留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超材料混凝土减振性能研究现状与展望

熊剑荣 任凤鸣 田时雨 黎永盛

熊剑荣, 任凤鸣, 田时雨, 等. 超材料混凝土减振性能研究现状与展望[J]. 复合材料学报, 2024, 41(2): 656-671. doi: 10.13801/j.cnki.fhclxb.20231007.002
引用本文: 熊剑荣, 任凤鸣, 田时雨, 等. 超材料混凝土减振性能研究现状与展望[J]. 复合材料学报, 2024, 41(2): 656-671. doi: 10.13801/j.cnki.fhclxb.20231007.002
XIONG Jianrong, REN Fengming, TIAN Shiyu, et al. Status and prospects of research on vibration reduction performance of metaconcrete[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 656-671. doi: 10.13801/j.cnki.fhclxb.20231007.002
Citation: XIONG Jianrong, REN Fengming, TIAN Shiyu, et al. Status and prospects of research on vibration reduction performance of metaconcrete[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 656-671. doi: 10.13801/j.cnki.fhclxb.20231007.002

超材料混凝土减振性能研究现状与展望

doi: 10.13801/j.cnki.fhclxb.20231007.002
基金项目: 国家自然科学基金(52338005;52178125)
详细信息
    通讯作者:

    任凤鸣,博士,教授,研究方向为组合结构、高性能混凝土及超材料结构 E-mail: rfm@gzhu.edu.cn

  • 中图分类号: T333;TU528.41

Status and prospects of research on vibration reduction performance of metaconcrete

Funds: National Natural Science Foundation of China (52338005; 52178125)
  • 摘要: 超材料混凝土作为一种具有振动衰减效应的新型材料,由包裹弹性软涂层的金属重芯取代天然粗骨料,与砂浆搅拌而形成。当受动力作用时,超材料混凝土能够利用人工骨料局部共振产生的带隙,衰减混凝土的振动响应。近年来,超材料混凝土因其在高频动力作用下显著的减振性能,在结构抗爆抗冲击领域受到了高度关注,通过改变人工骨料的结构,已经研发出多种形式的超材料混凝土,并针对其振动衰减性能开展了系统的理论分析、数值模拟和试验研究。为推动超材料混凝土在土木工程领域的研究和应用,该研究对超材料混凝土减振性能的研究工作进行了系统地归纳总结,探讨了超材料混凝土在工程性能方面存在的问题和瓶颈,并对超材料混凝土减振性能的研究方向和应用前景进行了展望。

     

  • 图  1  超材料带隙形成机制

    a—Unit cell length; M1 and M2—Mass of the matrix and the heavy core, respectively; u and w—Displacements; k—Equivalent spring stiffness; α—Wave incidence angle

    Figure  1.  Mechanism of metamaterial bandgap formation

    图  2  超材料混凝土单胞示意图

    Figure  2.  Schematic diagram of metaconcrete unit cell

    图  3  超材料混凝土的一维有效质量模型图

    j—One-dimensional unit cell number

    Figure  3.  Diagram of the one-dimensional effective mass model for metaconcrete

    图  4  超材料混凝土的有效质量与频率函数图

    meff/mst—Ratio of effective mass meff to the actual total mass mst; ω/ω0—Ratio of excitation frequency ω to nature frequency ω0

    Figure  4.  Effective mass-frequency relationships of metaconcrete

    图  5  超材料混凝土的有效质量和有效刚度的等效模型图

    keff—Equivalent effective stiffness

    Figure  5.  Equivalent model diagram for effective mass and effective stiffness of metaconcrete

    图  6  超材料混凝土三维振动模型示意图[14, 45]

    l—Equivalent spring length; Δl and θ—Displacement deflection and angular deflection of the transverse equivalent spring, respectively; y—Axial displacement of the heavy core; c—Damping

    Figure  6.  Three-dimensional vibration model of metaconcrete[14, 45]

    图  7  有序排列的超材料混凝土板模型[9]

