格La-Mg/Y-Ni复合储氢合金未来所面临的挑战和发展方向。
-
关键词:
- 储氢材料 /
- La-Mg-Ni复合储氢合金 /
- La-Y-Ni复合储氢合金 /
- 相结构 /
- 电化学性能
Abstract: The La-Mg/Y-Ni composite hydrogen storage alloys with superlattice structure have the advantages of large discharge capacity, high energy density and low cost, and are important hydrogen energy storage and conversion material. At present, they are mainly used as the negative material of nickel-metal hydride batteries and anode catalyst of direct borohydride fuel cell. Superlattice La-Mg-Ni composite alloy was originally developed on the basis of La-Ni based hydrogen storage alloy by replacing La with partial Mg. Due to the low melting point and boiling point of Mg and its volatility, La-Mg-Ni alloy is difficult to be prepared by conventional melting method. At the same time, Mg in the alloy is easy to corrode and oxidize in the alkaline electrolyte, resulting in poor cycling stability of the La-Mg-Ni alloy. In order to overcome the difficulties in the preparation and the poor cycle stability of La-Mg-Ni composite alloy, the researchers also developed La-Y-Ni alloy on the basis of La-Ni based hydrogen storage alloy by replacing La with partial Y. La-Mg-Ni and La-Y-Ni alloys have very similar superlattice structures, and both can show good hydrogen storage properties. It can be seen that they belong to the same class of new superlattice structure hydrogen storage alloys. The research achievements of La-Mg/Y-Ni composite hydrogen storage alloys in the past 20 years are reviewed in this paper. The crystal structure and structure evolution of superlattice La-Mg/Y-Ni hydrogen storage alloys are introduced in this paper. Then, the effects of Mg element and Y element partial substitution of La element on the structure and properties of La-Mg/Y-Ni composite alloy are analyzed. At the same time, the effect of phase structures on the properties of La-Mg/Y-Ni composite alloys are discussed. Finally, the future challenges and development directions of superlattice La-Mg/Y-Ni composite hydrogen storage alloys are pointed out. -
表 1 超晶格La-Mg/Y-Ni复合储氢合金的晶体结构
Table 1. Crystal structures of superlattice La-Mg/Y-Ni composite hydrogen storage alloys
Proportion of AB5 and AB2 Alloy types Crystal structures 1∶2 AB3 type CeNi3 type (2H) PuNi3 type (3R) 2∶2 A2B7 type Ce2Ni7 type (2H) Gd2Co7 type (3R) 3∶2 A5B19 type Pr5Co19 type (2H) Ce5Co19 type (3R) 表 2 La-Mg/Y-Ni复合合金中反应温度条件
Table 2. Reaction temperature conditions in La-Mg/Y-Ni composite alloy
表 3 超晶格La-Mg/Y-Ni复合合金常见的晶体学参数
Table 3. Common crystallographic parameters of superlattice La-Mg/Y-Ni composite alloys
Phases and sample Atoms Site x y z PuNi3-type
La2MgNi9[43]La1 3a 0 0 0 La2 6c 0 0 0.14330 Mg 6c 0 0 0.14330 La 3a 0 0 0 PuNi3-type Y 3a 0 0 0 Y0.75La0.25Ni3.2Mn0.3[44] La 6c 0 0 0.1418(7) Y 6c 0 0 0.1418(7) 2H-Ce2Ni7
