Research progress of lignin modification method and its application in preparation of carbon fiber
-
摘要: 木质素作为自然界最丰富的芳香族化合物,其含碳量达30%~40%,是制备碳纤维的优质原料。然而由于存在非晶态化学结构、低分子量、宽分子量分布和排列不良等特性,其复杂的非均质结构和固有的易絮凝特质需通过改性以克服。本文介绍了木质素的基本结构单元与特征,并在此基础上详细描述了物理混合、化学改性、生物作用等改性过程工艺条件及其对木质素结构及木质素基碳纤维的强度、电化学、过滤、透气等性能影响,并在此基础上对碳纤维在交通建筑、航空航天、生命健康及新能源等领域应用进行了拓展探讨。此外,拓展概述了木质素的定向官能团改性、绿色改性方法及改性过程表达等可行性,为木质素基碳纤维复合材料的进一步研究和开发提供思考,并推动其实现工业化应用。Abstract: Lignin, as the most abundant aromatic compound in nature, has a carbon content of 30%-40% and is a high-quality raw material for preparing carbon fiber. However, due to the characteristics of amorphous chemical structure, low molecular weight, wide molecular weight distribution and poor arrangement, its complex heterogeneous structure and inherent flocculation characteristics need to be overcome by modification. In this paper, the basic structural units and characteristics of lignin were introduced, and on this basis, the modification process conditions such as physical mixing, chemical modification and biological action were described in detail, and their effects on the lignin structure and the strength, electrochemistry, filtration and air permeability of lignin-based carbon fibers were also described. On this basis, the application of carbon fiber in the fields of transportation, construction, aerospace, life and health and new energy was discussed. In addition, the feasibility of directional functional group modification, green modification method and modification process expression of lignin were summarized, which provided thinking for further research and development of lignin-based carbon fiber composites and promoted their industrial application.
-
Key words:
- lignin /
- physicochemical modification /
- carbon fiber /
- mechanical property /
- electrochemical property
-
图 7 纳米纤维垫预氧化及不同温度下碳化的SEM图像:(a) 250℃预氧化;(b) 600℃碳化;(c) 800℃碳化;(d) 1000℃碳化;(e) 1200℃碳化;(f) 1400℃碳化[32]
Figure 7. SEM images of nanofiber mat preoxidation and carbonization at different temperatures: (a) 250℃ preoxidation; (b) 600℃ carbonization; (c) 800℃ carbonization; (d) 1000℃ carbonization; (e) 1200℃ carbonization; (f) 1400℃ carbonization[32]
图 11 纯聚丙烯腈(PAN)纤维和添加0.2wt%木质素的DMSO-水凝结剂纺成的L/P纤维的SEM图像:(a) PAN;(b) L25/P75;(c) L35/ P65;(d) L45/P55;(e) L50/P50[26]
Figure 11. SEM images of pure polyacrylonitrile (PAN) fiber and L/P fibers spun in DMSO-water coagulant with additional 0.2wt% lignin: (a) PAN; (b) L25/P75; (c) L35/P65; (d) L45/P55; (e) L50/P50[26]
图 15 基于氮硫共掺杂石墨烯(GNs-N-S)共掺杂活性木质素基碳纳米纤维生产超级电容器的工艺示意图[52]
Figure 15. Process diagram of supercapacitor production based on GNs-N-S co-doped active lignin-based carbon nanofibers[52]
VE:VW—Volume ratio of ethanol and water; DMF—N, N-dimethylformamide; PAN—Polyacrylonitrile; GNs—Graphene; HVPS—High voltage power supply; ACNFs—Nitorgen and sulphur co-doped graphene modified lignin/polyacrylonitrile-based carbon nanofiber
表 1 木质素基碳纤维原料及其处理方式和碳纤维性能
Table 1. Lignin-based carbon fiber raw materials, treatment methods and properties of carbon fiber
Material Aids Treatment Carbon fiber properties Calcium lignosulfonate[20] Acrylonitrile, itaconic acid Copolymerization Tensile strength: 1.74 GPa
Tensile modulus: 210 GPaPyrolytic lignin[21] Polyethylene terephthalate Copolymerization Average diameter: 12.6 μm
Tensile strength: 1220 MPaPyrolytic lignin[22] Acryloyl chloride Modified Tensile strength: 1.70 GPa
Tensile modulus: 182 GPaSoftwood kraft lignin[23] Acetic anhydride Modified Tensile strength: 1.04 GPa
Tensile modulus: 52 GPaSoftwood lignin[24] Stearic acid Modified Average diameter: 48.6 μm
Tensile strength: 640 MPa
Tensile modulus: 70.7 GPaOrganosolv lignin from
Alamo switchgrass[25]Organosolv lignin from yellow poplar Mix Average diameter: 15.7 μm
Tensile strength: 747 MPa
Tensile modulus: 41.8 GPaSoftwood kraft lignin[26] Polyacrylonitrile Mix Tensile strength: 1.2 GPa
