留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间苯二酚-甲醛增强二氧化硅气凝胶的制备及其吸波性能

叶信立 张海洋 马小民 毛帮笑 张俊雄

叶信立, 张海洋, 马小民, 等. 间苯二酚-甲醛增强二氧化硅气凝胶的制备及其吸波性能[J]. 复合材料学报, 2024, 41(4): 1890-1899. doi: 10.13801/j.cnki.fhclxb.20230928.001
引用本文: 叶信立, 张海洋, 马小民, 等. 间苯二酚-甲醛增强二氧化硅气凝胶的制备及其吸波性能[J]. 复合材料学报, 2024, 41(4): 1890-1899. doi: 10.13801/j.cnki.fhclxb.20230928.001
YE Xinli, ZHANG Haiyang, MA Xiaomin, et al. Preparation of resorcinol-formaldehyde enhanced silica aerogels and their absorption properties[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1890-1899. doi: 10.13801/j.cnki.fhclxb.20230928.001
Citation: YE Xinli, ZHANG Haiyang, MA Xiaomin, et al. Preparation of resorcinol-formaldehyde enhanced silica aerogels and their absorption properties[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1890-1899. doi: 10.13801/j.cnki.fhclxb.20230928.001

间苯二酚-甲醛增强二氧化硅气凝胶的制备及其吸波性能

doi: 10.13801/j.cnki.fhclxb.20230928.001
基金项目: 中央高校基本科研业务费专项资金(D5000210522);陕西省自然科学基础研究青年项目(2022JQ-482);广东省基础与应用基础研究基金(2021A1515111155);中国博士后科学基金第70批面上资助(2021M702665)
详细信息
    通讯作者:

    叶信立,博士,副教授,硕士生导师,研究方向为复合材料结构设计及性能评价优化 E-mail: xinli_ye@nwpu.edu.cn

  • 中图分类号: TB332

Preparation of resorcinol-formaldehyde enhanced silica aerogels and their absorption properties

Funds: Fundamental Research Funds for the Central Universities (D5000210522); Natural Science Foundation of Shaanxi Province (2022JQ-482); Guangdong Basic and Applied Basic Research Foundation (2021A1515111155); China Postdoctoral Science Foundation (2021M702665)
  • 摘要: 为了探究SiO2气凝胶在电磁吸波领域应用的可能性,通过溶胶-凝胶技术引入间苯二酚-甲醛(RF)构建多孔骨架,再结合常压干燥法,成功合成RF/SiO2复合材料,并对RF/SiO2气凝胶进行了热处理,通过SEM、XRD等对热处理后的RF/SiO2气凝胶微观结构和理化性能进行表征,探究了热处理温度对RF/SiO2气凝胶吸波性能的影响规律。结果表明:随热处理温度的增加,吸波性能大幅提升,当热处理温度为1500℃时,RF/SiO2气凝胶在4.05 mm厚度下表现出−48.42 dB的最小反射损耗,当厚度为3.45 mm时有效吸收带宽达到了2.06 GHz,表现出了优异的电磁波吸收性能。该研究为制备高性能吸波材料提供了指导。

     

  • 图  1  间苯二酚-甲醛(RF)/SiO2气凝胶的形成及热处理工艺

    Figure  1.  Formation and heat treatment process of resorcinol-formaldehyde (RF)/SiO2 aerogels

    图  2  不同热处理温度下RF/SiO2气凝胶的SEM图像

    Figure  2.  SEM images of RF/SiO2 aerogels at different heat treatment temperatures

    图  3  RF/SiO2、RF/SiO2-800℃和RF/SiO2-1500℃的XRD图谱

    Figure  3.  XRD patterns of RF/SiO2, RF/SiO2-800℃ and RF/SiO2-1500℃

    图  4  RF/SiO2、RF/SiO2-800℃和RF/SiO2-1500℃的N2吸附-脱附等温线

    Figure  4.  N2 adsorption-desorption isotherms for RF/SiO2, RF/SiO2-800℃ and RF/SiO2-1500℃

    图  5  RF/SiO2、RF/SiO2-800℃和RF/SiO2-1500℃的孔径分布

    Figure  5.  Pore size distribution of RF/SiO2, RF/SiO2-800℃ andRF/SiO2-1500℃

    图  6  不同热处理温度下RF/SiO2气凝胶的的反射性能图谱:((a), (d)) RF/SiO2;((b), (e)) RF/SiO2-800℃;((c), (f)) RF/SiO2-1500℃

    Figure  6.  Reflection performance maps of RF/SiO2 aerogels at different heat treatment temperatures: ((a), (d)) RF/SiO2; ((b), (e)) RF/SiO2-800℃; ((c), (f)) RF/SiO2-1500℃

