留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电纺丝制备Janus微纳米纤维研究进展

刘思彤 金丹 孙东明 王静 王原 王艳慧 李懿轩

刘思彤, 金丹, 孙东明, 等. 静电纺丝制备Janus微纳米纤维研究进展[J]. 复合材料学报, 2024, 41(5): 2321-2332. doi: 10.13801/j.cnki.fhclxb.20231011.001
引用本文: 刘思彤, 金丹, 孙东明, 等. 静电纺丝制备Janus微纳米纤维研究进展[J]. 复合材料学报, 2024, 41(5): 2321-2332. doi: 10.13801/j.cnki.fhclxb.20231011.001
LIU Sitong, JIN Dan, SUN Dongming, et al. Research progress of preparation of Janus micro/nano fibers prepared by electrospinning[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2321-2332. doi: 10.13801/j.cnki.fhclxb.20231011.001
Citation: LIU Sitong, JIN Dan, SUN Dongming, et al. Research progress of preparation of Janus micro/nano fibers prepared by electrospinning[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2321-2332. doi: 10.13801/j.cnki.fhclxb.20231011.001

静电纺丝制备Janus微纳米纤维研究进展

doi: 10.13801/j.cnki.fhclxb.20231011.001
基金项目: 辽宁省“兴辽英才计划”(XLYC2008003);省博士科研启动基金计划项目(2021-BS-297)
详细信息
    通讯作者:

    刘思彤,硕士,工程师,研究方向为纳米化学 E-mail: ssicugzyx@126.com

  • 中图分类号: TB34;TB332

Research progress of preparation of Janus micro/nano fibers prepared by electrospinning

Funds: Liaoning Province “Xingliao Talent Plan” Project (XLYC2008003); Provincial Doctoral Research Initiation Fund Program (2021-BS-297)
  • 摘要: 为进一步深入研究静电纺丝技术及Janus微纳米纤维的可控制备,使具有非均质结构特点的Janus纤维材料在多功能复合材料领域得到更广泛的应用。近年来,随着静电纺丝技术的不断发展,Janus纤维的纺制工艺逐渐从纺丝装置拓展、纺丝参数优化以提高纤维并行率,逐渐向纤维形貌多样化、结构多级化及组成多相化的导向性设计方向发展,以推动Janus纤维在多功能复合材料领域的快速发展。本文综述了基于静电纺丝技术所制备的并轴及同轴结构的Janus微纳米纤维,比较说明了不同结构Janus微纳米纤维的制备方法、形成机制及结构调控等方面的研究进展及成果,并进一步表明了静电纺丝技术在实现Janus纤维微纳米尺度导向性结构控制方面具有广泛的应用潜力。

     

  • 图  1  (a) 静电纺丝技术的发展[9, 18-22];(b) 静电纺丝技术制备Janus纤维的发展[31-33, 39, 48, 58, 61]

    Fg—Gravity; Ff—Air resistance; Fσ—Surface tension; Fμ—Viscoelasticity; FΔ—Coulomb combined force; V—Voltage

    Figure  1.  (a) Development of electrospinning technology[9, 18-22]; (b) Development of Janus fibers preparation by electrospinning technology[31-33, 39, 48, 58, 61]

    图  2  ((a)~(f))复合Taylor锥及Janus纤维形成机制;((g), (h))反转电场纺丝法装置示意图及Janus纤维SEM图像;((i)~(k))共轭电纺法装置示意图及Janus纤维SEM图像

    PVP—Polyvinyl pyrrolidone; Fγ—Molecular force; Fe, F'e—Intermolecular repulsion; F'c—Charge repulsion; F'μ—Adhesion between spinning fluids; Fc—Electrostatic repulsive force; PMMA—Polymethyl methacrylate; PANI—Polyaniline; Tb(TTA)3(TTPO)2—Terbium complex; TPU—Thermoplastic polyurethane; PLGA—Poly(lactic-co-glycolic acid)