Tensile modulus: 130 GPaSoftwood kraft lignin[27] Polyvinyl alcohol Mix Average diameter: 12.6 μm
Tensile strength: 351 MPa
Tensile modulus: 44.5 GPaKraft lignin[28] Cellulose Mix Tensile strength: 780 MPa
Tensile modulus: 68 GPa -
[1] BAKER D A, RIALS T G. Recent advances in low-cost carbon fiber manufacture from lignin[J]. Journal of Applied Polymer Science, 2013, 130(2): 713-728. doi: 10.1002/app.39273 [2] XU X. Application of carbon fiber cement-based composites in improving construction durability[J]. International Journal of Analytical Chemistry, 2022, 2022: 2323534. [3] WANG X, PAN L, ZHENG A, et al. Multifunctionalized carbon-fiber-reinforced polyetheretherketone implant for rapid osseointegration under infected environment[J]. Bioactive Materials, 2023, 24: 236-250. doi: 10.1016/j.bioactmat.2022.12.016 [4] BACHMANN J, HIDALGO C, BRICOUT S. Environmental analysis of innovative sustainable composites with potential use in aviation sector—A life cycle assessment review[J]. Science China Technological Sciences, 2017, 60(9): 1301-1317. doi: 10.1007/s11431-016-9094-y [5] 李长庚, 靳汇奇, 杨晨峰, 等. 木质素绿色有机溶剂分级研究进展[J]. 中国造纸学报, 2023, 38(2): 19-27.LI Changgeng, JIN Huiqi, YANG Chenfeng, et al. Research progress on lignin fractionation by green organic solvent[J]. Transactions of China Pulp and Paper, 2023, 38(2): 19-27(in Chinese). [6] GRGAS D, RUKAVINA M, BEŠLO D, et al. The bacterial degradation of lignin—A review[J]. Water, 2023, 15(7): 1272. doi: 10.3390/w15071272 [7] MOHAMAD AINI N A, OTHMAN N, HUSSIN M H, et al. Hydroxymethylation-modified lignin and its effectiveness as a filler in rubber composites[J]. Processes, 2019, 7(5): 315. doi: 10.3390/pr7050315 [8] TOLBERT A, AKINOSHO H, KHUNSUPAT R, et al. Characterization and analysis of the molecular weight of lignin for biorefining studies[J]. Biofuels, Bioproducts and Biorefining, 2014, 8(6): 836-856. doi: 10.1002/bbb.1500 [9] 姜波, 郭新宇, 焦欢, 等. 木质素基复合材料的直写式3D打印及其功能应用[J]. 复合材料学报, 2023, 40(4): 1913-1923.JIANG Bo, GUO Xinyu, JIAO Huan, et al. Direct ink writing of lignin-based composites and their applications[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1913-1923(in Chinese). [10] 李小玉, 李广慈, 李学兵. 不同化学法分离解聚过程对木质素结构的影响[J]. 辽宁石油化工大学学报, 2020, 40(1): 1-9. doi: 10.3969/j.issn.1672-6952.2020.01.001LI Xiaoyu, LI Guangci, LI Xuebing. Effect of chemical separation and depolymerization processes on lignin structure[J]. Journal of Liaoning Petrochemical University, 2020, 40(1): 1-9(in Chinese). doi: 10.3969/j.issn.1672-6952.2020.01.001 [11] LI Y F, GE X Y, SUN Z P, et al. Effect of additives on adsorption and desorption behavior of xylanase on acid-insoluble lignin from corn stover and wheat straw[J]. Bioresource Technology, 2015, 186: 316-320. doi: 10.1016/j.biortech.2015.03.058 [12] SHI X J, DAI Z, CAO Q P, et al. Stepwise fractionation extracted lignin for high strength lignin-based carbon fibers[J]. New Journal of Chemistry, 2019, 43(47): 18868-18875. doi: 10.1039/C9NJ04942H [13] JIN J, DING J H, KLETT A, et al. Carbon fibers derived from fractionated-solvated lignin precursors for enhanced mechanical performance[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14135-14142. [14] ZHU M N, LIU H, CAO Q P, et al. Electrospun lignin-based carbon nanofibers as supercapacitor electrodes[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(34): 12831-12841. [15] NORDSTRÖM Y, NORBERG I, SJÖHOLM E, et al. A new softening agent for melt spinning of softwood kraft lignin[J]. Journal of Applied Polymer Science, 2013, 129(3): 1274-1279. doi: 10.1002/app.38795 [16] DAI Z, SHI X J, LIU H, et al. High-strength lignin-based carbon fibers via a low-energy method[J]. RSC Advances, 2018, 8(3): 1218-1224. doi: 10.1039/C7RA10821D [17] SCHREIBER M, VIVEKANANDHAN S, MOHANTY A K, et al. Iodine treatment of lignin-cellulose acetate electrospun fibers: Enhancement of green fiber carbonization[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(1): 