Status and prospects of research on vibration reduction performance of metaconcrete
-
摘要: 超材料混凝土作为一种具有振动衰减效应的新型材料,由包裹弹性软涂层的金属重芯取代天然粗骨料,与砂浆搅拌而形成。当受动力作用时,超材料混凝土能够利用人工骨料局部共振产生的带隙,衰减混凝土的振动响应。近年来,超材料混凝土因其在高频动力作用下显著的减振性能,在结构抗爆抗冲击领域受到了高度关注,通过改变人工骨料的结构,已经研发出多种形式的超材料混凝土,并针对其振动衰减性能开展了系统的理论分析、数值模拟和试验研究。为推动超材料混凝土在土木工程领域的研究和应用,该研究对超材料混凝土减振性能的研究工作进行了系统地归纳总结,探讨了超材料混凝土在工程性能方面存在的问题和瓶颈,并对超材料混凝土减振性能的研究方向和应用前景进行了展望。Abstract: Metaconcrete, a new type of material with vibration attenuation characteristics, is formed by replacing natural coarse aggregates with a heavy metal core wrapped with an elastic soft coating and mixed with mortar. When subjected to dynamic loads, metaconcrete could attenuate the vibration response of concrete using the bandgap generated by the local resonance of artificial aggregates. Recently, metaconcrete has received great attention in the field of blast and impact resistance due to its remarkable vibration reduction performance under high-frequency dynamic action vibration, and various forms of metaconcrete have been developed by changing the structure and arrangement of aggregates. Systematic theoretical derivation, numerical analysis and experimental studies have been carried out for the vibration attenuation performance of metaconcrete. In order to accelerate the research and application of metaconcrete in the civil engineering, the research work on its vibration reduction performance was systematically summarized, the problems and bottlenecks in the engineering performance were discussed, and the future vibration attenuation research and application prospects of metaconcrete were prospected in this paper.
-
Key words:
- metaconcrete /
- artificial aggregates /
- local resonance /
- bandgap feature /
- vibration attenuation
-
表 1 不同骨料形状的超材料混凝土
Table 1. Metaconcrete with different aggregate shape
Aggregate shape Aggregate schematic Bandgap characteristic Ref. Sphere Isotropic fundamental stability bandgap [9, 50] Cuboid With the same planar bidirectional bandgap [35, 55] Cylinder Longitudinal bandgap with lower frequency and transverse
bandgap with higher frequency[35-36, 50] Ellipsoid Longitudinal bandgap with lower frequency and transverse
bandgap with higher frequency[50, 56] Cubic Capable of generating bandgaps in a wider and higher frequency
range in each direction than spherical artificial aggregates[50] 表 2 超材料混凝土的试验方法
Table 2. Test methods for metaconcrete
-
[1] XU C, CHEN W S, HAO H, et al. Effect of engineered aggregate configuration and design on stress wave attenuation of metaconcrete rod structure[J]. International Journal of Solids and Structures, 2021, 232: 111182. doi: 10.1016/j.ijsolstr.2021.111182 [2] LI X, NI X, FENG L, et al. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode[J]. Physical Review Letters, 2011, 160: 084301. [3] BRUN M, GUENNEAU S, MOVCHAN A B. Achieving control of in-plane elastic waves[J]. Applied Physics Letters, 2009, 94: 061903. doi: 10.1063/1.3068491 [4] HIRSEKORN M. Small-size sonic crystals with strong attenuation bands in the audible frequency range[J]. Applied Physics Letters, 2004, 84(17): 3364-3366. doi: 10.1063/1.1723688 [5] SMITH D R, PENDRY J B, WILTSHIRE M C. Metamaterials and negative refractive index[J]. Science, 2004, 305: 788-792. doi: 10.1126/science.1096796 [6] SOUKOULIS C