留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温磷光碳点/SiO2复合材料的制备与应用进展

金鹏 王巍 孙争光 武艺 詹园

金鹏, 王巍, 孙争光, 等. 室温磷光碳点/SiO2复合材料的制备与应用进展[J]. 复合材料学报, 2024, 41(5): 2220-2235. doi: 10.13801/j.cnki.fhclxb.20231016.003
引用本文: 金鹏, 王巍, 孙争光, 等. 室温磷光碳点/SiO2复合材料的制备与应用进展[J]. 复合材料学报, 2024, 41(5): 2220-2235. doi: 10.13801/j.cnki.fhclxb.20231016.003
JIN Peng, WANG Wei, SUN Zhengguang, et al. Progress in preparation and application of room temperature phosphorescencecarbon dots/SiO2 composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2220-2235. doi: 10.13801/j.cnki.fhclxb.20231016.003
Citation: JIN Peng, WANG Wei, SUN Zhengguang, et al. Progress in preparation and application of room temperature phosphorescencecarbon dots/SiO2 composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2220-2235. doi: 10.13801/j.cnki.fhclxb.20231016.003

室温磷光碳点/SiO2复合材料的制备与应用进展

doi: 10.13801/j.cnki.fhclxb.20231016.003
基金项目: 湖北三峡实验室2023年开放课题项目(SK232014)
详细信息
    通讯作者:

    武艺,博士,副教授,硕士生导师,研究方向为功能聚合物薄膜材料 E-mail: wuy@wtu.edu.cn

    詹园,博士,讲师,硕士生导师,研究方向为纳米碳功能材料 E-mail: zy@hubu.edu.cn

  • 中图分类号: O613;TB383;TB332

Progress in preparation and application of room temperature phosphorescencecarbon dots/SiO2 composites

Funds: Foundation of Hubei Three Gorges Laboratory in 2023 (SK232014)
  • 摘要: 碳点(Carbon dots,CDs)作为发光材料,在传感、信息安全、生物医学等领域具有重要应用潜力。然而,制备光学性能稳定、寿命长、发光效率高的CDs基室温磷光(RTP)材料仍然是一个巨大的挑战。将CDs固定在SiO2载体上构建CDs/SiO2复合材料,利用CDs与SiO2之间的协同作用,不仅可以提高CDs的分散性,实现CDs稳定的固态荧光;而且还能诱导三重激发态,产生稳定的三重态激子以实现CDs长寿命发光,这对拓展CDs基复合材料的应用领域具有重要意义。本文综述了近年来RTP CDs/SiO2复合材料的制备方法、性能与应用,总结了其发展中存在的问题,并对RTP CDs/SiO2复合材料的发展方向进行了展望。

     

  • 图  1  碳点(CDs)的荧光、延迟荧光、磷光及室温磷光产生示意图

    S0—Ground state; S1—Single excited state; Sn—High-level singlet excited state; Abs—Absorption; IC—Internal conversion; FL—Fluorescence; TADF—Delay fluorescence; EC—External conversion; ISC—Intersystem crossing; RISC—Reverse intersystem crossing; Phos.—Phosphorescence; RTP—Room temperature phosphorescence; Tn—High-energy triplet excited states; T1—High-level singlet excited state; T1*— High-level singlet excited state (new)

    Figure  1.  Fluorescence, delayed fluorescence, phosphorescence androom-temperature phosphorescence generation schematicof carbon dots (CDs)

    图  2  碳化聚合物点(CPDs)/SiO2复合材料[37](a)、CDs/SiO2微球[38](b)的制备示意图和不同时间紫外开(on)或关(off)的光学照片

    KH550—(3-aminopropyl)-triethoxysilane

    Figure  2.  Preparation schematics and optical photos of carbonized polymer dots (CPDs)/SiO2[37](a), CDs/SiO2 microspheres[38] (b) under UV on or off at different time