33-41. [18] ATTIA A A M, ABAS K M, AHMED NADA A A, et al. Fabrication, modification, and characterization of lignin-based electrospun fibers derived from distinctive biomass sources[J]. Polymers, 2021, 13(14): 2277. doi: 10.3390/polym13142277 [19] GHOSH T, NGO T D, KUMAR A, et al. Cleaning carbohydrate impurities from lignin using Pseudomonas fluorescens[J]. Green Chemistry, 2019, 21(7): 1648-1659. doi: 10.1039/C8GC03341B [20] LIU D P, OUYANG Q, JIANG X F, et al. Thermal properties and thermal stabilization of lignosulfonate-acrylonitrile-itaconic acid terpolymer for preparation of carbon fiber[J]. Polymer Degradation and Stability, 2018, 150: 57-66. doi: 10.1016/j.polymdegradstab.2018.02.013 [21] QU W D, BAI X L. Thermal treatment of pyrolytic lignin and polyethylene terephthalate toward carbon fiber production[J]. Journal of Applied Polymer Science, 2020, 137(26): 48843. doi: 10.1002/app.48843 [22] LUO Y X, QU W D, COCHRAN E, et al. Enabling high-quality carbon fiber through transforming lignin into an orientable and melt-spinnable polymer[J]. Journal of Cleaner Production, 2021, 307: 127252. doi: 10.1016/j.jclepro.2021.127252 [23] ZHANG M, OGALE A A. Carbon fibers from dry-spinning of acetylated softwood kraft lignin[J]. Carbon, 2014, 69: 626-629. doi: 10.1016/j.carbon.2013.12.015 [24] KANG D, LEE Y, PARK K H, et al. Carbon fibers derived from oleic acid-functionalized lignin via thermostabilization accelerated by UV irradiation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(14): 5204-5216. [25] HOSSEINAEI O, HARPER D P, BOZELL J J, et al. Improving processing and performance of pure lignin carbon fibers through hardwood and herbaceous lignin blends[J]. International Journal of Molecular Sciences, 2017, 18(7): 1410. [26] JIN J, OGALE A A. Carbon fibers derived from wet-spinning of equi-component lignin/polyacrylonitrile blends[J]. Journal of Applied Polymer Science, 2018, 135(8): 45903. doi: 10.1002/app.45903 [27] FÖLLMER M, JESTIN S, NERI W, et al. Wet-spinning and carbonization of lignin-polyvinyl alcohol precursor fibers[J]. Advanced Sustainable Systems, 2019, 3(11): 1900082. doi: 10.1002/adsu.201900082 [28] OLSSON C, SJÖHOLM E, REIMANN A. Carbon fibres from precursors produced by dry-jet wet-spinning of kraft lignin blended with kraft pulps[J]. Holzforschung, 2017, 71(4): 275-283. [29] WANG S C, ZHOU Z, XIANG H X, et al. Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes[J]. Composites Science and Technology, 2016, 128: 116-122. doi: 10.1016/j.compscitech.2016.03.018 [30] LIU H C, CHIEN A T, NEWCOMB B A, et al. Processing, structure, and properties of lignin- and CNT-incorporated polyacrylonitrile-based carbon fibers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 1943-1954. [31] ZHANG F, LIN J, ZHAO G. Preparation and characterization of modified soda lignin with polyethylene glycol[J]. Materials, 2016, 9(10): 822. [32] YOUE W J, LEE S M, LEE S S, et al. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer[J]. International Journal of Biological Macromolecules, 2016, 82: 497-504. doi: 10.1016/j.ijbiomac.2015.10.022 [33] QIN W, KADLA J F. Effect of organoclay reinforcement on lignin-based carbon fibers[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12548-12555. [34] KIM M S, LEE D H, KIM C H, et al. Shell-core structured carbon fibers via melt spinning of petroleum- and wood-processing waste blends[J]. Carbon, 2015, 85: 194-200. doi: 10.1016/j.carbon.2014.12.100 [35] BECK R J, ZHAO Y, FONG H, et al. Electrospun lignin carbon nanofiber membranes with large pores for highly efficient adsorptive water treatment applications[J]. Journal of Water Process Engineering, 2017, 16: 240-248. doi: 10.1016/j.jwpe.2017.02.002 [36] CHO M, KARAASLAN M, CHOWDHURY S, et al. Skipping oxidative thermal stabilization for lignin-based carbon nanofibers[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6434-6444. [37] MA C, LI Z Y, LI J J, et al. Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors[J]. Applied Surface Science, 2018, 456: 568-576. doi: 10.1016/j.apsusc.2018.06.189 [38] BENGTSSON A, BENGTSSON J, SEDIN M, et al. Carbon fibers from lignin-cellulose precursors: Effect of stabilization conditions[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8440-8448. [39] ADIL K R, MUSSATTO S I, JHA H. Synthesis and characterization of silver nanoparticles loaded poly(vinyl alcohol)-lignin electrospun nanofibers and their antimicrobial activity[J]. International Journal of Biological Macromolecules, 2018, 120: 763-767. doi: 10.1016/j.ijbiomac.2018.08.109 [40] CULEBRAS M, GEANEY H, BEAUCAMP A, et al. Bio-derived carbon nanofibres from lignin as high-performance Li-ion anode materials[J]. ChemSusChem, 2019, 12(19): 4516-4521. doi: 10.1002/cssc.201901562 [41] SAUDI A, AMINI S, AMIRPOUR N, et al. Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly(vinyl alcohol) and poly(glycerol sebacate) fibers[J]. Materials Science and Engineering: C, 2019, 104: 110005. doi: 10.1016/j.msec.2019.110005 [42] PERERA JAYAWICKRAMAGE R A, BALKUS K J, FERRARIS J P. Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors[J]. Nanotechnology, 2019, 30(35): 355402. doi: 10.1088/1361-6528/ab2274 [43] THUNGA M, CHEN K K, GREWELL D, et al. Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers[J]. Carbon, 2014, 68: 159-166. doi: 10.1016/j.carbon.2013.10.075 [44] CULEBRAS M, BEAUCAMP A, WANG Y, et al. Biobased structurally compatible polymer blends based on lignin and thermoplastic elastomer polyurethane as carbon fiber precursors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8816-8825. [45] DING R, WU H C, THUNGA M, et al. Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends[J]. Carbon, 2016, 100: 126-136. doi: 10.1016/j.carbon.2015.12.078 [46] GOULIS P, KARTSONAKIS I A, KONSTANTOPOULOS G, et al. Synthesis and processing of melt spun materials from esterified lignin with lactic acid[J]. Applied Sciences, 2019, 9(24): 5361. [47] MIKKILÄ J, TROGEN M, KOIVU K A Y, et al. Fungal treatment modifies kraft lignin for lignin- and cellulose-based carbon fiber precursors[J]. ACS Omega, 2020, 5(11): 6130-6140. doi: 10.1021/acsomega.0c00142 [48] LIN J X, CHENG Y, LI Z, et al. Synthesis of modified lignin as an antiplasticizer for strengthening poly(vinyl alcohol)-lignin interactions toward quality gel-spun fibers[J]. ACS Applied Polymer Materials, 2022, 4(3): 1595-1607. doi: 10.1021/acsapm.1c01384 [49] MUTHURAJ R, HORROCKS A R, KANDOLA B K. Hydroxypropyl-modified and organosolv lignin/bio-based polyamide blend filaments as carbon fibre precursors’[J]. Journal of Materials Science, 2020, 55(16): 7066-7083. doi: 10.1007/s10853-020-04486-w [50] STEUDLE L M, FRANK E, OTA A, et al. Carbon fibers prepared from melt spun peracylated softwood lignin: An integrated approach[J]. Macromolecular Materials and Engineering, 2017, 302(4): 1600441. doi: 10.1002/mame.201600441 [51] CAO Q P, ZHU M N, CHEN J A, et al. Novel lignin-cellulose-based carbon nanofibers as high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1210-1221. [52] DAI Z, REN P G, JIN Y L, et al. Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor[J]. Journal of Power Sources, 2019, 437: 226937. doi: 10.1016/j.jpowsour.2019.226937 [53] QU W D, XUE Y, GAO Y W, et al. Repolymerization of pyrolytic lignin for producing carbon fiber with improved properties[J]. Biomass and Bioenergy, 2016, 95: 19-26. doi: 10.1016/j.biombioe.2016.09.013 [54] OUYANG Q, XIA K Q, LIU D P, et al. Fabrication of partially biobased carbon fibers from novel lignosulfonate-acrylonitrile copolymers[J]. Journal of Materials Science, 2017, 52(12): 7439-7451. doi: 10.1007/s10853-017-0977-x [55] MARADUR S P, KIM C H, KIM S Y, et al. Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile[J]. Synthetic Metals, 2012, 162(5-6): 453-459.