    L—Thickness of the plate; b—Width of the selected section

    Figure  7.  Sequentially arranged metaconcrete slab model[9]

    图  8  超材料混凝土单胞的边界条件

    PBC—Periodic boundary condition

    Figure  8.  Boundary condition setting for metaconcrete unit cell

    图  9  几何参数、材料属性对超材料混凝土带隙的影响[50]

    Figure  9.  Effect of geometric parameters and material properties on bandgap in metaconcrete[50]

    图  10  具有双质量涂层骨料的超材料混凝土单胞示意图

    Figure  10.  Schematic diagram of the metaconcrete unit cell with dual mass coated aggregates

    图  11  双质量涂层骨料的超材料混凝土模型示意图[59]

    Mm—Total mass of the mortar matrix

    Figure  11.  Schematic diagram of the metaconcrete model with dual mass coated aggregates[59]

    图  12  超材料混凝土中人工骨料的结构示意图[71-72]

    Figure  12.  Structural diagram of artificial aggregates in metaconcrete[71-72]

    图  13  超材料混凝土试件示意图[71-72]

    Figure  13.  Schematic diagram of metaconcrete specimens[71-72]

    图  14  超材料混凝土试件的抗压强度和弹性模量

    Figure  14.  Compressive strength and modulus of elasticity for metaconcrete specimens

    表  1  不同骨料形状的超材料混凝土

    Table  1.   Metaconcrete with different aggregate shape

    Aggregate shapeAggregate schematicBandgap characteristicRef.
    SphereIsotropic fundamental stability bandgap[9, 50]
    CuboidWith the same planar bidirectional bandgap[35, 55]
    CylinderLongitudinal bandgap with lower frequency and transverse
    bandgap with higher frequency
    [35-36, 50]
    EllipsoidLongitudinal bandgap with lower frequency and transverse
    bandgap with higher frequency
    [50, 56]
    CubicCapable of generating bandgaps in a wider and higher frequency
    range in each direction than spherical artificial aggregates
    [50]
    下载: 导出CSV

    表  2  超材料混凝土的试验方法

    Table  2.   Test methods for metaconcrete

    No. Test type Test schematic Ref.
    1 Sweep frequency vibration test [52-53, 60-61, 63,
    69]
    2 Flat plate impact test [46]
    3 Hammer impact test/damping test [31, 70]
    4 Non-destructive dynamic impact test [33, 71-72]
    5 Impact damage test and dynamic compression test [71-72]
    下载: 导出CSV
  • [1] XU C, CHEN W S, HAO H, et al. Effect of engineered aggregate configuration and design on stress wave attenuation of metaconcrete rod structure[J]. International Journal of Solids and Structures, 2021, 232: 111182. doi: 10.1016/j.ijsolstr.2021.111182
    [2] LI X, NI X, FENG L, et al. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode[J]. Physical Review Letters, 2011, 160: 084301.
    [3] BRUN M, GUENNEAU S, MOVCHAN A B. Achieving control of in-plane elastic waves[J]. Applied Physics Letters, 2009, 94: 061903. doi: 10.1063/1.3068491
    [4] HIRSEKORN M. Small-size sonic crystals with strong attenuation bands in the audible frequency range[J]. Applied Physics Letters, 2004, 84(17): 3364-3366. doi: 10.1063/1.1723688
    [5] SMITH D R, PENDRY J B, WILTSHIRE M C. Metamaterials and negative refractive index[J]. Science, 2004, 305: 788-792. doi: 10.1126/science.1096796
    [6] SOUKOULIS C M, WEGENER M. Past achievements and future challenges in 3D photonic metamaterials[J]. Nature Photonics, 2011, 5: 523-530. doi: 10.1038/nphoton.2011.154
    [7] LU M H, FENG L, CHEN Y F. Phononic crystals and acoustic metamaterials[J]. Materials Today, 2009, 12(12): 34-42. doi: 10.1016/S1369-7021(09)70315-3
    [8] KUSHWAHA M S, HALEVI P. Acoustic band structure of periodic elastic composites[J]. Physical Review Letter, 1993, 71(13): 2022-2025. doi: 10.1103/PhysRevLett.71.2022
    [9] MITCHELL S J, PANDOLFI A, AND ORTIZ M. Metaconcrete: Designed aggregates to enhance dynamic performance[J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 69-81. doi: 10.1016/j.jmps.2014.01.003
    [10] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58: 2059-2062. doi: 10.1103/PhysRevLett.58.2059
    [11] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58: 2486-2489. doi: 10.1103/PhysRevLett.58.2486
    [12] WANG G, YU D L, WEN J H, et al. One-dimensional phononic crystals with locally resonant structures[J]. Physics Letters A, 2004, 327: 512-521. doi: 10.1016/j.physleta.2004.05.047
    [13] NOTOMI M. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behaviour in the vicinity of the photonic band gap[J]. Physical Review B, 2000, 62: 10696-10705. doi: 10.1103/PhysRevB.62.10696
    [14] 韩洁, 路国运. 超材料混凝土单胞骨料的无阻尼自由振动特性研究[J]. 振动与冲击, 2021, 40(8): 173-178.