    图  3  (a) 磷光碳点(PCDs)和体系1~4的制备过程示意图;(b)在365 nm光照射下体系1~4的水相荧光和余辉图像;(c)体系4在水环境中可能的余辉机制[42]

    Rh6G—Rodamine 6G; RhB—Rodamine B; SR101—Sulforhodamine 101; Exc.—Excitation; Fluo.—Fluorescence; ET—Energy transfer

    Figure  3.  (a) Schematic diagram of the preparation process of phosphorescent carbon points (PCDs) and system 1-4; (b) Aqueous fluorescence and afterglow images of system 1-4 under 365 nm light irradiation; (c) Possible afterglow mechanism of system 4 in aqueous environment[42]

    图  4  两步水热法制备CDs/SiO2复合材料的示意图[46]

    AA—L-asparaginic acid

    Figure  4.  Preparation of CDs/SiO2 composites by two-step hydrothermal method[46]

    图  5  彩色磷光CDs/SiO2复合材料[47](a)和GCDs/SiO2-OCDs复合材料[48 ](b)的制备示意图

    o-PD—o-phenylenediamine; BCDs/SiO2—Blue phosphoresence CDs/SiO2; RCDs/SiO2—Red phosphoresence CDs/SiO2; GCDs/SiO2—Green phosphoresence CDs/SiO2; YCDs/SiO2—Yellow phosphoresence CDs/SiO2; FRET—Fluorescence resonance energy transfer; R—Interparticle distance; OCDs—Orange CDs

    Figure  5.  Schematic diagrams for the preparations of colorful phosphorescent CDs/SiO2 composites[47] (a) and GCDs/SiO2-OCDs composites[48] (b)

    图  6  RTP CDs/SiO2复合材料的制备示意图[51]

    Aq.—Aquesos

    Figure  6.  Preparation of RTP CDs/SiO2 composites[51]

    图  7  RTP介孔二氧化硅(MSNs)-CPDs复合材料的制备示意图[54]

    Figure  7.  Preparation of RTP mesoporous silica (MSNs)-CPDs composites[54]

    图  8  RTP CDs/SiO2复合材料多通道检测示意图[67]

    Figure  8.  Multi-channel detection diagram of RTP CDs/SiO2 composites[67]

    图  9  (a) RCDs/SiO2的磷光强度与温度变化关系[47];(b) CDs/SiO2随温度变化的余辉发射光谱[26]

    T—Temperature

    Figure  9.  (a) Dependence of RCD/SiO2 phosphorescence intensity on temperature[47]; (b) Temperature-dependent afterglow emission spectraof CDs/SiO2[26]

    图  10  (a) CDs-RhB/SiO2在活体小鼠体内原位活化和余辉检测示意图;(b)时间门控生物成像的实例说明;(c)不同浓度CDs-RhB/SiO2皮下植入小鼠体内荧光和磷光图像;(d)不同浓度CDs-RhB/SiO2在体内的荧光和余辉强度[43]

    CCD—Charge coupled device; RhB—Rhodamine B

    Figure  10.  (a) Schematic illustration of in situ activation and detection of afterglow of the CDs-RhB/SiO2 in living mice; (b) Illustration of time-gated bioimaging; (c) In vivo fluorescence and phosphorescence images of mice with the subcutaneous implantation of different concentration of CDs-RhB/SiO2; (d) Fluorescence and afterglow intensities of CDs-RhB/SiO2 in vivo with different concentrations[43]

    图  11  基于蓝色RTP CDs/SiO2的白光LED的光致光谱(a)和图像(b) [61]

    Figure  11.  Photoluminescence spectra (a) and photos (b) of white LEDs based on blue RTP CDs/SiO2[61]

    图  12  (a)基于安全油墨的时分双工示意图;(b)基于时分双工技术的时空重叠(I、II)和时空分离(III、IV)模式[74];(c)基于安全油墨的信息加密原理图[54]