La1.5Mg0.5Ni7[45]La1 4f 0.33333 0.66667 0.0295(6) La2 4f 0.33333 0.66667 0.0295(6) Mg 4f 0.33333 0.66667 0.1710(4) La1 6c 0 0 0.0527(3) 3R-Gd2Co7 La2 6c 0 0 0.0527(3) La1.5Mg0.5Ni7[45] Mg1 6c 0 0 0.1534(3) Mg2 6c 0 0 0.1534(3) La 4f1 0.33333 0.66667 0.02840 2H-Ce2Ni7 Y 4f2 0.33333 0.66667 0.02840 LaY2Ni10.5[46] La 4f1 0.33333 0.66667 0.17367 Y 4f2 0.33333 0.66667 0.17367 La 6c1 0 0 0.14711 3R-Gd2Co7 Y 6c2 0 0 0.14711 LaY2Ni10.5[46] La 6c1 0 0 0.05117 Y 6c2 0 0 0.05117 La 2c1 0.33333 0.66667 0.25000 2H-Pr5Co19-type La 4f1 0.33333 0.66667 0.1279(5) La4MgNi19[47] La 4f2 0.33333 0.66667 0.0194(9) Mg 4f2 0.33333 0.66667 0.0194(9) La 2c 0.33333 0.66667 0.25000 Y 2c 0.33333 0.66667 0.25000 2H-Pr5Co19 La 4f1 0.33333 0.66667 0.12942 (La0.33Y0.67)5Ni17.6Mn0.9Al0.5[48] Y 4f1 0.33333 0.66667 0.12942 La 4f2 0.33333 0.66667 0.02066 Y 4f2 0.33333 0.66667 0.02066 -
[1] ZHANG Y H, YUAN Z M, SHANG H W, et al. Structures and electrochemical hydrogen storage properties of the as-spun RE-Mg-Ni-Co-Al-based AB2-type alloys applied to Ni-MH battery[J]. Metallurgical and Materials Transactions A—Physical Metallurgy and Materials Science, 2017, 48A(5): 2472-2482. [2] 闫晨宣, 杨启荣, 李昭莹, 等. 介孔材料界面效应对混合硝酸盐复合相变材料热输运特性的影响[J]. 复合材料学报, 2014, 41(1): 427-445.YAN Chenxuan, YANG Qirong, LI Zhaoying, et al. Influence of interfacial effect of mesoporous materials on heat transport characteristics of composite phase change materials[J]. Acta Materiae Compositae Sinica, 2014, 41(1): 427-445(in Chinese). [3] 李筱霏, 赵恩德, 彭少波, 等. MOF衍生CoSe2基电催化剂的制备及其电解水性能研究进展[J]. 复合材料学报, 2023, 40(8): 4374-4389.LI Xiaofei, ZHAO Ende, PENG Shaobo, et al. Research progress of synthesis of metal organic framework derived CoSe2-based electrocatalysts for overall water splitting[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4374-4389(in Chinese). [4] ZHAI T T, YUAN Z M, HU F, et al. Influence of melt spinning and annealing treatment on structures and hydrogen storage thermodynamic properties of La0.8Pr0.2MgNi3.6Co0.4 alloy[J]. Journal of Iron and Steel Research International, 2019, 27(1): 114-120. [5] LU X, WANG D, JOHNSEN R. Hydrogen diffusion and trapping in nickel-based alloy 625: An electrochemical permeation study[J]. Electrochimica Acta, 2022, 421: 140447. [6] LI Y M, LIU Z Z, ZHANG G F, et al. Phase transformation by a step-growth mechanism in annealed La-Mg-Ni-based layered-stacking alloys[J]. Journal of Alloys and Compounds, 2020, 834: 154282. doi: 10.1016/j.jallcom.2020.154282 [7] LIU Y R, YUAN H P, GUO M, et al. Effect of Y element on cyclic stability of A2B7-type La-Y-Ni-based hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22064-22073. doi: 10.1016/j.ijhydene.2019.06.081 [8] ZHOU S J, ZHANG X, WANG L, et al. Effect of element substitution and surface treatment on low temperature properties of AB3.42-type La-Y-Ni based hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3414-3424. doi: 10.1016/j.ijhydene.2020.10.158 [9] WU S X, WANG L, YUAN H P. Experimental investigation and thermodynamic assessment of La-Y-Ni ternary system in Ni-rich corner[J]. Rare Metals, 2023, 42(4): 1316-1331. [10] LIU W, WEBB C J, GRAY E M. Review of hydrogen storage in AB3 alloys targeting stationary fuel cell applications[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3485-3507. doi: 10.1016/j.ijhydene.2015.12.054 [11] HU W K, DENYS R V, NWAKWUO C C, et al. Annealing effect on phase composition and electrochemical properties of the Co-free La2MgNi9 anode for Ni-metal hydride batteries[J]. Electrochimica Acta, 2013, 96: 27-33. doi: 10.1016/j.electacta.2013.02.064 [12] CRIVELLO J C, ZHANG J, LATROCHE M. Structural stability of AB y phases in the (La, Mg)-Ni system obtained by density functional theory calculations[J]. Journal of Physical Chemistry C, 2011, 115(51): 25470-25478. doi: 10.1021/jp204835z [13] LI Y M, LIU Z C, ZHANG G F, et al. Single phase A2B7-type La-Mg-Ni alloy with improved electrochemical properties prepared by melt-spinning and annealing[J]. Journal of Rare Earths, 2019, 37(12): 1305-1311. doi: 10.1016/j.jre.2019.03.017 [14] LIU J J, HAN S M, LI Y, et al. Phase structures and electrochemical properties of La-Mg-Ni-based hydrogen storage alloys with superlattice structure[J]. International Journal of Hydrogen Energy, 2016, 41(44): 20261-20275. doi: 10.1016/j.ijhydene.2016.08.149 [15] HE X Y, XIONG W, WANG L, et al. Study on the evolution of phase and properties for ternary La-Y-Ni-based hydrogen storage alloys with different stoichiometric ratios[J]. Journal of Alloys and Compounds, 2022, 921: 166064. doi: 10.1016/j.jallcom.2022.166064 [16] KADIR K, SAKAI T, UEHARA I. Synthesis and structure determination of a new series of hydrogen storage alloys: RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves-type layers alternating with AB5 layers[J]. Journal of Alloys and Compounds, 1997, 257(1-2): 115-121. doi: 10.1016/S0925-8388(96)03132-5 [17] GUIZK M N, LANG J L, HUOT J, et al. Effect of Al presence and synthesis method on phase composition of the hydrogen absorbing La-Mg-Ni-based compounds[J]. International Journal of Hydrogen Energy, 2017, 42(51): 30135-30144. doi: 10.1016/j.ijhydene.2017.10.062 [18] ZHAO Y, GAO M X, LIU Y F, et al. The correlative effects of Al and Co on the structure and electrochemical properties of a La-Mg-Ni-based hydrogen storage electrode alloy[J]. Journal of Alloys and Compounds, 2010, 496(1-2): 454-461. doi: 10.1016/j.jallcom.2010.02.071 [19] ZHANG L, DING Y Q, ZHAO Y M, et al. Phase structure and cycling stability of A2B7 superlattice La0.60Sm0.15Mg0.25Ni3.4 metal hydride alloy[J]. International Journal of Hydrogen Energy, 2016, 41(3): 1791-1800. doi: 10.1016/j.ijhydene.2015.12.049 [20] GAO J, YAN X L, ZHAO Z Y, et al. Effect of annealed treatment on microstructure and cyclic stability for La-Mg-Ni hydrogen storage alloys[J]. Journal of Power Sources, 2012, 209: 257-261. doi: 10.1016/j.jpowsour.2012.02.088 [21] SHEN W Z, HAN S M, LI Y, et al. Effect of electroplating polyaniline on electrochemical kinetics of La-Mg-Ni-based hydrogen storage alloy[J]. Applied Surface Science, 2012, 258(17): 6316-6320. doi: 10.1016/j.apsusc.2012.03.029 [22] BADDOUR-HADJEAN R, MEYER L, PEREURA-RAMOS J P, et al. An electrochemical study of new La1− x Ce x Y2Ni9 (0≤ x≤1) hydrogen storage alloys[J]. Electrochimica Acta, 2001, 46(15): 2385-2393. doi: 10.1016/S0013-4686(01)00440-6 [23] BEN B Y, KHALDI C, BOUSSAMI S, et al. Electrochemical properties of LaY2Ni9 hydrogen storage alloy, used as an anode in nickel-metal hydride batteries[J]. Journal of Solid State Electrochemistry, 2014, 18(7): 2019-2026. doi: 10.1007/s10008-014-2448-5 [24] ZHANG J, ZHANG F F, ZHENG S Y, et al. Hydrogen-induced phase transitions in RNi3 and RY2Ni9 (R=La, Ce) compounds[J]. Journal of Power Sources, 2007, 172(1): 446-450. doi: 10.1016/j.jpowsour.2007.07.043 [25] PAN H G, LIU Y F, GAO M X, et al. An investigation on the structural and electrochemical properties of La0.7Mg0.3 (Ni0.85Co0.15) x ( x=3.15-3.80) hydrogen storage electrode alloys[J]. Journal of Alloys and Compounds, 2003, 351(1-2): 228-234. doi: 10.1016/S0925-8388(02)01045-9 [26] DONG X P, YANG L P, ZHANG Y H, et al. Effect of Ni/(La+Mg) ratio on structure and electrochemical performance of La-Mg-Ni alloy system[J]. Journal of Iron and Steel Research, International, 2009, 16(3): 83-88. doi: 10.1016/S1006-706X(09)60049-2 [27] 熊玮, 张旭, 周淑娟, 等. 不同化学计量比La-Y-Ni系储氢合金的研究I: 表面状态与组织结构[J]. 稀土, 2020, 41(6): 9-17.XIONG Wei, ZHANG Xu, ZHOU Shujuan, et al. Study on La-Y-Ni hydrogen storage alloys with different stoichiometric ratios I: Surface state and structure[J]. Chinese Rare Earths, 2020, 41(6): 9-17(in Chinese). [28] LIU J J, HAN S M, LI Y, et al. Cooperative effects of Sm and Mg on electrochemical performance of La-Mg-Ni-based alloys with A2B7- and A5B19-type super-stacking structure[J]. International Journal of Hydrogen Energy, 2015, 40(2): 1116-1127. [29] WANG B P, WANG Y Y, XUE T, et al. The morphology and electrochemical properties of La1– x Mg x Ni3.4Al0.1 ( x=0.1-0.4) hydrogen storage alloys[J]. International Journal of Hydrogen Energy, 2021, 46(72): 35653-35661. doi: 10.1016/j.ijhydene.2021.08.114 [30] 赵磊, 罗永春, 邓安强, 等. 无镁超点阵结构A2B7型La1– x Y x Ni3.25Mn0.15Al0.1合金的储氢和电化学性能[J]. 高等学校化学学报, 2018, 39(9): 1993-2002.ZHAO Lei, LUO Yongchun, DENG Anqiang, et al. Hydrogen storage and electrochemical properties of the Mg-free A2B7-type La1– x Y x Ni3.25Mn0.15Al0.1 alloys with superlattice structure[J]. Chemical Journal of Chinese Universities, 2018, 39(9): 1993-2002(in Chinese). [31] EMIL H J, LORIS L, ALESSANDRO G. The effect of Y content on structural and sorption properties of A2B7-type phase in the La-Y-Ni-Al-Mn system[J]. Molecules, 2023, 28(9): 3749. [32] GUO J, DAN H, LI G X. Effect of La/Mg on the hydrogen storage capacities and electrochemical performances of La-Mg-Ni alloys[J]. Materials Science and Engineering: B, 2006, 131(1-3): 169-172. [33] ZHANG Y H, YANG T, ZHAI T T, et al. Effects of stoichio metric ratio La/Mg on structures and electrochemical performances of as-cast and annealed La-Mg-Ni-based A2B7-type electrode alloys[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 1968-1977. doi: 10.1016/S1003-6326(15)63805-5 [34] FENG D C, LIU X, YUAN Z M, et al. Electrochemical properties of as-cast La2− x Y x Mg16Ni ( x=0, 0.1, 0.2, 0.3, 0.4) alloys[J]. Journal of Physics and Chemistry of Solids, 2021, 154: 110062. doi: 