    Figure  2.  ((a)-(f)) Formation mechanism diagram of composite Taylor cone and Janus fibers; ((g), (h)) Schematic illustrations of reverse electric field electrospinning device and SEM image of Janus fibers; ((i)-(k)) Schematic illustrations of conjugate electrospinning device and SEM images of Janus fibers

    图  3  ((a), (b)) 热塑性聚氨酯(TPU)//聚酰亚胺(PI) Janus螺旋纤维SEM图像及荧光照片[47];(c) 双喷头纺丝法装置示意图;(d) 热塑性聚酯弹性体(HSPET)//聚对苯二甲酸丙二醇酯(PTT) Janus螺旋纤维SEM图像[49]

    Figure  3.  ((a), (b)) SEM and fluorescence images of thermoplastic polyurethane (TPU)//polyimide (PI) Janus helical fibers[47]; (c) Schematic illustrations of two-spinneret electrospinning device; (d) SEM image of thermoplastic polyester elastomer (HSPET)//polyethylene terephthalate (PTT) Janus helical fibers[49]

    图  4  (a) 偏轴共纺法装置示意图及[肉桂酸(FA)/聚乙烯吡咯烷酮(PVP)]//[FA/玉米醇溶蛋白(zein)] Janus纤维TEM图像[51];(b) 单轴电纺法装置示意图及聚己内酯(PCL)//[纳米Ag粒子(AgNP)/PVP] Janus纤维TEM图像[52]

    Figure  4.  (a) Schematic illustrations of off-axisl electrospinning device and TEM image of [cinnamic acid (FA)/polyvinyl pyrrolidone (PVP)]//[FA/zein] Janus nanofibers[51]; (b) Schematic illustrations of single-axis electrospinning device and TEM image of polycaprolactone (PCL)//[Ag nanoparticles (AgNP)/PVP] Janus nanofibers[52]

    图  5  (a) Janus带状纤维形成机制;(b) [铽有机配合物(Tb(BA)3phen)/聚甲基丙烯酸甲酯(PMMA)]//[聚苯胺(PANI)/Fe3O4/PMMA] Janus纤维光学显微镜图像[57]

    NPs—Nanoparticles

    Figure  5.  (a) Formation mechanism diagram of Janus ribbon fibers; (b) Optical microscope image of [terbium complexes (Tb(BA)3phen)/polymethyl methacrylate (PMMA)]//[polyaniline (PANI)/Fe3O4/PMMA] Janus fibers[57]

    图  6  ((a), (b)) [聚环氧乙烷(PEO)/PCL]//PCL Janus纤维SEM及荧光照片[59];((c), (d)) 聚乳酸(PLA)//聚乙烯醇(PVA) Janus纤维SEM及荧光照片[61]

    Figure  6.  ((a), (b)) SEM and fluorescence images of [polyethylene oxide (PEO)/PCL]//PCL Janus fibers[59]; ((c), (d)) SEM and fluorescence images of polylactic acid (PLA)//polyvinyl alcohol (PVA) Janus fibers[61]

    图  7  Janus中空纤维SEM图像:(a) ZnFe2O4@ZnO[62];(b) NiFe@Co[63];(c) [Bi2O3/C]@SnO2[64]

    Figure  7.  SEM images of Janus hollow fibers: (a) ZnFe2O4@ZnO[62]; (b) NiFe@Co[63]; (c) [Bi2O3/C]@SnO2[64]

    图  8  不同Janus纤维形成机制图

    CA—Celluloes acetate; SDS—Sodium dodecyl sulfate

    Figure  8.  Formation mechanism diagram of different Janus fibers

    图  9  (a) Janus膜结构示意图; ((b~(e)) 不同结构Janus膜SEM图像及光学显微镜图像

    PNM—Polyacrylonitrile fiber membrane; CNT—Carbon nanotubes; MCP—Modified polyurethane composite nanofiber membrane; MP—Coated polyurethane composite nanofiber membrane; Tb(BA)3phen—Terbium complex