    HAN Jie, LU Guoyun. Study of undamped free vibration characteristics on metaconcrete unit cell[J]. Journal of Vibration and Shock, 2021, 40(8): 173-178(in Chinese).
    [15] LUO C, JOHNSON S G, JOANNOPOULOS J D, et al. All-angle negative refraction without negative effective index[J]. Physical Review B, 2002, 65: 201104. doi: 10.1103/PhysRevB.65.201104
    [16] ZHU R, LIU X N, HU G K, et al. Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial[J]. Nature Communications, 2014, 5(1): 5510. doi: 10.1038/ncomms6510
    [17] LI J S, FOK L, YIN X B, et al. Experimental demonstration of an acoustic magnifying hyperlens[J]. Nature Materials, 2009, 8: 931-934. doi: 10.1038/nmat2561
    [18] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85: 3966-3969. doi: 10.1103/PhysRevLett.85.3966
    [19] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628
    [20] CUMMER S, SCHURIG D. One path to acoustic cloaking[J]. New Journal Physics, 2007, 9(3):45. doi: 10.1088/1367-2630/9/3/045
    [21] ALITALO P, TRETYAKOV S. Electromagnetic cloking with metamaterials[J]. Materials Today, 2009, 12(3): 22-29. doi: 10.1016/S1369-7021(09)70072-0
    [22] ZHENG L Y, WU Y, NI X, et al. Acoustic cloaking by a nearzero-index phononic crystal[J]. Applied Physics Letters, 2014, 104: 161904. doi: 10.1063/1.4873354
    [23] SMITH D R, PADILLA W J, VIER V C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84: 4184-4187. doi: 10.1103/PhysRevLett.84.4184
    [24] SOROKIN S V, ERSHOVA O A. Analysis of the energy transmission in compound cylindrical shells with and without internal heavy fluid loading by boundary integral equations and by Floquet theory[J]. Journal of Sound and Vibration, 2006, 291(1/2): 81-99.
    [25] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289: 1734-1736. doi: 10.1126/science.289.5485.1734
    [26] SHENG P, ZHANG X X, LIU Z Y, et al. Locally resonant sonic materials[J]. Physica B: Condensed Matter, 2003, 338: 201-205. doi: 10.1016/S0921-4526(03)00487-3
    [27] XIAO Y, WEN J H, YU D L, et al. Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms[J]. Journal of Sound and Vibration, 2013, 332(4): 867-893. doi: 10.1016/j.jsv.2012.09.035
    [28] XIAO Y, WEN J H, WEN X S. Broadband locally resonant beams containing multiple periodic arrays of attached resonators[J]. Physics Letters A, 2012, 376: 1384-1390. doi: 10.1016/j.physleta.2012.02.059
    [29] CHEN J S, SHARMA B, SUN C T. Dynamic behavior of sandwich structure containing spring-mass resonators[J]. Composite Structures, 2011, 93: 2120-2125. doi: 10.1016/j.compstruct.2011.02.007
    [30] 熊剑荣, 黎永盛, 任凤鸣. 局部共振超材料梁的弯曲带隙及减振性能研究[J]. 广州大学学报(自然科学版), 2023, 22(2): 10-15.