    图  7  RF/SiO2-1500℃:(a) 不同匹配厚度下的反射损耗曲线;(b) 匹配厚度与峰值频率的关系

    Figure  7.  RF/SiO2-1500℃: (a) Reflection loss curves under different matching thicknesses; (b) Relationship between matching thickness and peak frequency

    λ—Wave length

    图  8  不同热处理温度下,匹配厚度为4.05 mm时RF/SiO2、RF/SiO2-800℃和RF/SiO2-1500℃的阻抗匹配(a)和衰减常数(b)

    Figure  8.  Impedance matching (a) and attenuation constant (b) with the matching thickness of 4.05 mm of RF/SiO2, RF/SiO2-800℃ and RF/SiO2-1500℃ at different heat treatment temperatures

    图  9  RF/SiO2-1500℃厚度为 4.05 mm时反射损耗与阻抗匹配和衰减常数的关系

    Figure  9.  Relationship between reflection loss, impedance matching and attenuation constant of RF/SiO2-1 500℃ with the thickness of 4.05 mm

    图  10  RF/SiO2、RF/SiO2-800℃和RF/SiO2-1500℃的电磁参数

    Figure  10.  Electromagnetic parameters of RF/SiO2, RF/SiO2-800℃ and RF/SiO2-1500℃

    图  11  Cole-Cole曲线:(a) RF/SiO2-800℃;(b) RF/SiO2-1500℃

    Figure  11.  Cole-Cole curves: (a) RF/SiO2-800℃; (b) RF/SiO2-1500℃

    表  1  气凝胶的孔隙结构性质

    Table  1.   Pore structure properties of aerogels

    Sample BET surface
    area/(m2·g−1)
    Pore volume/
    (cm3·g−1)
    RF/SiO2 370 0.50
    RF/SiO2-800℃ 152 0.21
    RF/SiO2-1500℃ 82 0.08
    Note: BET—Brunau-Emmett-Teller.
    下载: 导出CSV
  • [1] SONG L, FAN B, CHEN Y, et al. Multifunctional SiC nanofiber aerogel with superior electromagnetic wave absorption[J]. Ceramics International, 2022, 48(17): 25140-25150. doi: 10.1016/j.ceramint.2022.05.174
    [2] CHENG Y, XIE Y, MA Y, et al. Optimization of ion/electron channels enabled by multiscale MXene aerogel for integrated self-healable flexible energy storage and electronic skin system[J]. Nano Energy, 2023, 107: 108131. doi: 10.1016/j.nanoen.2022.108131
    [3] LIU J, LIU J, SHI F, et al. A facile pore size controlling strategy to construct rigid/flexible silica aerogels for super heat insulation and VOCs adsorption[J]. Chemical Engineering Journal, 2022, 450: 138196. doi: 10.1016/j.cej.2022.138196
    [4] CHEN S, SHAO Q, HU L, et al. Hydrophobic and magnetic fabrication of hydroxyethyl cellulose-lignin aerogel through ultrasound enhancement for efficient oil/water separation[J]. Journal of Water Process Engineering, 2023, 52: 103503. doi: 10.1016/j.jwpe.2023.103503
    [5] SHAHZADI I, WU Y, LIN H, et al. Yeast biomass ornamented macro-hierarchical chitin nanofiber aerogel for enhanced adsorption of cadmium(II) ions[J]. Journal of Hazardous Materials, 2023, 453: 131312. doi: 10.1016/j.jhazmat.2023.131312
    [6] ANDERSON A M, BRUNO B A, SANTOS J, et al. PGM nanoparticle-based alumina aerogels for three-way catalyst applications[J]. Catalysis Communications, 2022, 172: 106547. doi: 10.1016/j.catcom.2022.106547
    [7] WAN Y, WANG J, LI Z. Effect of modified SiO2 aerogel on the properties of inorganic cementing materials[J]. Materials Letters, 2023, 341: 134217. doi: 10.1016/j.matlet.2023.134217
    [8] GAO X, XING Z, LI Z, et al. A review on recent advances in carbon aerogels: Their preparation and use in alkali-metal ion batteries[J]. New Carbon Materials, 2020, 35(5): 486-507. doi: 10.1016/S1872-5805(20)60504-2
    [9] WANG Z, ZHAO H, DAI D, et al. Ultralight, tunable monolithic SiC aerogel for electromagnetic absorption with broad absorption band[J]. Ceramics International, 2022, 48(18): 26416-26424. doi: 10.1016/j.ceramint.2022.05.332
    [10] TENG X, ZHANG B, YIN L, et al. Facile fabrication of superior Pd and Ce containing SiO2 aerogel composite adsorbents for deep desulfurization of model fuels and aromatics[J]. Materials Chemistry and Physics, 2023, 301: 127562. doi: 10.1016/j.matchemphys.2023.127562
    [11] JIANG D, QIN J, ZHOU X, et al. Improvement of thermal insulation and compressive performance of Al2O3-SiO2 aerogel by doping carbon nanotubes[J]. Ceramics International, 2022, 48(11): 16290-16299. doi: 10.1016/j.ceramint.2022.02.178