M, WEGENER M. Past achievements and future challenges in 3D photonic metamaterials[J]. Nature Photonics, 2011, 5: 523-530. doi: 10.1038/nphoton.2011.154 [7] LU M H, FENG L, CHEN Y F. Phononic crystals and acoustic metamaterials[J]. Materials Today, 2009, 12(12): 34-42. doi: 10.1016/S1369-7021(09)70315-3 [8] KUSHWAHA M S, HALEVI P. Acoustic band structure of periodic elastic composites[J]. Physical Review Letter, 1993, 71(13): 2022-2025. doi: 10.1103/PhysRevLett.71.2022 [9] MITCHELL S J, PANDOLFI A, AND ORTIZ M. Metaconcrete: Designed aggregates to enhance dynamic performance[J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 69-81. doi: 10.1016/j.jmps.2014.01.003 [10] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58: 2059-2062. doi: 10.1103/PhysRevLett.58.2059 [11] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58: 2486-2489. doi: 10.1103/PhysRevLett.58.2486 [12] WANG G, YU D L, WEN J H, et al. One-dimensional phononic crystals with locally resonant structures[J]. Physics Letters A, 2004, 327: 512-521. doi: 10.1016/j.physleta.2004.05.047 [13] NOTOMI M. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behaviour in the vicinity of the photonic band gap[J]. Physical Review B, 2000, 62: 10696-10705. doi: 10.1103/PhysRevB.62.10696 [14] 韩洁, 路国运. 超材料混凝土单胞骨料的无阻尼自由振动特性研究[J]. 振动与冲击, 2021, 40(8): 173-178.HAN Jie, LU Guoyun. Study of undamped free vibration characteristics on metaconcrete unit cell[J]. Journal of Vibration and Shock, 2021, 40(8): 173-178(in Chinese). [15] LUO C, JOHNSON S G, JOANNOPOULOS J D, et al. All-angle negative refraction without negative effective index[J]. Physical Review B, 2002, 65: 201104. doi: 10.1103/PhysRevB.65.201104 [16] ZHU R, LIU X N, HU G K, et al. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial[J]. Nature Communications, 2014, 5(1): 5510. doi: 10.1038/ncomms6510 [17] LI J S, FOK L, YIN X B, et al. Experimental demonstration of an acoustic magnifying hyperlens[J]. Nature Materials, 2009, 8: 931-934. doi: 10.1038/nmat2561 [18] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85: 3966-3969. doi: 10.1103/PhysRevLett.85.3966 [19] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628 [20] CUMMER S, SCHURIG D. One path to acoustic cloaking[J]. New Journal Physics, 2007, 9(3):45. doi: 10.1088/1367-2630/9/3/045 [21] ALITALO P, TRETYAKOV S. Electromagnetic cloking with metamaterials[J]. Materials Today, 2009, 12(3): 22-29. doi: 10.1016/S1369-7021(09)70072-0 [22] ZHENG L Y, WU Y, NI X, et al. Acoustic cloaking by a nearzero-index phononic crystal[J]. Applied Physics Letters, 2014, 104: 161904. doi: 10.1063/1.4873354 [23] SMITH D R, PADILLA W J, VIER V C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84: 4184-4187. doi: 10.1103/PhysRevLett.84.4184 [24] SOROKIN S V, ERSHOVA O A. Analysis of the energy transmission in compound cylindrical shells with and without internal heavy fluid loading by boundary integral equations and by Floquet theory[J]. Journal of Sound and Vibration, 2006, 291(1/2): 81-99. [25] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289: 1734-1736. doi: 10.1126/science.289.5485.1734 [26] SHENG P, ZHANG X X, LIU Z Y, et al. Locally resonant sonic materials[J]. Physica B: Condensed Matter, 2003, 338: 201-205. doi: 10.1016/S0921-4526(03)00487-3 [27] XIAO Y, WEN J H, YU D L, et al. Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms[J]. Journal of Sound and Vibration, 2013, 332(4): 867-893. doi: 10.1016/j.jsv.2012.09.035 [28] XIAO Y, WEN J H, WEN X S. Broadband locally resonant beams containing multiple periodic arrays of attached resonators[J]. Physics Letters A, 2012, 376: 1384-1390. doi: 10.1016/j.physleta.2012.02.059 [29] CHEN J S, SHARMA B, SUN C T. Dynamic behavior of sandwich structure containing spring-mass resonators[J]. Composite Structures, 2011, 93: 2120-2125. doi: 10.1016/j.compstruct.2011.02.007 [30] 熊剑荣, 黎永盛, 任凤鸣. 局部共振超材料梁的弯曲带隙及减振性能研究[J]. 广州大学学报(自然科学版), 2023, 22(2): 10-15.XIONG Jianrong, LI Yongsheng, REN Fengming. Flexural bandgap and vibration reduction performance of locally resonant metamaterial beams[J]. Journal of Guangzhou University (Nature Science Edition), 2023, 22(2): 10-15(in Chinese). [31] XU C, CHEN W S, HAO H, et al. Damping properties and dynamic responses of metaconcrete beam structures subjected to transverse loading[J]. Construction and Building Materials, 2021, 311: 125273. doi: 10.1016/j.conbuildmat.2021.125273 [32] MA G C, FU C X, WANG G H, et al. Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials[J]. Nature Communications, 2016, 7: 13536. doi: 10.1038/ncomms13536 [33] XU C, CHEN W S, HAO H, et al. Experimental and numerical assessment of stress wave attenuation of metaconcrete rods subjected to impulsive loads[J]. International Journal of Impact Engineering, 2022, 159: 104052. doi: 10.1016/j.ijimpeng.2021.104052 [34] XIAO Y, WEN J H, WEN X S. Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators[J]. New Journal of Physics, 2012, 14(3): 033042. doi: 10.1088/1367-2630/14/3/033042 [35] MIRANDA E, ANGELIN A F, SILVA F M, et al. Passive vibration control using a metaconcrete thin plate[J]. Cerâmica, 2019, 65: 27-33. [36] 郜英杰, 范华林, 张蓓, 等. 超材料消波混凝土板在二维平面波作用下的削波效应研究[J]. 振动与冲击, 2018, 37(20): 39-44.GAO Yingjie, FAN Hualin, ZHANG Bei, et al. Wave attenuation of super-material wave absorbing concrete panel subjected to two-dimensional plane wave[J]. Journal of Vibration and Shock, 2018, 37(20): 39-44. [37] XIAO Y, WEN J H, WEN X S. Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators[J]. Journal of Physics D: Applied Physics, 2012, 45(19): 195401. doi: 10.1088/0022-3727/45/19/195401 [38] 徐青, 张俊杰. 周期复合板的带隙特性和辐射噪声衰减特性分析[J]. 振动与冲击, 2017, 36(11): 188-191.XU Qing, ZHANG Junjie. Research on the band gap and attenuation characteristic of sound radiation for periodic sompound plate[J]. Journal of Vibration and Shock, 2017, 36(11): 188-191. [39] MILTON G W, WILLIS J R. On modifications of Newton’s second law and linear continuum elastodynamics[J]. Proceedings of the Royal Society A, 2007, 463: 855-880. doi: 10.1098/rspa.2006.1795 [40] HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials[J]. International Journal of Engineering Science, 2009, 47(4): 610-617. doi: 10.1016/j.ijengsci.2008.12.007 [41] HUANG H H, SUN C T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density[J]. New Journal of Physics, 2009, 11: 013003. doi: 10.1088/1367-2630/11/1/013003 [42] VO N H, PHAM T M, BI K, et al. Model for analytical investigation on meta-lattice truss for low-frequency spatial wave manipulation[J]. Wave Motion, 2021, 103: 102735. doi: 10.1016/j.wavemoti.2021.102735 [43] LIU Y, SHEN X H, SU X Y, et al. Elastic metamaterials with low-frequency passbands based on lattice system with on-site potential[J]. Journal of Vibration and Acoustics, 2016, 138(2): 021011. doi: 10.1115/1.4032326 [44] VO N H, PHAM T M, HAO H, et al. A reinvestigation of the spring-mass model for metamaterial bandgap prediction[J]. International Journal of Mechanical Sciences, 2022, 221: 107219. doi: 10.1016/j.ijmecsci.2022.107219 [45] 韩洁, 路国运, 赵一涛. 