    Figure  9.  (a) Schematic diagram of Janus membrane structure; ((b)-(e)) SEM and optical microscope images of different structures of Janus membrane

  • [1] CHO I, LEE K W. Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene[J]. Applied Polymer Science, 1985, 30(5): 1903-1926. doi: 10.1002/app.1985.070300510
    [2] HWANG S, LAHANN J. Differentially degradable Janus particles for controlled release applications[J]. Macromolecular Rapid Communications, 2012, 33(14): 1178-1183. doi: 10.1002/marc.201200054
    [3] SAFAIE N, FERRIER R C. Janus nanoparticle synthesis: Overview, recent developments, and applications[J]. Journal Applied Physics, 2020, 127: 170902. doi: 10.1063/5.0003329
    [4] ZHAO B, ZHOU H, LIU C Y, et al. Fabrication and directed assembly of magnetic Janus rods[J]. New Journal of Chemistry, 2016, 40(8): 6541-6545. doi: 10.1039/C6NJ00825A
    [5] CHEN Y Q, LIANG Y, WANG L, et al. Preparation and applications of freestanding Janus nanosheets[J]. Nanoscale, 2021, 13(36): 15151-15176. doi: 10.1039/D1NR04284J
    [6] ZHAO C X, JIAN X X, ZHANG X, et al. Rapid capture and photocatalytic inactivation of target cells from whole blood by rotating Janus nanotubes[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 12972-12981.
    [7] WANG M L, YU D G, BLIGH S W A. Progress in preparing electrospun Janus fibers and their applications[J]. Applied Materials Today, 2023, 31: 101766. doi: 10.1016/j.apmt.2023.101766
    [8] LI M, LU K J, WANG L J, et al. Janus membranes with asymmetric wettability via a layer-by-layer coating strategy for robust membrane distillation[J]. Journal of Membrane Science, 2020, 603: 118031. doi: 10.1016/j.memsci.2020.118031
    [9] TAYLOR G. Disintegration of water droplets in and electric field[J]. Proceedins of the Royal Society A, 1964, 280: 383-397.
    [10] LIU Z Q, RAMAKRISHNA S, LIU X L. Electrospinning and emerging healthcare and medicine possibilities[J]. APL Bioengineering, 2020, 4(3): 030901. doi: 10.1063/5.0012309
    [11] BHUSHANI J A, ANANDHARAMAKRISHNAN C. Electrospinning and electrospraying techniques: Potential food based applications[J]. Trends in Food Science & Technology, 2014, 38(1): 21-33.
    [12] SUN G R, SUN L Q, XIE H M, et al. Electrospinning of nanofibers for energy applications[J]. Nanomaterials, 2016, 6(7): 129-158. doi: 10.3390/nano6070129
    [13] 许景钫, 熊昆, 柯爌琼, 等. 多级结构电纺纳米纤维在环境催化领域的应用[J]. 环境化学, 2021, 40(11): 3617-3626. doi: 10.7524/j.issn.0254-6108.2020072104

    XU Jingfang, XIONG Kun, KE Kuangqiong, et al. Application of hierarchical structure electrospinning nanofibers in the environmental catalysis[J]. Environmental Chemistry, 2021, 40(11): 3617-3626(in Chinese). doi: 10.7524/j.issn.0254-6108.2020072104
    [14] ZHOU Y J, LIU Y N, ZHANG M X, et al. Electrospun nanofiber membranes for air filtration: A review[J]. Nanomaterials, 2022, 12(7): 1077. doi: 10.3390/nano12071077
    [15] 韩正意, 赵欣, 徐晓冬. 静电纺丝纳米纤维在吸附分离领域的应用进展[J]. 材料导报, 2018, 32(32): 242-246.