    Figure  12.  (a) Time division duplex diagram based on safety ink; (b) Space-time overlap (I, II) and space-time separation (III, IV) modes based on time division duplex technology[74]; (c) Schematic diagram of information encryption based on security ink[54]

    图  13  在365 nm紫外光照射下用RTP CDs/SiO2粉末在塑料片上显影(a)和关闭紫外灯指纹图像上的具体细节(b)[78];(c) RTP CDs/SiO2粉末的橙色余辉指纹显影[48]

    Figure  13.  Images of a fresh fingerprint developed by RTP CDs/SiO2 powder on the plastic sheet under 365 nm UV light on (a) and off (b) with some specific details [78]; (c) Orange afterglow fingerprint development of RTP CDs/SiO2 powder[48]

    表  1  典型一步法合成RTP CDs/SiO2复合材料性能参数

    Table  1.   Typical performance parameters of RTP CDs/SiO2 composites synthesized by typical one-step method

    Sample Materials Method RTP Em/nm Lifetime/s RTP QY/% Ref.
    CPDs/SNSs TEOS Hydrothermal 520 1.86 11.6 [35]
    N-CDs/SiO2 TEOS, triethylenetetramine Hydrothermal 510 1.81 6 [36]
    CPDs/SiO2 TEOS, EDA Hydrothermal 440 1.26 [37]
    CDs/SiO2 APTES Hydrothermal 430 0.81 10.34 [38]
    CPDs/SiO2 AEAPMS, phosphoric acid Microwave-assisted hydrothermal 515 1.32 11.42 [39]
    CDs/SiO2 Glucose, chitosan, PVP, CA, APTES Muffle furnace 525 0.38 1.3 [40]
    Notes: CPDs—Carbonized polymer point; N-CDs—Nitrogen doped carbon dots; SNSs—Silica nanospheres; TEOS—Tetraethoxysilane; EDA—Ethanediamine; APTES—3-aminopropyl triethoxysilane; AEAPMS—3-(2-aminoethyl amino)propyl dimethoxy-methylsilane; PVP—Polyvinylpyrrolidone; CA—Citric acid; Em—Emission; RTP QY—Room temperature phosphorescence quantum yield.
    下载: 导出CSV

    表  2  典型RTP CDs/SiO2复合材料性能参数

    Table  2.   Typical RTP CDs/SiO2 composite material performance parameters

    Materials RTP Em/nm ΔEST/eV Lifetime/s RTP QY/% Ref.
    Alkali lignin 520 0.300 0.834 5.97 [50]
    Rice husk 464 0.155 5.720 26.35 [51]
    Urea, APTES 462 0.103 2.030 50.17 [61]
    EDA, phosphoric acid, TEOS 505 0.380 2.190 7.40 [63]
    TM-40 colloidal silica, terephthalic acid 424 0.237 1.47 [64]
    CA, TEOS, benzidine monohydrochloride 444 0.320 1.110 [65]
    Ethanolamine, TEOS, phosphoric acid 510 0.847 12.10 [66]
    Notes: ΔEST—Energy gap between S1 and Tn; TM-40—Tipes of colloidal silica; CA—Citric acid.
    下载: 导出CSV
  • [1] XU X, RAY R, GU Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40): 12736-12737. doi: 10.1021/ja040082h
    [2] GIORDANO M G, SEGANTI G, BARTOLI M, et al. An overview on carbon quantum dots optical and chemical features[J]. Molecules, 2023, 28(6): 2772-2790. doi: 10.3390/molecules28062772
    [3] WANG B Y, LU S Y. The light of carbon dots: From mechanism to applications[J]. Matter, 2022, 5(1): 110-149. doi: 10.1016/j.matt.2021.10.016
    [4] 车望远, 刘长军, 杨焜, 等. 荧光碳点的制备和性质及其应用研究进展[J]. 复合材料学报, 2016, 33(3): 431-450. doi: 10.13801/j.cnki.fhclxb.20160219.001