    XIONG Jianrong, LI Yongsheng, REN Fengming. Flexural bandgap and vibration reduction performance of locally resonant metamaterial beams[J]. Journal of Guangzhou University (Nature Science Edition), 2023, 22(2): 10-15(in Chinese).
    [31] XU C, CHEN W S, HAO H, et al. Damping properties and dynamic responses of metaconcrete beam structures subjected to transverse loading[J]. Construction and Building Materials, 2021, 311: 125273. doi: 10.1016/j.conbuildmat.2021.125273
    [32] MA G C, FU C X, WANG G H, et al. Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials[J]. Nature Communications, 2016, 7: 13536. doi: 10.1038/ncomms13536
    [33] XU C, CHEN W S, HAO H, et al. Experimental and numerical assessment of stress wave attenuation of metaconcrete rods subjected to impulsive loads[J]. International Journal of Impact Engineering, 2022, 159: 104052. doi: 10.1016/j.ijimpeng.2021.104052
    [34] XIAO Y, WEN J H, WEN X S. Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators[J]. New Journal of Physics, 2012, 14(3): 033042. doi: 10.1088/1367-2630/14/3/033042
    [35] MIRANDA E, ANGELIN A F, SILVA F M, et al. Passive vibration control using a metaconcrete thin plate[J]. Cerâmica, 2019, 65: 27-33.
    [36] 郜英杰, 范华林, 张蓓, 等. 超材料消波混凝土板在二维平面波作用下的削波效应研究[J]. 振动与冲击, 2018, 37(20): 39-44.

    GAO Yingjie, FAN Hualin, ZHANG Bei, et al. Wave attenuation of super-material wave absorbing concrete panel subjected to two-dimensional plane wave[J]. Journal of Vibration and Shock, 2018, 37(20): 39-44.
    [37] XIAO Y, WEN J H, WEN X S. Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators[J]. Journal of Physics D: Applied Physics, 2012, 45(19): 195401. doi: 10.1088/0022-3727/45/19/195401
    [38] 徐青, 张俊杰. 周期复合板的带隙特性和辐射噪声衰减特性分析[J]. 振动与冲击, 2017, 36(11): 188-191.

    XU Qing, ZHANG Junjie. Research on the band gap and attenuation characteristic of sound radiation for periodic sompound plate[J]. Journal of Vibration and Shock, 2017, 36(11): 188-191.
    [39] MILTON G W, WILLIS J R. On modifications of Newton’s second law and linear continuum elastodynamics[J]. Proceedings of the Royal Society A, 2007, 463: 855-880. doi: 10.1098/rspa.2006.1795
    [40] HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials[J]. International Journal of Engineering Science, 2009, 47(4): 610-617. doi: 10.1016/j.ijengsci.2008.12.007
    [41] HUANG H H, SUN C T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density[J]. New Journal of Physics, 2009, 11: 013003. doi: 10.1088/1367-2630/11/1/013003
    [42] VO N H, PHAM T M, BI K, et al. Model for analytical investigation on meta-lattice truss for low-frequency spatial wave manipulation[J]. Wave Motion, 2021, 103: 102735. doi: 10.1016/j.wavemoti.2021.102735
    [43] LIU Y, SHEN X H, SU X Y, et al. Elastic metamaterials with low-frequency passbands based on lattice system with on-site potential[J]. Journal of Vibration and Acoustics, 2016, 138(2): 021011. doi: 10.1115/1.4032326
    [44] VO N H, PHAM T M, HAO H, et al. A reinvestigation of the spring-mass model for metamaterial bandgap prediction[J]. International Journal of Mechanical Sciences, 2022, 221: 107219. doi: 10.1016/j.ijmecsci.2022.107219
    [45] 韩洁, 路国运, 赵一涛. 超材料混凝土单胞骨料的有阻尼自由振动特性研究[J]. 振动与冲击, 2022, 41(4): 239-245, 269. doi: DOI:10.13465/j.cnki.jvs.2022.04.031