    HAN Zhengyi, ZHAO Xin, XU Xiaodong. Application progress of electrospun nanofibers in adsorption and separation[J]. Materials Reports, 2018, 32(32): 242-246(in Chinese).
    [16] CUI Y, XU K Z, ZHU B, et al. Synthesis of niobium nitride porous nanofibers with excellent microwave absorption properties via reduction nitridation of electrospinning precursor nanofibers with ammonia gas[J]. Journal of Alloys and Compounds, 2022, 907: 164453. doi: 10.1016/j.jallcom.2022.164453
    [17] CHEN L, YU Q W, PAN C Y, et al. Chemiresistive gas sensors based on electrospun semiconductor metal oxides: A review[J]. Talanta, 2022, 246: 123527. doi: 10.1016/j.talanta.2022.123527
    [18] LAURICELLA M, SUCCI S, ZUSSMAN E, et al. Models of polymer solutions in electrified jets and solution blowing[J]. Reviews of Modern Physics, 2020, 92(3): 035004. doi: 10.1103/RevModPhys.92.035004
    [19] BOSE G M. Recherches sur la cause et sur la véritable théorie de l'électricité[M]. France: Wittenberg, 1745.
    [20] FORMHALS A. Process and apparatus for preparing artificial threads: US patent, 1975504A[P]. 1934-10-02.
    [21] RENEKER D H, CHUN I. Nanometre diameter fibers of polymer, produced by electrospinning[J]. Nanotechnology, 1996, 7(3): 216-223. doi: 10.1088/0957-4484/7/3/009
    [22] SPIVAK A F, DZENIS Y A, RENEKER D H. Model of steady state jet in the electrospinning process[J]. Mechanical & Materials Engineering, 2000, 27(1): 37-42.
    [23] 刘思彤. 静电纺丝技术制备稀土钨酸盐低维纳米材料与表征[D]. 长春: 长春理工大学, 2015.

    LIU Sitong. Electrospinning fabrication and characterization of rare earth tungstate low-dimensional nanomaterials[D]. Changchun: Changchun University of Science and Technology, 2015(in Chinese).
    [24] 吕喆, 董相廷, 王进贤. 静电纺丝制备Eu3+/SiO2复合纳米带及其发光性能研究[J]. 中国陶瓷, 2022, 58(8): 22-26.