    CHE Wangyuan, LIU Changjun, YANG Kun, et al. Research progress on the preparation, properties and application of fluorescent carbon dots[J]. Acta Materiae Compositae Sinica, 2016, 33(3): 431-450(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160219.001
    [5] FAN X H, WANG Y, LI B, et al. Highly luminescent pH-responsive carbon quantum dots for cell imaging[J]. Nanotechnology, 2022, 33(26): 265002. doi: 10.1088/1361-6528/ac5ee5
    [6] JIA J, LU W, GAO Y, et al. Recent advances in synthesis and applications of room temperature phosphorescence carbon dots[J]. Talanta, 2021, 231: 122350. doi: 10.1016/j.talanta.2021.122350
    [7] LI J, WU Y, GONG X. Evolution and fabrication of carbon dot-based room temperature phosphorescence materials[J]. Chemical Science, 2023, 14(14): 3705-3729. doi: 10.1039/D3SC00062A
    [8] ZHOU S, WANG F, FENG N, et al. Room temperature phosphorescence carbon dots: Preparations, regulations, and applications[J]. Small, 2023, 19(33): 2301240. doi: 10.1002/smll.202301240
    [9] 曹文兵, 孙争光, 武钰涵, 等. 有机硅烷功能化碳点的制备及应用进展[J]. 复合材料学报, 2022, 39(3): 884-895. doi: 10.13801/j.cnki.fhclxb.20210816.001

