留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于机器学习的零刚度隔振超材料设计及性能验证

赵哲 杨来侠 吴玲玲 田小永 代鑫

赵哲, 杨来侠, 吴玲玲, 等. 一种基于机器学习的零刚度隔振超材料设计及性能验证[J]. 复合材料学报, 2024, 41(5): 2599-2608. doi: 10.13801/j.cnki.fhclxb.20231010.002
引用本文: 赵哲, 杨来侠, 吴玲玲, 等. 一种基于机器学习的零刚度隔振超材料设计及性能验证[J]. 复合材料学报, 2024, 41(5): 2599-2608. doi: 10.13801/j.cnki.fhclxb.20231010.002
ZHAO Zhe, YANG Laixia, WU Lingling, et al. Design and performance validation of a zero-stiffness vibroisolating metamaterialbased on machine learning[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2599-2608. doi: 10.13801/j.cnki.fhclxb.20231010.002
Citation: ZHAO Zhe, YANG Laixia, WU Lingling, et al. Design and performance validation of a zero-stiffness vibroisolating metamaterialbased on machine learning[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2599-2608. doi: 10.13801/j.cnki.fhclxb.20231010.002

一种基于机器学习的零刚度隔振超材料设计及性能验证

doi: 10.13801/j.cnki.fhclxb.20231010.002
基金项目: 国家自然科学基金(52003203);国家重点研发计划(2022YFB3806101)
详细信息
    通讯作者:

    杨来侠,博士,教授,博士生导师,研究方向为快速成形与模具制造 E-mail: xustylx@163.com

    吴玲玲,博士,副教授,博士生导师,研究方向为具有特异力学性能的机械超材料 E-mail: lingling.wu@xjtu.edu.cn

  • 中图分类号: TB332

Design and performance validation of a zero-stiffness vibroisolating metamaterialbased on machine learning

Funds: National Natural Science Foundation of China (52003203); National Key Research and Development Program of China (2022YFB3806101)
  • 摘要: 准零刚度隔振器作为国内外主流的非线性隔振器,凭借其高静态刚度和低动态刚度力学特性,在机械工程领域应用较多,但近零刚度范围窄、后期组装繁琐等问题限制了其隔振的应用范围,通过结构设计使近零刚度范围增大,且能通过一体化成型技术快速制备方面的研究仍较稀缺。本文基于能量屏蔽理论设计了一种新型零刚度单元结构,通过将外界输入能量循环于超材料内部,从而屏蔽外界对隔振对象的能量输入,达到隔振效果。该研究首先设计出具有优化潜力的初始结构,然后使用机器学习与有限元分析结合的方法对初始结构进行优化,自动搜索出最优的超材料结构参数,且最优结构满足零刚度性能设计要求,之后使用3D打印对最优结构单元及2×2阵列结构进行一体化制造。并对样件进行静态实验验证,实验结果表明:在静态压缩过程中,该结构的等效刚度在大范围内近似于0。又对阵列结构进行动态振动实验,结果得出,阵列结构在23 mm振幅下0.1~100 Hz范围内,9.2 kg载荷隔振性能最优,最小传递率可达−61 dB,载荷越接近9.2 kg隔振性能越好。该结构具有结构简单、一体化成型等优势,可应用于列车座椅、康复医疗设备、精密仪器保护及微重力环境等领域下的隔振。

     

  • 图  1  (a)二维初始结构示意图;(b)三维初始结构渲染图

    l—Length of hexagonal frame; r—Radius of the center circle; α—Inner angle of the hexagon side; d—Side width; w—Width of the rectangle

    Figure  1.  (a) Two-dimensional schematic diagram of the initial structure; (b) Three-dimensional rendering of the initial structure

    图  2  初始结构有限元模型

    Figure  2.  Finite element model of initial structure

    图  3  模拟初始结构压缩过程中上表面的力-位移(F-D)曲线和结构变形云图

    Figure  3.  Force-displacement (F-D) curve and structural deformation cloud map during simulation compression process of the initial structure

    图  4  初始结构压缩位移示意图

    h1—Length of the thin plate before buckling; h2—Length of the plate after buckling; L—Height of the vibration isolation unit structure before compression; t—Compression displacement; F(t)—The force applied to the upper surface