    [12] XU M, LIU Z, ZHANG X, et al. Steam reforming of biomass gasification tar over Ni-based catalyst supported by TiO2-SiO2 composite[J]. Fuel, 2023, 343: 127934. doi: 10.1016/j.fuel.2023.127934
    [13] ZHAO Z, LI P, LI Y, et al. Durable thermal fluid super-repellency of elastic fluorine-modified SiO2@sponge composite aerogel[J]. Chemical Engineering Journal, 2023, 454: 140247. doi: 10.1016/j.cej.2022.140247
    [14] YANG M, YAGN L, CHEN Z, et al. Flexible electrospun strawberry-like structure SiO2 aerogel nanofibers for thermal insulation[J]. Ceramics International, 2023, 49(6): 9165-9172. doi: 10.1016/j.ceramint.2022.11.076
    [15] WANG Y, CHU C, DUAN C, et al. Thermal insulation of 3D printed complex and miniaturized SiO2 aerogels at medium-high temperatures[J]. Journal of Non-Crystalline Solids, 2023, 608: 122251. doi: 10.1016/j.jnoncrysol.2023.122251
    [16] YE X, CHEN Z, ZHANG J, et al. SiC network reinforced SiO2 aerogel with improved compressive strength and preeminent microwave absorption at elevated temperatures[J]. Ceramics International, 2021, 47(22): 31497-31505. doi: 10.1016/j.ceramint.2021.08.027
    [17] MAO B, XIA X, QIN R, et al. Microstructure evolution and microwave absorbing properties of novel double-layered SiC reinforced SiO2 aerogel[J]. Journal of Alloys and Compounds, 2023, 936: 68314.
    [18] XIANG Z, HE Q, WANG Y, et al. Preparation and electromagnetic wave absorption properties of SiC/SiO2 nanocomposites with different special structures[J]. Applied Surface Science, 2022, 599: 153968. doi: 10.1016/j.apsusc.2022.153968
    [19] TANG R, WANG H, CHEN Y, et al. Flexible preparation of nanoporous SiO2 aerogel as novel adsorbent for efficient adsorption of Zearalenone[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109828. doi: 10.1016/j.jece.2023.109828
    [20] SAMANTA S, KHILARI S, BHUNIA K, et al. Double-metal-ion-exchanged mesoporous Zeolite as an efficient electrocatalyst for alkaline water oxidation: Synergy between Ni-Cu and their contents in catalytic activity enhancement[J]. The Journal of Physical Chemistry C, 2018, 122(20): 10725-10736. doi: 10.1021/acs.jpcc.8b01769
    [21] PANG H, DUAN Y, DAI X, et al. The electromagnetic response of composition-regulated honeycomb structural materials used for broadband microwave absorption[J]. Journal of Materials Science and Technology, 2021, 88: 203-214. doi: 10.1016/j.jmst.2021.01.072
    [22] MA Y, QUAN B, ZENG Z, et al. Multiple interface-induced evolution of electromagnetic patterns for efficient microwave absorption at low thickness[J]. Inorganic Chemistry Frontiers, 2021, 8(7): 1810-1818. doi: 10.1039/D0QI01486A
    [23] GREEN M, CHEN X. Recent progress of nanomaterials for microwave absorption[J]. Journal of Materiomics, 2019, 5(4): 503-541. doi: 10.1016/j.jmat.2019.07.003
    [24] LI H, YUAN X, ZHAO P, et al. A synergistic strategy for SiC/C nanofibers@MXene with core-sheath microstructure toward efficient electromagnetic wave absorption and photothermal conversion[J]. Applied Surface Science, 2023, 613: 155998. doi: 10.1016/j.apsusc.2022.155998
    [25] CHENG R, WANG Y, DI X, et al. Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions[J]. Journal of Materials Science and Technology, 2022, 129: 15-26. doi: 10.1016/j.jmst.2022.04.031
    [26] LU Z, WANG Y, DI X, et al. Heterostructure design of carbon fiber@graphene@layered double hydroxides synergistic microstructure for lightweight and flexible microwave absorption[J]. Carbon, 2022, 197: 466-475. doi: 10.1016/j.carbon.2022.06.075
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  163
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-19
  • 修回日期:  2023-09-03
  • 录用日期:  2023-09-09
  • 网络出版日期:  2023-09-28
  • 刊出日期:  2024-04-15

目录

    /

    返回文章
    返回