    CAO Wenbing, SUN Zhengguang, WU Yuhan, et al. Progress in preparation and application of organosilane functionalized carbon dots[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 884-895(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210816.001
    [10] TU Y, WANG S, YUAN X, et al. A novel fluorescent nitrogen, phosphorus-doped carbon dots derived from Ganoderma Lucidum for bioimaging and high selective two nitrophenols detection[J]. Dyes and Pigments, 2020, 178: 108316. doi: 10.1016/j.dyepig.2020.108316
    [11] HAN S, CHEN X, HU Y, et al. Solid-state N, P-doped carbon dots conquer aggregation-caused fluorescence quenching and couple with europium metal-organic frameworks toward white light-emitting diodes[J]. Dyes and Pigments, 2021, 187: 109090. doi: 10.1016/j.dyepig.2020.109090
    [12] LONG P, FENG Y, CAO C, et al. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots[J]. Advanced Functional Materials, 2018, 28(37): 1800791. doi: 10.1002/adfm.201800791
    [13] DING L, JIN X, GAO Y, et al. Facile preparation strategy of novel carbon dots with aggregation-induced emission and room-temperature phosphorescence characteristics[J]. Advanced Optical Materials, 2023, 11(5): 2202349. doi: 10.1002/adom.202202349
    [14] RAVOTTO L, CERONI P. Aggregation induced phosphorescence of metal complexes: From principles to applications[J]. Coordination Chemistry Reviews, 2017, 346: 62-76. doi: 10.1016/j.ccr.2017.01.006
    [15] MA X, XU C, WANG J, et al. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission[J]. Angewandte Chemie International Edition, 2018, 57(34): 10854-10858. doi: 10.1002/anie.201803947
    [16] TAO S, LU S, GENG Y, et al. Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials[J]. Angewandte Chemie International Edition, 2018, 57(9): 2393-2398. doi: 10.1002/anie.201712662
    [17] JIANG K, GAO X, FENG X, et al. Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics[J]. Angewandte Chemie International Edition, 2020, 59(3): 1263-1269. doi: 10.1002/anie.201911342
    [18] PARK M, KIM H S, YOON H, et al. Controllable singlet-triplet energy splitting of graphene quantum dots through oxidation: From phosphorescence to TADF[J]. Advanced Materials, 2020, 32(31): 2000936. doi: 10.1002/adma.202000936
    [19] WANG K T, QU L J, YANG C L. Long-lived dynamic room temperature phosphorescence from carbon dots based materials[J]. Small, 2023, 19(31): 2206429. doi: 10.1002/smll.202206429
    [20] NI Y, ZHOU P, JIANG Q, et al. Room-temperature phosphorescence based on chitosan carbon dots for trace water detection in organic solvents and anti-counterfeiting application[J]. Dyes and Pigments, 2022, 197: 109923. doi: 10.1016/j.dyepig.2021.109923
    [21] LI Q, ZHOU M, YANG Q, et al. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices[J]. Chemistry of Materials, 2016, 28(22): 8221-8227. doi: 10.1021/acs.chemmater.6b03049
    [22] DONG X, WEI L, SU Y, et al. Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix[J]. Journal of Materials Chemistry C, 2015, 3(12): 2798-2801. doi: 10.1039/C5TC00126A
    [23] LI Q, CHENG D, GU H, et al. Aggregation-induced color fine-tunable carbon dot phosphorescence covering from green to near-infrared for advanced information encryption[J]. Chemical Engineering Journal, 2023, 462: 142339. doi: 10.1016/j.cej.2023.142339
    [24] WU J, XIN W, WU Y H, et al. Solid-state photoluminescent silicone-carbon dots/dendrimer composites for highly efficient luminescent solar concentrators[J]. Chemical Engineering Journal, 2021, 422: 130158. doi: 10.1016/j.cej.2021.130158
    [25] WU Y H, ZHAO L X, CAO X Y, et al. Bright and multicolor emissive carbon dots/organosilicon composite for highly efficient tandem luminescent solar concentrators[J]. Carbon, 2023, 207: 77-85. doi: 10.1016/j.carbon.2023.02.055
    [26] SUN Y Q, LIU J K, PANG X L, et al. Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica[J]. Journal of Materials Chemistry C, 2020, 8: 5744-5751. doi: 10.1039/D0TC00507J