    Figure  4.  Schematic diagram of the initial structure's compression displacement

    图  5  薄板屈曲变型示意图

    a—Length of the plate; b—Width of the plate

    Figure  5.  Schematic diagram of the buckling deformation of the thin plate

    图  6  压缩实验示意图

    Figure  6.  Schematic diagram of compression test

    图  7  振动实验台装置示意图

    Figure  7.  Schematic diagram of the vibration test platform

    图  8  阵列结构振动实验

    Figure  8.  Vibration test of the array structure

    图  9  (a)基于遗传算法(GA)的优化迭代曲线;(b)优化过程中不同代数最优结构的力-位移曲线;((c)~(f))优化过程中不同代数最优结构的形状、参数和适应度值

    r—Radius of the center circle; α—Inner angle of the hexagon side; d—Side width; ①, ② and ③ show the best configuration of the 3rd, 20th, and 86th generation, respectively; x, y—Different coordinate directions

    Figure  9.  (a) Optimization iteration history by applying genetic algorithm (GA); (b) Force-displacement curves of optimization process; ((c)-(f)) Structure shape, parameters and fitness value of different algebraic optimal structures in the optimization process

    图  10  熔融沉积成型(FDM)工艺打印示意图

    TPU—Thermoplastic polyurethane

    Figure  10.  Schematic diagram of fused deposition modeling (FDM) printing process

    图  11  ((a), (b))超材料单元结构实物图;((c), (d)) 2×2超材料阵列结构实物图

    Figure  11.  ((a), (b)) Physical pictures of a metamaterial unit structure samples; ((c), (d)) Physical pictures of 2×2 metamaterial array structure samples

    图  12  超材料最优单元结构(a)与阵列结构(b)压缩实验

    D—Displacement

    Figure  12.  Compression test of metamaterial optimal unit (a) and array structure (b)

    图  13  超材料单元结构压缩实验及仿真力-位移曲线

    Figure  13.  Force-displacement curves of compression test and simulation of metamaterial unit structure

    图  14  超材料阵列结构压缩实验力-位移曲线

    Figure  14.  Force-displacement curves of array structure compression test

    图  15  超材料阵列结构在不同载荷下的传递率-频率曲线

    Figure  15.  Transmissibility-frequency curves of metamaterial array structures under different loads

    图  16  23 mm振幅9.2 kg载荷下输入与输出振幅-频率曲线对比

    Figure  16.  Comparison of input and output amplitude-frequency curves under 23 mm amplitude 9.2 kg load

    图  17  23 mm振幅9.2 kg载荷下扫频激励时输入与输出加速度对比

    Figure  17.  Comparison of input and output accelerations under sweeping excitation at 23 mm amplitude 9.2 kg load

  • [1] 李婷. 工业生产振动的危害及其控防对策研究[J]. 中国个体防护装备, 2017(2): 48-52. doi: 10.16102/j.cnki.cppe.2017.02.011

    LI Ting. Explore the syrian industrial production vibration harm and control countermeasures[J]. China Personal Protective Equipment, 2017(2): 48-52(in Chinese). doi: 10.16102/j.cnki.cppe.2017.02.011
    [2] 黄自武, 何卫. 地铁列车对数据中心精密设备的振动影响评价[J]. 噪声与振动控制, 2023, 43(3): 167-174. doi: 10.3969/j.issn.1006-1355.2023.03.026