10.1016/j.jpcs.2021.110062 [35] XUE C J, ZHANG L, FAN Y P, et al. Phase transformation and electrochemical hydrogen storage performances of La3RMgNi19 (R=La, Pr, Nd, Sm, Gd and Y) alloys[J]. International Journal of Hydrogen Energy, 2017, 42(9): 6051-6064. doi: 10.1016/j.ijhydene.2016.11.120 [36] FAN Y P, ZHANG L, XUE C J, et al. Phase structure and electrochemical hydrogen storage performance of La4MgNi18M (M=Ni, Al, Cu and Co) alloy[J]. Journal of Alloys and Compounds, 2017, 727: 398-409. doi: 10.1016/j.jallcom.2017.08.170 [37] WANG B P, CHEN Y Z, LIU Y N, et al. Structure and electrochemical properties of (La1− x Dy x )0.8Mg0.2Ni3.4Al0.1 ( x=0.0-0.20) hydrogen storage alloys[J]. International Journal of Hydrogen Energy, 2012, 37(11): 9082-9087. doi: 10.1016/j.ijhydene.2012.02.164 [38] LIU J J, LI Y, HAN D, et al. Electrochemical performance and capacity degradation mechanism of single-phase La-Mg-Ni-based hydrogen storage alloys[J]. Journal of Power Sources, 2015, 300: 77-86. doi: 10.1016/j.jpowsour.2015.09.058 [39] WAN C B, DENYS R V, YARTYS V A, et al. In situ neutron powder diffraction study of phase-structural transformations in the La-Mg-Ni battery anode alloy[J]. Journal of Alloys and Compounds, 2016, 670: 210-216. doi: 10.1016/j.jallcom.2016.01.245 [40] LIU J J, YAN Y K, CHENG H H, et al. Phase transformation and high electrochemical performance of La0.78Mg0.22Ni3.73 alloy with (La, Mg)5Ni19 superlattice structure[J]. Journal of Power Sources, 2017, 351: 26-34. doi: 10.1016/j.jpowsour.2017.03.064 [41] ZHANG Q A, FANG M H, SI T Z, et al. Phase stability, structural transition, and hydrogen absorption-desorption features of the polymorphic La4MgNi19 compound[J]. Journal of Physical Chemistry C, 2010, 114(26): 11686-11692. doi: 10.1021/jp103910e [42] ZHANG L, LI Y, ZHAO X, et al. Phase transformation and cycling characteristics of a Ce2Ni7-type single-phase La0.78Mg0.22Ni3.45 metal hydride alloy[J]. Journal of Materials Chemistry A, 2015, 3(26): 13679-13690. doi: 10.1039/C5TA02554K [43] LIAO B, LEI Y Q, CHEN L X, et al. Effect of the La/Mg ratio on the structure and electrochemical properties of La x Mg3− x Ni9 ( x=1.6-2.2) hydrogen storage electrode alloys for nickel-metal hydride batteries[J]. Journal of Power Sources, 2004, 129(2): 358-367. doi: 10.1016/j.jpowsour.2003.11.044 [44] DENG A Q, LUO Y C, ZHOU F, et al. Effect of Mn element on the structures and properties of A2B7-type La-Y-Ni-based hydrogen storage alloys[J]. Metals, 2022, 12(7): 1122. [45] ZHANG F L, LUO Y C, CHEN J P, et al. La-Mg-Ni ternary hydrogen storage alloys with Ce2Ni7-type and Gd2Co7-type structure as negative electrodes for Ni/MH batteries[J]. Journal of Alloys and Compounds, 2007, 430(1-2): 302-307. doi: 10.1016/j.jallcom.2006.05.010 [46] ZHAO S Q, WANG H, HU R Z, et al. Phase transformation and hydrogen storage properties of LaY2Ni10.5 superlattice alloy with single Gd2Co7-type or Ce2Ni7-type structure[J]. Journal of Alloys and Compounds, 2021, 868: 159254. doi: 10.1016/j.jallcom.2021.159254 [47] FEREY A, CUEVAS F, LATROCHE