    [27] HUANG Y, LAI Z, JIN J, et al. Ultrasensitive temperature sensing based on ligand-free alloyed CsPbClxBr3−x perovskite nanocrystals confined in hollow mesoporous silica with high density of halide vacancies[J]. Small, 2021, 17(46): 2103425.
    [28] JOSEPH J, ANAPPARA A A. Cool white, persistent room-temperature phosphorescence in carbon dots embedded in a silica gel matrix[J]. Physical Chemistry Chemical Physics, 2017, 19(23): 15137-15144. doi: 10.1039/C7CP02731A
    [29] ZHANG D, ZHENG H, MA X, et al. On-demand circularly polarized room-temperature phosphorescence in chiral nematic nanoporous silica films[J]. Advanced Optical Materials, 2022, 10(7): 2102015. doi: 10.1002/adom.202102015
    [30] HANDAYANI M, NAFI'AH N, NUGROHO A, et al. The development of graphene/silica hybrid composites: A review for their applications and challenges[J]. Crystals, 2021, 11(11): 1337-1365.
    [31] JIANG K, WANG Y, CAI C, et al. Activating room temperature long afterglow of carbon dots via covalent fixation[J]. Chemistry of Materials, 2017, 29(11): 4866-4873. doi: 10.1021/acs.chemmater.7b00831
    [32] LI W, WU S S, XU X K, et al. Carbon dot-silica nanoparticle composites for ultralong lifetime phosphorescence imaging in tissue and cells at room temperature[J]. Chemistry of Materials, 2019, 31(23): 9887-9894. doi: 10.1021/acs.chemmater.9b04120
    [33] STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69. doi: 10.1016/0021-9797(68)90272-5
    [34] SHAO K, ZHANG H, LING Q, et al. Developing single silane-derived delayed fluorescent carbon dots as donors for energy transfer-based aqueous-phase multicolor afterglow application[J]. Journal of Materials Chemistry C, 2023, 11(30): 10341-10350. doi: 10.1039/D3TC01811C
    [35] HAO C, BAI Y, CHEN Z, et al. Ultralong lifetime room-temperature phosphorescence in aqueous medium from silica confined polymer carbon dots for autoluminescence-free bioimaging and multilevel information encryption[J]. Dyes and Pigments, 2022, 197: 109890. doi: 10.1016/j.dyepig.2021.109890
    [36] HAO C, BAI Y, ZHAO L, et al. Durable room-temperature phosphorescence of nitrogen-doped carbon dots-silica composites for Fe3+ detection and anti-counterfeiting[J]. Dyes and Pigments, 2022, 198: 109955. doi: 10.1016/j.dyepig.2021.109955
    [37] TANG G Q, ZHANG K, FENG T L, et al. One-step preparation of silica microspheres with super-stable ultralong room temperature phosphorescence[J]. Journal of Materials Chemistry C, 2019, 7(28): 8680-8687. doi: 10.1039/C9TC02353D
    [38] TANG G, WANG C, ZHANG K, et al. Deep-blue room-temperature phosphorescent carbon dots/silica microparticles from a single raw material[J]. Langmuir, 2021, 37(45): 13187-13193. doi: 10.1021/acs.langmuir.1c01264
    [39] LIU Y, CHEN W, LU L, et al. Si-assisted N, P co-doped room temperature phosphorescent carbonized polymer dots: Information encryption, graphic anti-counterfeiting and biological imaging[J]. Journal of Colloid and Interface Science, 2022, 609: 279-288. doi: 10.1016/j.jcis.2021.11.120
    [40] CHENG H R, CHEN S, LI M, et al. Ultra-stable dual-color phosphorescence carbon-dot@silica material for advanced anti-counterfeiting[J]. Dyes and Pigments, 2022, 208: 110827.
    [41] CHEN L, ZHAO S, WANG Y, et al. Long-lived room-temperature phosphorescent complex of B, N, P co-doped carbon dots and silica for afterglow imaging[J]. Sensors and Actuators B: Chemical, 2023, 390: 133946. doi: 10.1016/j.snb.2023.133946
    [42] MO L Q, LIU H, LIU Z M, et al. Cascade resonance energy transfer for the construction of nanoparticles with multicolor long afterglow in aqueous solutions for information encryption and bioimaging[J]. Advanced Optical Materials, 2022, 10(10): 210266.
    [43] LIANG Y C, CAO Q, LIU K K, et al. Phosphorescent carbon-nanodots-assisted Förster resonant energy transfer for achieving red afterglow in an aqueous solution[J]. ACS Nano, 2021, 15(10): 16242-16254. doi: 10.1021/acsnano.1c05234
    [44] MO L Q, XU X K, LIU Z M, et al. Visible-light excitable thermally activated delayed fluorescence in aqueous solution from F, N-doped carbon dots confined in silica nanoparticles[J]. Chemical Engineering Journal, 2021, 426: 130728. doi: 10.1016/j.cej.2021.130728