    HUANG Ziwu, HE Wei. Influence of subway trains on precision equipment vibration in a data center[J]. Noise and Vibration Control, 2023, 43(3): 167-174(in Chinese). doi: 10.3969/j.issn.1006-1355.2023.03.026
    [3] SOUKOULIS C, KAFESAKI M, ECONOMOU E. Negative-index materials: New frontiers in optics[J]. Advanced Materials, 2006, 18(15): 1941-1952. doi: 10.1002/adma.200600106
    [4] BALAJI P S, KARTHIK SELVAKUMAR K. Applications of nonlinearity in passive vibration control: A review[J]. Journal of Vibration Engineering & Technologies, 2021, 9(2): 183-213.
    [5] MA Z Z, ZHOU R P, YANG Q C. Recent advances in quasi-zero stiffness vibration isolation systems: An overview and future possibilities[J]. Machines, 2022, 10(9): 813. doi: 10.3390/machines10090813
    [6] CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301(3-5): 678-689. doi: 10.1016/j.jsv.2006.10.011
    [7] XU D L, YU Q P, ZHOU J X, et al. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2013, 332(14): 3377-3389. doi: 10.1016/j.jsv.2013.01.034
    [8] 陈文华, 黄伟稀, 郝夏影, 等. 面向大振幅低频振动的重力倒摆式准零刚度隔振器研究[J]. 振动与冲击, 2022, 41(18): 205-209, 227. doi: 10.13465/j.cnki.jvs.2022.18.026

    CHEN Wenhua, HUANG Weixi, HAO Xiaying, et al. On the quasi-zero-stiffness isolator with a gravity inverted pendulum applied in large amplitude low frequency vibration isolation[J]. Journal of Vibration and Shock, 2022, 41(18): 205-209, 227(in Chinese). doi: 10.13465/j.cnki.jvs.2022.18.026
    [9] JI J C, LUO Q T, YE K. Vibration control based metamaterials and origami structures: A state-of-the-art review[J]. Mechanical Systems and Signal Processing, 2021, 161: 107945. doi: 10.1016/j.ymssp.2021.107945
    [10] ZHANG Q, GUO D K, HU G K. Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration isolation[J]. Advanced Functional Materials, 2021, 31(33): 2101428. doi: 10.1002/adfm.202101428
    [11] LU Z Q, ZHAO L, DING H, et al. A dual-functional metamaterial for integrated vibration isolation and energy harvesting[J]. Journal of Sound and Vibration, 2021, 509: 116251. doi: 10.1016/j.jsv.2021.116251
    [12] TAN X J, CHEN S, WANG B, et al. Real-time tunable negative stiffness mechanical metamaterial[J]. Extreme Mechanics Letters, 2020, 41: 100990. doi: 10.1016/j.eml.2020.100990
    [13] FAN H G, YANG L J, TIAN Y C, et al. Design of metastructures with quasi-zero dynamic stiffness for vibration isolation[J]. Composite Structures, 2020, 243: 112244. doi: 10.1016/j.compstruct.2020.112244
    [14] WU L L, WANG Y, ZHAI Z R, et al. Mechanical metamaterials for full-band mechanical wave shielding[J]. Applied Materials Today, 2020, 20: 100671. doi: 10.1016/j.apmt.2020.100671
    [15] KADIC M, MILTON G W, VAN HECKE M, et al. 3D metamaterials[J]. Nature Reviews Physics, 2019, 1(3): 198-210. doi: 10.1038/s42254-018-0018-y
    [16] YU X L, ZHOU J, LIANG H Y, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review[J]. Progress in Materials Science, 2018, 94: 114-173. doi: 10.1016/j.pmatsci.2017.12.003
    [17] KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: Past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126. doi: 10.1007/s11042-020-10139-6
    [18] CHIN C K, AL-BERMANI F G, KITIPORNCHAI S. Finite element method for buckling analysis of plate structures[J]. Journal of Structural Engineering, 1993, 119(4): 1048-1068.
    [19] LOU J J, ZHU S J, HE L, et al. Experimental chaos in nonlinear vibration isolation system[J]. Chaos, Solitons & Fractals, 2009, 40(3): 1367-1375.
    [20] WANG X, JIANG M, ZHOU Z W, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B: Engineering, 2017, 110: 442-458. doi: 10.1016/j.compositesb.2016.11.034
    [21] CANO-VICENT A, TAMBUWALA M M, HASSAN S S, et al. Fused deposition modelling: Current status, methodology, applications and future prospects[J]. Additive Manufacturing, 2021, 47: 102378. doi: 10.1016/j.addma.2021.102378
  • 加载中
图(17)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  264
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-26
  • 修回日期:  2023-09-18
  • 录用日期:  2023-09-25
  • 网络出版日期:  2023-10-12
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回