    LYU Zhe, DONG Xiangting, WANG Jinxian. Fabrication and luminescent properties of Eu3+/SiO2 nanoribbons by electrospinning[J]. China Ceramics, 2022, 58(8): 22-26(in Chinese).
    [25] JIN Y, YANG D Y, KANG D Y, et al. Fabrication of necklace-like structures via electrospinning[J]. Langmuir, 2010, 26(2): 1186-1190. doi: 10.1021/la902313t
    [26] CHEN S L, HOU H Q, HU P, et al. Polymeric nanosprings by bicomponent electrospinning[J]. Macromolecular Materials Engineering, 2009, 294(4): 265-271. doi: 10.1002/mame.200800342
    [27] ZHAO J H, SI N, XU L, et al. Experimental and theoretical study on the electrospinning nanoporous fibers process[J]. Materials Chemistry and Physics, 2016, 170: 294-302. doi: 10.1016/j.matchemphys.2015.12.054
    [28] LAI F L, MIAO Y E, HUANG Y P, et al. Flexible hybrid membranes of NiCo2O4-doped carbon nanofiber@MnO2 core-sheath nanostructures for high-performance supercapacitors[J]. The Journal of Physical Chemistry C, 2015, 119(24): 13442-13450. doi: 10.1021/acs.jpcc.5b02739
    [29] LI D, XIA Y N. Direct fabrication of eomposite and eeramic hollow nanofibers by electrospinning[J]. Nano Letters, 2004, 4(5): 933-938. doi: 10.1021/nl049590f
    [30] SUN F, QI H N, XIE Y R, et al. Flexible self-supporting bifunctional [TiO2/C]//[Bi2WO6/C] carbon-based Janus nanofiber heterojunction photocatalysts for efficient hydrogen evolution and degradation of organic pollutant[J]. Journal of Alloys and Compounds, 2020, 830: 154673. doi: 10.1016/j.jallcom.2020.154673
    [31] DE GENNES P G. Soft matter[J]. Science, 1992, 256(5056): 495-497. doi: 10.1126/science.256.5056.495
    [32] LIN T, WANG H X, WANG X G. Self-crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane[J]. Advanced Materials, 2005, 17(22): 2699-2703. doi: 10.1002/adma.200500901
    [33] GUPTA P, WILKES G L. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach[J]. Polymer, 2003, 44(20): 6353-6359. doi: 10.1016/S0032-3861(03)00616-5
    [34] CAI M, HE H W, ZHANG X, et al. Efficient synthesis of PVDF/PI side-by-side bicomponent nanofiber membrane with enhanced mechanical strength and good thermal stability[J]. Nanomaterials, 2019, 9(1): 39-50.
    [35] ZHOU X J, MA Q L, DONG X T, et al. Magnetism and white-light-emission bifunctionality simultaneously assembled into flexible Janus nanofiber via electrospinning[J]. Journal of Materials Science, 2015, 50(24): 7884-7895. doi: 10.1007/s10853-015-9313-5
    [36] YU D G, YANG C, JIN M, et al. Medicated Janus fibers fabricated using a Teflon-coated side-by-side spinneret[J]. Colloids and Surfaces B: Biointerfaces, 2016, 138: 110-116. doi: 10.1016/j.colsurfb.2015.11.055
    [37] XIANG Q, MA Y M, YU D G, et al. Electrospinning using a Teflon-coated spinneret[J]. Applied Surface Science, 2013, 284: 889-893. doi: 10.1016/j.apsusc.2013.08.030
    [38] LEE J Y, MOON S J, HAN Y B, et al. Facile fabrication of anisotropic multicompartmental microfibers using charge reversal electrohydrodynamic co-jetting[J]. Macromolecular Rapid Communications, 2022, 43(1): 2100560. doi: 10.1002/marc.202100560
    [39] DOSHI J, RENEKER D H. Electrospinning process and applications of electrospun fibers[J]. Journal of Electrostatics, 1995, 35(2-3): 151-160. doi: 10.1016/0304-3886(95)00041-8
    [40] PAN H, LI L M, HU L, et al. Continuous aligned polymer fibers produced by a modified electrospinning method[J]. Polymer, 2006, 47(14): 4901-4904. doi: 10.1016/j.polymer.2006.05.012
    [41] TIAN J, MA Q L, YU W S, et al. Preparation of Janus microfibers with magnetic and fluorescence functionality via conjugate electro-spinning[J]. Materials & Design, 2019, 170: 107701.
    [42] TIAN J, MA Q L, YU W S, et al. High pairing rate Janus-structured microfibers and array: High-efficiency conjugate electrospinning fabrication, structure analysis and coinstantaneous multifunctionality of anisotropic conduction, magnetism and enhanced red fluorescence[J]. RSC Advances, 2019, 9(19): 10679-10692. doi: 10.1039/C9RA01147A
    [43] 胡小赛, 沈勇, 王黎明, 等. 吸波材料结构、性能及应用研究进展[J]. 应用化工, 2015, 44(9): 1741-1746. doi: 10.16581/j.cnki.issn1671-3206.2015.09.043

    HU Xiaosai, SHEN Yong, WANG Liming, et al. Study on the structure, properties and application of microwave absorbing materials[J]. Applied Chemical Industry, 2015, 44(9): 1741-1746(in Chinese). doi: 10.16581/j.cnki.issn1671-3206.2015.09.043
    [44] RAGHUBANSHI H, DIKIO E D, NAIDOO E B. The properties and applications of helical carbon fibers and related materials: A review[J]. Journal of Industrial and Engineering Chemistry, 2016, 44: 23-42. doi: 10.1016/j.jiec.2016.08.023
    [45] SIM H J, JANG Y, KIM H, et al. Self-helical fiber for glucose-responsive artificial muscle[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20228-20233.
    [46] TENG D F, ZENG Y C. Effect of co-electrospinning system on morphology and oil adsorption of helical nanofibers[J]. Textile Research Journal, 2022, 92(21-22): 4244-4259.
    [47] 蔡明. 并列双组分纳米纤维膜的制备及其性能研究[D]. 青岛: 青岛大学, 2019.