    [45] LOU Q, CHEN N, ZHU J, et al. Thermally enhanced and long lifetime red TADF carbon dots via multi-confinement and phosphorescence assisted energy transfer[J]. Advanced Materials, 2023, 35(20): 2211858.
    [46] CHAO T Y, WANG J J, DONG X Z, et al. Defects and structural limitation-induced carbon dots-silica hybrid materials with ultralong room temperature phosphorescence[J]. Journal of Physical Chemistry Letters, 2022, 13(41): 9558-9663. doi: 10.1021/acs.jpclett.2c02647
    [47] ZHANG Y Q, LI M Y, LU S Y. Rational design of covalent bond engineered encapsulation structure toward efficient, long-lived multicolored phosphorescent carbon dots[J]. Small, 2022, 19(31): 2206080.
    [48] TENG X M, SUN X B, PAN W, et al. Carbon dots confined in silica nanoparticles for triplet-to-singlet foster resonance energy-transfer-induced delayed fluorescence[J]. ACS Applied Nano Materials, 2022, 5(4): 5168-5175. doi: 10.1021/acsanm.2c00208
    [49] LI T T, LI X Y, ZHENG Y, et al. Phosphorescent carbon dots as long-lived donors to develop an energy transfer-based sensing platform[J]. Analytical Chemistry, 2023, 95(4): 2445-2451. doi: 10.1021/acs.analchem.2c04639
    [50] ZHANG T, ZHOU J P, LI H M, et al. Stable lignin-based afterglow materials with ultralong phosphorescence lifetimes in solid-state and aqueous solution[J]. Green Chemistry, 2023, 25(4): 1406-1416. doi: 10.1039/D2GC04370J
    [51] SUN Y, LIU S, SUN L, et al. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design[J]. Nature Communications, 2020, 11(1): 5591-5602. doi: 10.1038/s41467-020-19422-4
    [52] JIANG W J, WU C L, ZHANG R R. General assembly of organic molecules in core-shell mesoporous silica nanoparticles[J]. Materials Letters, 2012, 77: 100-102. doi: 10.1016/j.matlet.2012.03.006
    [53] CHEN A L, MU H L, ZUO C Z, et al. Fabrication, characterization, and CMP performance of dendritic mesoporous-silica composite particles with tunable pore sizes[J]. Journal of Alloys and Compounds, 2019, 770: 335-344. doi: 10.1016/j.jallcom.2018.08.173
    [54] ZHENG C, TAO S, LIU Y, et al. Achieving blue water-dispersed room-temperature phosphorescence of carbonized polymer dots through nano-compositing with mesoporous silica[J]. Chinese Chemical Letters, 2022, 33(9): 4213-4218. doi: 10.1016/j.cclet.2022.03.041
    [55] EL-SAYED M A. Spin-orbit coupling and the radiationless processes in nitrogen heterocyclics[J]. The Journal of Chemical Physics, 2004, 38(12): 2834-2838.
    [56] BRASLAVSKY S E. Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006)[J]. Pure and Applied Chemistry, 2007, 79(3): 293-465. doi: 10.1351/pac200779030293
    [57] LYU X, MIAO J, LIU M, et al. Extending the π-skeleton of multi-resonance TADF materials towards high-efficiency narrowband deep-blue emission[J]. Angewandte Chemie International Edition, 2022, 134(29): 202201588.
    [58] WANG L, OU Q, PENG Q, et al. Theoretical characterizations of TADF materials: Roles of ΔG and the singlet-triplet excited states interconversion[J]. Journal of Physical Chemistry A, 2021, 125(7): 1468-1475. doi: 10.1021/acs.jpca.0c09767
    [59] SAIGO M, MIYATA K, TANAKA S I, et al. Suppression of structural change upon S1-T1 conversion assists the thermally activated delayed fluorescence process in carbazole-benzonitrile derivatives[J]. Journal of Physical Chemistry Letters, 2019, 10(10): 2475-2480. doi: 10.1021/acs.jpclett.9b00810
    [60] LIU Y C, KANG X, XU Y Q, et al. Modulating the carbonization degree of carbon dots for multicolor afterglow emission[J]. ACS Applied Materials & Interfaces, 2022, 14(19): 22363-22371.
    [61] SONG Z J, SHANG Y, LOU Q, et al. A molecular engineering strategy for achieving blue phosphorescent carbon dots with outstanding efficiency above 50%[J]. Advanced Materials, 2023, 35(6): 2207970. doi: 10.1002/adma.202207970
    [62] HE J L, CHEN Y H, HE Y L, et al. Anchoring carbon nanodots onto nanosilica for phosphorescence enhancement and delayed fluorescence nascence in solid and liquid states[J]. Small, 2020, 16(49): 2005228. doi: 10.1002/smll.202005228