M, et al. Elaboration and characterization of magnesium-substituted La5Ni19 hydride forming alloys as active materials for negative electrode in Ni-MH battery[J]. Electrochimica Acta, 2009, 54(6): 1710-1714. doi: 10.1016/j.electacta.2008.09.069 [48] ZHAO S Q, YANG L C, LIU J W, et al. Structural evolution and electrochemical hydrogen storage properties of single phase A5B19-type (La0.33Y0.67)5Ni17.6Mn0.9Al0.5 alloy[J]. Journal of Power Sources, 2022, 548: 232039. [49] AKIBA E, HAYAKAWA H, KOHNO T. Crystal structures of novel La-Mg-Ni hydrogen absorbing alloys[J]. Journal of Alloys and Compounds, 2006, 408-412: 280-283. doi: 10.1016/j.jallcom.2005.04.180 [50] CHAI Y J, SAKAKI K, ASANO K, et al. Crystal structure and hydrogen storage properties of La-Mg-Ni-Co alloy with superstructure[J]. Scripta Materialia, 2007, 57(6): 545-548. doi: 10.1016/j.scriptamat.2007.05.018 [51] KOHNO T, YOSHIDA H, KAWASHIMA F, et al. Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14[J]. Journal of Alloys and Compounds, 2000, 311(2): L5-L7. doi: 10.1016/S0925-8388(00)01119-1 [52] DENYS R V, RIABOV A B, YARTYS V A, et al. Mg substitution effect on the hydrogenation behaviour, thermodynamic and structural properties of the La2Ni7-H(D)2 system[J]. Journal of Solid State Chemistry, 2008, 181(4): 812-821. doi: 10.1016/j.jssc.2007.12.041 [53] GUZIK M N, HAUBACK B C, YVON K. Hydrogen atom distribution and hydrogen induced site depopulation for the La2− x Mg x Ni7-H system[J]. Journal of Solid State Chemistry, 2012, 186: 9-16. doi: 10.1016/j.jssc.2011.11.026 [54] NAKAMURA J, IWASE K, HAYAKAWA H, et al. Structural study of La4MgNi19 hydride by in situ X-ray and neutron powder diffraction[J]. Journal of Physical Chemistry C, 2009, 113(14): 5853-5859. doi: 10.1021/jp809890e [55] BALCERZAK M, NOWAK M, JURCZYK M. Hydrogenation and electrochemical studies of La-Mg-Ni alloys[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1436-1443. doi: 10.1016/j.ijhydene.2016.05.220 [56] WERWIŃSKI M, SZAJEK A, MARCZYŃSKA A, et al. Effect of substitution La by Mg on electrochemical and electronic properties in La2− x Mg x Ni7 alloys: A combined experimental and ab initio studies[J]. Journal of Alloys and Compounds, 2018, 763: 951-959. doi: 10.1016/j.jallcom.2018.05.299 [57] GAL L, CHARBONNIER V, ZHANG J X, et al. Optimization of the La substitution by Mg in the La2Ni7 hydride-forming system for use as negative electrode in Ni-MH battery[J]. International Journal of Hydrogen Energy, 2015, 40(47): 17017-17020. doi: 10.1016/j.ijhydene.2015.06.068 [58] SHI Y, LENG H Y, LUO Q, et al. Effect of substituting Y with Mg on the microstructure and electrochemical performance of LaY2Ni9 hydrogen storage alloy[J]. Catalysis Today, 2018, 318: 86-90. doi: 10.1016/j.cattod.2018.08.016 [59] GUO M, YUAN H P, LIU Y R, et al. Effect of Sm on the cyclic stability of La-Y-Ni-based alloys and their comparison with RE-Mg-Ni-based hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2021, 46(10): 7432-7441. doi: 10.1016/j.ijhydene.2020.11.195 [60] LI J X, HE X Y, WEI X, et