    HAN Jie, LU Guoyun, ZHAO Yitao. A study of damped free vibration characteristics on metaconcrete unit cell[J]. Journal of Vibration and Shock, 2022, 41(4): 239-245, 269(in Chinese). doi: DOI:10.13465/j.cnki.jvs.2022.04.031
    [46] KETTENBEIL C, RAVICHANDRAN G. Experimental investigation of the dynamic behavior of metaconcrete[J]. International Journal of Impact Engineering, 2018, 111: 199-207. doi: 10.1016/j.ijimpeng.2017.09.017
    [47] JIN H, HAO H, HAO Y F, et al. Predicting the response of locally resonant concrete structure under blast load[J]. Construction and Building Materials, 2020, 252: 118920. doi: 10.1016/j.conbuildmat.2020.118920
    [48] MITCHELL S J, PANDOLFI A, ORTIZ M. Investigation of elastic wave transmission in a metaconcrete slab[J]. Mechanics of Materials, 2015, 91: 295-303. doi: 10.1016/j.mechmat.2015.08.004
    [49] OYELADE A O, ABIODUN Y O, SADIQ M O. Dynamic behaviour of concrete containing aggregate resonant frequency[J]. Journal of Computational Applied Mechanics, 2018, 49(2): 380-385.
    [50] XU C, CHEN W S, HAO H. The influence of design parameters of engineered aggregate in metaconcrete on bandgap region[J]. Journal of the Mechanica and Physics of Solids, 2020, 139: 103929. doi: 10.1016/j.jmps.2020.103929
    [51] JIN H X, CHEN W S, HAO H, et al. Numerical study on impact resistance of metaconcrete[J]. Scientia Sinica Physica, Mechanica and Astronomica, 2020, 50(2): 78-89.
    [52] BRICCOLA D, ORTIZ M, PANDOLFI A. Experimental validation of metaconcrete blast mitigation properties[J]. Journal of Applied Mechanics, 2017, 84(3): 031001. doi: 10.1115/1.4035259
    [53] BRICCOLA D, TOMASIN M, NETTI T, et al. The influence of a lattice-like pattern of inclusions on the attenuation properties of metaconcrete[J]. Frontiers in Materials, 2019, 6: 35. doi: 10.3389/fmats.2019.00035
    [54] MITCHELL S J, PANDOLFI A, ORTIZ M. Effect of brittle fracture in a metaconcrete slab under shock loading[J]. Journal of Engineering Mechanics, 2016, 142(4): 04016010. doi: 10.1061/(ASCE)EM.1943-7889.0001034
    [55] 张恩, 路国运, 杨会伟, 等. 超材料混凝土的带隙特征及对冲击波的衰减效应[J]. 爆炸与冲击, 2020, 40(6): 69-77. doi: 10.11883/bzycj-2019-0252