    CAI Ming. The preparation and characteristics of side-by-side bicomponent nanofiber membranes[D]. Qingdao: Qingdao University, 2019(in Chinese).
    [48] WU H H, BIAN F G, GONG R H, et al. Effects of electric field and polymer structure on the formation of helical nanofibers via coelectrospinning[J]. Industrial & Engineering Chemistry Research, 2015, 54(39): 9585-9590.
    [49] LI C J, WANG J N, ZHANG B F. Direct formation of "artificial wool" nanofiber via two-spinneret electrospinning[J]. Journal of Applied Polymer Science, 2012, 123(5): 2992-2995. doi: 10.1002/app.34944
    [50] SUN Z, ZUSSMAN E, YARIN A L, et al. Compound core-shell polymer nanofibers by co-electrospinning[J]. Advanced Materials, 2003, 15(22): 1929-1932. doi: 10.1002/adma.200305136
    [51] WANG M L, LI D, LI J, et al. Electrospun Janus zein-PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs[J]. Materials & Design, 2020, 196: 109075.
    [52] LI R, CHENG Z Q, YU X B, et al. Preparation of antibacterial PCL/PVP-AgNP Janus nanofibers by uniaxial electrospinning[J]. Materials Letters, 2019, 254: 206-209. doi: 10.1016/j.matlet.2019.07.075
    [53] PAN Z W, DAI Z R, WANG Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291(5510): 1947-1949. doi: 10.1126/science.1058120
    [54] KOOMBHONGSE S, LIU W X, RENEKER D H. Flat polymer ribbons and other shapes by electrospinning[J]. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39(21): 2598-2606.
    [55] TOPUZ F, UYAR T. Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon[J]. Materials Science and Engineering: C, 2017, 80: 371-378. doi: 10.1016/j.msec.2017.06.001
    [56] YIN D D, MA Q L, DONG X T, et al. Single flexible Janus nanobelts to realize tunable and enhanced simultaneous photoluminescent, electrical, and magnetic trifunctionality[J]. ChemPlusChem, 2015, 80(3): 568-575. doi: 10.1002/cplu.201402334
    [57] MA Q L, WANG J X, DONG X T, et al. Flexible Janus nanoribbons array: A new strategy to achieve excellent electrically conductive anisotropy, magnetism, and photoluminescence[J]. Advanced Functional Materials, 2015, 25(16): 2436-2443. doi: 10.1002/adfm.201500348
    [58] TIAN J, MA Q L, YU W S, et al. An electrospun flexible Janus nanoribbon array endowed with simultaneously tuned trifunctionality of electrically conductive anisotropy, photoluminescence and magnetism[J]. New Journal of Chemistry, 2017, 41(22): 13983-13992. doi: 10.1039/C7NJ03090H
    [59] SU Y C, TASKIN M B, DONG M D, et al. A biocompatible artificial tendril with a spontaneous 3D Janus multi-helix-perversion configuration[J]. Materials Chemistry Frontiers, 2020, 4(7): 2149-2156. doi: 10.1039/D0QM00125B
    [60] MANZ A, FETTINGER J C, VERPOORTE E, et al. Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze[J]. TrAC Trends in Analytical Chemistry, 1991, 10(5): 144-149. doi: 10.1016/0165-9936(91)85116-9
    [61] ZHOU G L, YANG G, LI X L, et al. Hydrophobic/hydrophilic cooperative Janus branched polymer fibers with controllable length and density of nanobranches[J]. Macromolecular Materials and Engineering, 2018, 303(5): 1800006. doi: 10.1002/mame.201800006