al. Phase forming law and electrochemical properties of A2B7-type La-Y-Ni-based hydrogen storage alloys with different La/Y ratios[J]. Journal of Rare Earths, 2023, 41(2): 268-276. doi: 10.1016/j.jre.2022.04.024 [61] YAN H Z, WEI X, WANG L, et al. Investigations on AB3-, A2B7- and A5B19-type La-Y-Ni system hydrogen storage alloys[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2257-2264. doi: 10.1016/j.ijhydene.2016.09.049 [62] ZHANG J L, HAN S M, LI Y, et al. Effects of PuNi3- and Ce2Ni7-type phase abundance on electrochemical characteristics of La-Mg-Ni-based alloys[J]. Journal of Alloys and Compounds, 2013, 581: 693-698. doi: 10.1016/j.jallcom.2013.07.180 [63] LIU J J, HAN S M, HAN D, et al. Enhanced cycling stability and high rate dischargeability of (La, Mg)2Ni7-type hydrogen storage alloys with (La, Mg)5Ni19 minor phase[J]. Journal of Power Sources, 2015, 287: 237-246. doi: 10.1016/j.jpowsour.2015.04.059 [64] LIU J J, ZHU S, CHENG H H, et al. Enhanced cycling stability and high rate dischargeability of A2B7-type La-Mg-Ni-based alloys by in-situ formed (La, Mg)5Ni19 superlattice phase[J]. Journal of Alloys and Compounds, 2019, 777: 1087-1097. doi: 10.1016/j.jallcom.2018.11.094 [65] LIU J J, HAN S M, LI Y, et al. Effect of crystal transformation on electrochemical characteristics of La-Mg-Ni-based alloys with A2B7-type super-stacking structures[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14903-14911. doi: 10.1016/j.ijhydene.2013.09.049 [66] ZHAO Y M, HAN S M, LI Y A, et al. Characterization and improvement of electrochemical properties of Pr5Co19-type single-phase La0.84Mg0.16Ni3.80 alloy[J]. Electrochimica Acta, 2015, 152(14): 265-273. [67] ZHAO Y M, ZHANG S, LIU X X, et al. Phase formation of Ce5Co19-type super-stacking structure and its effect on electrochemical and hydrogen storage properties of La0.60M0.20Mg0.20Ni3.80 (M = La, Pr, Nd, Gd) compounds[J]. International Journal of Hydrogen Energy, 2018, 43(37): 17809-17820. doi: 10.1016/j.ijhydene.2018.07.183 [68] WANG W F, QIN R Y, WU R X, et al. A promising anode candidate for rechargeable nickel metal hydride power battery: An A5B19-type La-Sm-Nd-Mg-Ni-Al-based hydrogen storage alloy[J]. Journal of Power Sources, 2020, 465: 228236. [69] DU W K, CAO S B, LI Y, et al. Phase structure and electrochemical characteristics of rhombohedral super-stacking La0.77Mg0.23Ni3.72 hydrogen storage alloy[J]. Journal of the Electrochemical Society, 2015, 162(10): A2180-A2187. doi: 10.1149/2.0851510jes [70] 王浩, 罗永春, 邓安强, 等. 退火温度对无镁La-Y-Ni系A2B7型合金相结构和电化学性能的影响[J]. 无机材料学报, 2018, 33(4): 434-440.WANG Hao, LUO Yongchun, DENG Anqiang, et al. An nealing temperature on structural and electrochemical property of Mg-free La-Y-Ni based A2B7-type hydrogen storage alloys[J]. Journal of Inorganic Materials, 2018, 33(4): 434-440. [71] WANG L, ZHAO Y Y, ZHANG X, et al. Hydrogen stor age and electrochemical properties of 3R- and 2H-A5B19 structures in La-Y-Ni-based alloys[J]. Journal of Alloys and Compounds, 2023, 960: 170951. doi: 10.1016/j.jallcom.2023.170951