    ZHANG En, LU Guoyun, YANG Huiwei, et al. Band gap features of metaconcrete and shock wave attenuation in it[J]. Explosion and Shock Waves, 2020, 40(6): 69-77(in Chinese). doi: 10.11883/bzycj-2019-0252
    [56] OYELADE A O, SADIQ M O, OGUNDALU O A, et al. On the dynamic properties of metamaterials in civil engineering structures[J]. IOP Conference Series: Materials Science and Engineering, 2019, 640: 012045. doi: 10.1088/1757-899X/640/1/012045
    [57] PAI P F, PENG H, JIANG S. Acoustic metamaterial beams based on multi-frequency vibration absorbers[J]. International Journal of Mechanical Sciences, 2014, 79: 195-205. doi: 10.1016/j.ijmecsci.2013.12.013
    [58] TAN K T, HUANG H H, SUN C T. Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials[J]. International Journal of Impact Engineering, 2014, 64: 20-29. doi: 10.1016/j.ijimpeng.2013.09.003
    [59] TAN S H, POH L H, TKALICH D. Homogenized enriched model for blast wave propagation in metaconcrete with viscoelastic compliant layer[J]. Internation Journal of Numerical Methods in Engineering, 2019, 119: 1395-1418. doi: 10.1002/nme.6096
    [60] LIU Y, AN X Y, CHEN H L, et al. Vibration attenuation of finite-size metaconcrete: Mechanism, prediction and verification[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106294. doi: 10.1016/j.compositesa.2021.106294
    [61] LIU Y, SHI D Y, HE H G, et al. Double-resonator based metaconcrete composite slabs and vibration attenuation mechanism[J]. Engineering Structures, 2022, 262: 114392. doi: 10.1016/j.engstruct.2022.114392
    [62] ZHANG E, ZHAO H X, LU G Y, et al. Design and evaluation of dual-resonant aggregates metaconcrete[J]. Latin American Journal of Solids and Structures, 2023, 20(2): e479. doi: 10.1590/1679-78257392
    [63] BRICCOLA D, PANDOLFI A. Analysis on the dynamic wave attenuation properties of metaconcrete considering a quasi-random arrangement of inclusions[J]. Frontiers in Materials, 2021, 7: 615189. doi: 10.3389/fmats.2020.615189
    [64] 陈俊豪, 曾晓辉, 谢友均, 等. 具有减振功能的混凝土超材料的带隙特性[J]. 硅酸盐学报, 2023, 51(5): 1-11.

    CHEN Junhao, ZENG Xiaohui, XIE Youjun, et al. Band gap properties of metaconcrete with vibration reduction function[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1-11(in Chinese).
    [65] CHEN Z Y, WANG G F, LIM C W. Artificially engineered metaconcrete with wide bandgap for seismic surface wave manipulation[J]. Engineering Structures, 2023, 276: 115375. doi: 10.1016/j.engstruct.2022.115375
    [66] JIN H X, HAO H, CHEN W S, et al. Spall behaviors of metaconcrete: 3D meso-scale modelling[J]. International Journal of Structural Stability and Dynamics, 2021, 21(9): 2150121. doi: 10.1142/S0219455421501212
    [67] JIN H X, HAO H, CHEN W S, et al. Influence of bandgap on the response of periodic metaconcrete rod structure under blast load[J]. Journal of Materials in Civil Engineering, 2022, 34(11): 04022284. doi: 10.1061/(ASCE)MT.1943-5533.0004442
    [68] JIN H X, HAO H, CHEN W S, et al. Effect of enhanced coating layer on the bandgap characteristics and response of metaconcrete[J]. Mechanics of Advanced Materials and Structures, 2021, 30(1): 175-188.
    [69] BRICCOLA D, CUNI M, DE JULI A, et al. Experimental validation of the attenuation properties in the sonic range of metaconcrete containing two types of resonant inclusions[J]. Experimental Mechanics, 2021, 61(3): 515-532. doi: 10.1007/s11340-020-00668-4
    [70] ANSARI M, ZACHARIAS C, KOENKE C. Metaconcrete: An experimental study on the impact of the core-coating inclusions on mechanical vibration[J]. Materials, 2023, 16(5): 1836. doi: 10.3390/ma16051836
    [71] XU C, CHEN W S, HAO H, et al. Static mechanical properties and stress wave attenuation of metaconcrete subjected to impulsive loading[J]. Engineering Structures, 2022, 263: 114382. doi: 10.1016/j.engstruct.2022.114382
    [72] XU C, CHEN W S, HAO H, et al. Dynamic compressive properties of metaconcrete material[J]. Construction and Building Materials, 2022, 351: 128974. doi: 10.1016/j.conbuildmat.2022.128974
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  567
  • HTML全文浏览量:  358
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-21
  • 修回日期:  2023-08-30
  • 录用日期:  2023-09-22
  • 网络出版日期:  2023-10-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回