    [62] LIU H Y, HAN C H, SHAO C L, et al. ZnO/ZnFe2O4 Janus hollow nanofibers with magnetic separability for photocatalytic degradation of water-soluble organic dyes[J]. ACS Applied Nano Materials, 2019, 2(8): 4879-4890. doi: 10.1021/acsanm.9b00838
    [63] CHEN X, PU J, HU X H, et al. Janus hollow nanofiber with bifunctional oxygen electrocatalyst for rechargeable Zn-air battery[J]. Small, 2022, 18(16): 2200578. doi: 10.1002/smll.202200578
    [64] WANG X S, WANG W H, ZHANG J Q, et al. Carbon sustained SnO2-Bi2O3 hollow nanofibers as Janus catalyst for high-efficiency CO2 electroreduction[J]. Chemical Engineering Journal, 2021, 426: 131867. doi: 10.1016/j.cej.2021.131867
    [65] XI X, MA Q L, DONG X T, et al. Peculiarly structured Janus nanofibers display synchronous and tuned trifunctionality of enhanced luminescence, electrical conduction, and superparamagnetism[J]. ChemPlusChem, 2018, 83(3): 108-116. doi: 10.1002/cplu.201800030
    [66] YANG X L, TIAN J, QI H N, et al. Electrospun aeolotropic electrically conductive neoteric janus nanostrips array functionalized by enhancive up-conversion luminescence and magnetism[J]. Material Today Communications, 2020, 24: 101035. doi: 10.1016/j.mtcomm.2020.101035
    [67] WANG M L, GE R L, ZHAO P, et al. Exploring wettability difference-driven wetting by utilizing electrospun chimeric Janus microfiber comprising cellulose acetate and polyvinylpyrrolidone[J]. Materials & Design, 2023, 226: 111652.
    [68] LIU H, WANG H B, LU X H, et al. Electrospun structural nanohybrids combining three composites for fast helicide delivery[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1017-1029. doi: 10.1007/s42114-022-00478-3
    [69] KIDOAKI S, KWON I, MATSUDA T. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques[J]. Biomaterials, 2005, 26(1): 37-46. doi: 10.1016/j.biomaterials.2004.01.063
    [70] YAN X H, WANG Y X, HUANG Z Z, et al. Janus polyacrylonitrile/carbon nanotube nanofiber membranes for oil/water separation[J]. ACS Applied Nano Materials, 2023, 6(6): 4511-4521. doi: 10.1021/acsanm.3c00006
    [71] TANG Y, YAN J, WANG J J, et al. MXene based flexible Janus nanofibrous membrane composite for unidirectional water transportation[J]. Composites Science and Technology, 2023, 239: 110032. doi: 10.1016/j.compscitech.2023.110032
    [72] HOU L L, WANG N, MAN X K, et al. An interpenetrating Janus membrane for high rectification ratio liquid unidirectional penetration[J]. ACS Nano, 2019, 13(4): 4124-4132. doi: 10.1021/acsnano.8b08753
    [73] HU R J, WANG N, HOU L L, et al. A bioinspired hybrid membrane with wettability and topology anisotropy for highly efficient fog collection[J]. Journal of Materials Chemistry A, 2019, 7(1): 124-132. doi: 10.1039/C8TA10615K
    [74] QI H N, MA Q L, XIE Y R, et al. Electrospun polyfunctional conductive anisotropic Janus-shaped film, derivative 3D Janus tube and 3D plus 2D complete flag-shaped structures[J]. Journal of Materials Chemistry C, 2020, 8(19): 6565-6576. doi: 10.1039/D0TC00366B
  • 加载中
图(9)
计量
  • 文章访问数:  451
  • HTML全文浏览量:  382
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-08
  • 修回日期:  2023-09-21
  • 录用日期:  2023-09-22
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回