    [63] LIANG Y C, GOU S S, LIU K K, et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution[J]. Nano Today, 2020, 34: 100900. doi: 10.1016/j.nantod.2020.100900
    [64] HAN Z C, LI P, DENG Y C, et al. Reversible and color-variable afterglow luminescence of carbon dots triggered by water for multi-level encryption and decryption[J]. Chemical Engineering Journal, 2021, 415: 128999. doi: 10.1016/j.cej.2021.128999
    [65] CHAO T Y, DONG X Z, WANG J J, et al. Enhanced aggregation-induced phosphorescence of carbon dots for information encryption applications[J]. ACS Applied Nano Materials, 2022, 5(10): 15720-15727. doi: 10.1021/acsanm.2c03785
    [66] SUN X, HE W, LIU B . Water-soluble long afterglow carbon dots/silica composites for dual-channel detection of alkaline phosphatase and multi-level information anti-counterfeiting[J]. Analytical Methods, 2022, 14(47): 5001-5011. doi: 10.1039/D2AY01587K
    [67] WANG J, SUN X B, PAN W, et al. A fluorescence and phosphorescence dual-signal readout platform based on carbon dots/SiO2 for multi-channel detections of carbaryl, thiram and chlorpyrifos[J]. Microchemical Journal, 2022, 178: 107408. doi: 10.1016/j.microc.2022.107408
    [68] WANG F, PENG Q, HU J, et al. Construction of a ratiometric phosphorescent assay with long-lived carbon quantum dots and inorganic nanoparticles for its application in environmental and biological systems[J]. New Journal of Chemistry, 2019, 43(31): 12410-12416. doi: 10.1039/C9NJ02151E
    [69] ZHU Y, FENG Z, YAN Z, et al. Promoting the transfer of phosphorescence from the solid state to aqueous phase and establishing the universal real-time detection based on the smartphone imaging[J]. Sensors and Actuators B: Chemical, 2022, 371: 132529. doi: 10.1016/j.snb.2022.132529
    [70] CHEN S, CHEN X B, LIU W Y, et al. Phosphorescence, fluorescence, and colorimetric triple- mode sensor for the detection of acid phosphatase and corresponding inhibitor[J]. Analytica Chimica Acta, 2023, 1275: 341612. doi: 10.1016/j.aca.2023.341612
    [71] CAPOULADE J, WACHSMUTH M. Quantitative fluorescence imaging of protein diffusion and interaction in living cells[J]. Nature Biotechnology, 2011, 29(9): 835-842. doi: 10.1038/nbt.1928
    [72] NANISHI Y. The birth of the blue LED[J]. Nature Photonics, 2014, 8(12): 884-886. doi: 10.1038/nphoton.2014.291
    [73] KESSLER F, WATANABE Y, SASABE H, et al. High-performance pure blue phosphorescent OLED using a novel bis-heteroleptic iridium(III) complex with fluorinated bipyridyl ligands[J]. Journal of Materials Chemistry C, 2013, 1(6): 1070-1075. doi: 10.1039/c2tc00836j
    [74] LIANG Y C, LIU K K, WU X Y, et al. Lifetime-engineered carbon nanodots for time division duplexing[J]. Advanced Science, 2021, 8(6): 2003433. doi: 10.1002/advs.202003433
    [75] ZHANG S J, LIU R H, CUI Q L, et al. Ultrabright fluorescent silica nanoparticles embedded with conjugated oligomers and their application in latent fingerprint detection[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44134-44145.
    [76] DONG X Y, NIU X Q, ZHANG Z Y, et al. Red fluorescent carbon dot powder for accurate latent fingerprint identification using an artificial intelligence program[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29549-29555.
    [77] WANG J, MA Q Q, LIU H Y, et al. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition[J]. Analytical Chemistry, 2017, 89(23): 12764-12770. doi: 10.1021/acs.analchem.7b03003
    [78] LI F, TANG L, LIU Y, et al. Background-free latent fingerprint imaging based on carbonized polymers@silica powder with intense green room-temperature phosphorescence[J]. Optical Materials, 2022, 128: 112356. doi: 10.1016/j.optmat.2022.112356
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  246
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-30
  • 修回日期:  2023-09-06
  • 录用日期:  2023-09-23
  • 网络出版日期:  2023-10-17
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回