超材料混凝土单胞骨料的有阻尼自由振动特性研究[J]. 振动与冲击, 2022, 41(4): 239-245, 269. doi: DOI:10.13465/j.cnki.jvs.2022.04.031HAN Jie, LU Guoyun, ZHAO Yitao. A study of damped free vibration characteristics on metaconcrete unit cell[J]. Journal of Vibration and Shock, 2022, 41(4): 239-245, 269(in Chinese). doi: DOI:10.13465/j.cnki.jvs.2022.04.031 [46] KETTENBEIL C, RAVICHANDRAN G. Experimental investigation of the dynamic behavior of metaconcrete[J]. International Journal of Impact Engineering, 2018, 111: 199-207. doi: 10.1016/j.ijimpeng.2017.09.017 [47] JIN H, HAO H, HAO Y F, et al. Predicting the response of locally resonant concrete structure under blast load[J]. Construction and Building Materials, 2020, 252: 118920. doi: 10.1016/j.conbuildmat.2020.118920 [48] MITCHELL S J, PANDOLFI A, ORTIZ M. Investigation of elastic wave transmission in a metaconcrete slab[J]. Mechanics of Materials, 2015, 91: 295-303. doi: 10.1016/j.mechmat.2015.08.004 [49] OYELADE A O, ABIODUN Y O, SADIQ M O. Dynamic behaviour of concrete containing aggregate resonant frequency[J]. Journal of Computational Applied Mechanics, 2018, 49(2): 380-385. [50] XU C, CHEN W S, HAO H. The influence of design parameters of engineered aggregate in metaconcrete on bandgap region[J]. Journal of the Mechanica and Physics of Solids, 2020, 139: 103929. doi: 10.1016/j.jmps.2020.103929 [51] JIN H X, CHEN W S, HAO H, et al. Numerical study on impact resistance of metaconcrete[J]. Scientia Sinica Physica, Mechanica and Astronomica, 2020, 50(2): 78-89. [52] BRICCOLA D, ORTIZ M, PANDOLFI A. Experimental validation of metaconcrete blast mitigation properties[J]. Journal of Applied Mechanics, 2017, 84(3): 031001. doi: 10.1115/1.4035259 [53] BRICCOLA D, TOMASIN M, NETTI T, et al. The influence of a lattice-like pattern of inclusions on the attenuation properties of metaconcrete[J]. Frontiers in Materials, 2019, 6: 35. doi: 10.3389/fmats.2019.00035 [54] MITCHELL S J, PANDOLFI A, ORTIZ M. Effect of brittle fracture in a metaconcrete slab under shock loading[J]. Journal of Engineering Mechanics, 2016, 142(4): 04016010. doi: 10.1061/(ASCE)EM.1943-7889.0001034 [55] 张恩, 路国运, 杨会伟, 等. 超材料混凝土的带隙特征及对冲击波的衰减效应[J]. 爆炸与冲击, 2020, 40(6): 69-77. doi: 10.11883/bzycj-2019-0252ZHANG En, LU Guoyun, YANG Huiwei, et al. Band gap features of metaconcrete and shock wave attenuation in it[J]. Explosion and Shock Waves, 2020, 40(6): 69-77(in Chinese). doi: 10.11883/bzycj-2019-0252 [56] OYELADE A O, SADIQ M O, OGUNDALU O A, et al. On the dynamic properties of metamaterials in civil engineering structures[J]. IOP Conference Series: Materials Science and Engineering, 2019, 640: 012045. doi: 10.1088/1757-899X/640/1/012045 [57] PAI P F, PENG H, JIANG S. Acoustic metamaterial beams based on multi-frequency vibration absorbers[J]. International Journal of Mechanical Sciences, 2014, 79: 195-205. doi: 10.1016/j.ijmecsci.2013.12.013 [58] TAN K T, HUANG H H, SUN C T. Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials[J]. International Journal of Impact Engineering, 2014, 64: 20-29. doi: 10.1016/j.ijimpeng.2013.09.003 [59] TAN S H, POH L H, TKALICH D. Homogenized enriched model for blast wave propagation in metaconcrete with viscoelastic compliant layer[J]. Internation Journal of Numerical Methods in Engineering, 2019, 119: 1395-1418. doi: 10.1002/nme.6096 [60] LIU Y, AN X Y, CHEN H L, et al. Vibration attenuation of finite-size metaconcrete: Mechanism, prediction and verification[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106294. doi: 10.1016/j.compositesa.2021.106294 [61] LIU Y, SHI D Y, HE H G, et al. Double-resonator based metaconcrete composite slabs and vibration attenuation mechanism[J]. Engineering Structures, 2022, 262: 114392. doi: 10.1016/j.engstruct.2022.114392 [62] ZHANG E, ZHAO H X, LU G Y, et al. Design and evaluation of dual-resonant aggregates metaconcrete[J]. Latin American Journal of Solids and Structures, 2023, 20(2): e479. doi: 10.1590/1679-78257392 [63] BRICCOLA D, PANDOLFI A. Analysis on the dynamic wave attenuation properties of metaconcrete considering a quasi-random arrangement of inclusions[J]. Frontiers in Materials, 2021, 7: 615189. doi: 10.3389/fmats.2020.615189 [64] 陈俊豪, 曾晓辉, 谢友均, 等. 具有减振功能的混凝土超材料的带隙特性[J]. 硅酸盐学报, 2023, 51(5): 1-11.CHEN Junhao, ZENG Xiaohui, XIE Youjun, et al. Band gap properties of metaconcrete with vibration reduction function[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1-11(in Chinese). [65] CHEN Z Y, WANG G F, LIM C W. Artificially engineered metaconcrete with wide bandgap for seismic surface wave manipulation[J]. Engineering Structures, 2023, 276: 115375. doi: 10.1016/j.engstruct.2022.115375 [66] JIN H X, HAO H, CHEN W S, et al. Spall behaviors of metaconcrete: 3D meso-scale modelling[J]. International Journal of Structural Stability and Dynamics, 2021, 21(9): 2150121. doi: 10.1142/S0219455421501212 [67] JIN H X, HAO H, CHEN W S, et al. Influence of bandgap on the response of periodic metaconcrete rod structure under blast load[J]. Journal of Materials in Civil Engineering, 2022, 34(11): 04022284. doi: 10.1061/(ASCE)MT.1943-5533.0004442 [68] JIN H X, HAO H, CHEN W S, et al. Effect of enhanced coating layer on the bandgap characteristics and response of metaconcrete[J]. Mechanics of Advanced Materials and Structures, 2021, 30(1): 175-188. [69] BRICCOLA D, CUNI M, DE JULI A, et al. Experimental validation of the attenuation properties in the sonic range of metaconcrete containing two types of resonant inclusions[J]. Experimental Mechanics, 2021, 61(3): 515-532. doi: 10.1007/s11340-020-00668-4 [70] ANSARI M, ZACHARIAS C, KOENKE C. Metaconcrete: An experimental study on the impact of the core-coating inclusions on mechanical vibration[J]. Materials, 2023, 16(5): 1836. doi: 10.3390/ma16051836 [71] XU C, CHEN W S, HAO H, et al. Static mechanical properties and stress wave attenuation of metaconcrete subjected to impulsive loading[J]. Engineering Structures, 2022, 263: 114382. doi: 10.1016/j.engstruct.2022.114382 [72] XU C, CHEN W S, HAO H, et al. Dynamic compressive properties of metaconcrete material[J]. Construction and Building Materials, 2022, 351: 128974. doi: 10.1016/j.conbuildmat.2022.128974