留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HCS@TiO2光催化复合材料的制备及其染料降解性能

乔瑞泽 侯斌 林杰 汪德昭 高晓红

乔瑞泽, 侯斌, 林杰, 等. HCS@TiO2光催化复合材料的制备及其染料降解性能[J]. 复合材料学报, 2024, 41(5): 2535-2546. doi: 10.13801/j.cnki.fhclxb.20230926.005
引用本文: 乔瑞泽, 侯斌, 林杰, 等. HCS@TiO2光催化复合材料的制备及其染料降解性能[J]. 复合材料学报, 2024, 41(5): 2535-2546. doi: 10.13801/j.cnki.fhclxb.20230926.005
QIAO Ruize, HOU Bin, LIN Jie, et al. Preparation and degradation dyestuffs performance of HCS@TiO2 photocatalytic composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2535-2546. doi: 10.13801/j.cnki.fhclxb.20230926.005
Citation: QIAO Ruize, HOU Bin, LIN Jie, et al. Preparation and degradation dyestuffs performance of HCS@TiO2 photocatalytic composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2535-2546. doi: 10.13801/j.cnki.fhclxb.20230926.005

HCS@TiO2光催化复合材料的制备及其染料降解性能

doi: 10.13801/j.cnki.fhclxb.20230926.005
基金项目: 江苏省大学生创新创业训练计划项目 (202310304117Y);江苏省青年基金(BK20210834)
详细信息
    通讯作者:

    高晓红,硕士,教授,硕士生导师,研究方向为功能性纳米材料的制备、功能性纺织品开发、空气净化和印染废水治理 E-mail: gao.xh@ntu.edu

  • 中图分类号: X791;TB332

Preparation and degradation dyestuffs performance of HCS@TiO2 photocatalytic composites

Funds: Jiangsu Province College Students' Innovation and Entrepreneurship Training Program (202310304117Y); Jiangsu Province Youth Found (BK20210834)
  • 摘要: 为了获得性能更加优异的光催化材料,本文通过简单的湿化学法制备了空心碳球(HCS)@TiO2光催化复合材料,并对其进行了表征。形貌与结构的表征结果显示,TiO2纳米颗粒均匀地锚定在HCS表面,形成亲水性强、比表面积大、热稳定性优异的球形复合材料,HCS@TiO2复合材料中TiO2的质量分数为80wt%;光电化学性质分析表明HCS@TiO2复合材料禁带宽度更小,光响应范围更大,光生电子还原能力更强。在模拟太阳光下,以活性红195 (RR195)为实验对象,测试制备的HCS@TiO2复合材料的光催化降解染料的性能和循环稳定性。结果表明:HCS@TiO2光生电子空穴对的分离效率更高,光催化活性优异,在120 min内染料降解率为95.36%,5次循环后仍高达93.34%,稳定性高,且易于回收。同时结合自由基捕获实验及电子顺磁共振光谱,对HCS@TiO2光催化复合材料的光催化机制进行了探究,证实了${\text{•}}{\rm{O}}_2^ - $在光催化反应体系中起主要作用。

     

  • 图  1  空心碳球(HCS)@TiO2 的合成示意图

    PPy—Polypyrrole; TOAC—Titanium oxide precursor

    Figure  1.  Composite diagram of hollow carbon sphere (HCS)@TiO2

    图  2  HCS ((a), (b)) 和HCS@TiO2 ((c), (d))的SEM、TEM图像;(e) HCS@TiO2的EDS元素分布图; HCS@TiO2的HRTEM图像(f)和快速傅里叶变换(FFT)图(g)

    d—Distance

    Figure  2.  SEM and TEM images of HCS ((a), (b)) and HCS@TiO2 ((c), (d)); (e) EDS images of HCS@TiO2; HRTEM image (f) and fast Fourier transform (FFT) image (g) of HCS@TiO2

    图  3  Ar气流下煅烧制备HCS@TiO2的XRD图谱

    Figure  3.  XRD pattern of HCS@TiO2 prepared by calcination under Ar flow

    图  4  不同煅烧温度下制备HCS@TiO2的XRD图谱

    Figure  4.  XRD patterns of HCS@TiO2 prepared at different calcination temperatures

    图  5  TiO2、HCS、HCS@TiO2的XPS图谱

    Figure  5.  XPS spectra of TiO2, HCS and HCS@TiO2

    图  6  HCS和HCS@TiO2的C1s高分辨XPS图谱((a), (b)) 、O1s高分辨XPS图谱((c), (d))及Ti2p高分辨XPS图谱((e), (f))

    Figure  6.  C1s high-resolution XPS spectra ((a), (b)), O1s high-resolution XPS spectra ((c), (d)) and Ti2p high-resolution XPS spectra ((e), (f)) of TiO2 and HCS@TiO2

    图  7  TiO2和 HCS@TiO2的N2吸附-解吸等温线

    V—Adsorption capacity; STP—Standard temperature and pressure

    Figure  7.  N2 adsorption/desorption isotherms of TiO2 and HCS@TiO2

    图  8  HCS@TiO2的热重分析图

    Figure  8.  Thermalgravimetric curves of HCS@TiO2

    图  9  HCS、酸化后的HCS、TiO2、HCS@TiO2的接触角分析

    Figure  9.  Contact angle analysis diagram of HCS, acidified HCS, TiO2, HCS@TiO2

    图  10  TiO2和 HCS@TiO2的UV-Vis DRS光谱(a) 和能隙图(b)

    α—Absorption coefficient; h—Planck's constant; ν—Frequency

    Figure  10.  UV-visible diffuse reflectance spectra (a) and energy gap diagram (b) of TiO2 and HCS@TiO2

    图  11  TiO2和HCS@TiO2的Mott-Schottky 曲线

    C—Interfacial capacitance

    Figure  11.  Mott-Schottky curves of TiO2 and HCS@TiO2

    图  12  TiO2和HCS@TiO2的电化学阻抗谱(a)及瞬态光电流响应图(b)

    Figure  12.  Electrochemical impedance spectra (a) and transient photocurrent response diagram (b) of TiO2 and HCS@TiO2

    图  13  HCS、TiO2和HCS@TiO2对活性红195 (RR195)的降解曲线

    D—Degradation

    Figure  13.  Degradation curves of Reactive Red 195 (RR195) using HCS, TiO2 and HCS@TiO2

    图  14  HCS@TiO2对RR195、活性黑5 (RB5)和碱性蓝9 (MB)的降解曲线

    Figure  14.  Degradation curves of RR195 and Reactive Black 5 (RB5) and Alkaline Blue 9 (MB) using HCS@TiO2

    图  15  HCS@TiO2降解RR195的紫外-可见光吸收光谱图(插图为RR195的颜色变化图)

    Figure  15.  UV-vis adsorption spectra of RR195 by HCS@TiO2 degradation(Illustrated with the color change of RR195)

    图  16  HCS@TiO2降解RR195的循环测试性能

    Figure  16.  Recycling test for the removal of RR195 using HCS@TiO2

    图  17  利用各种捕获剂与HCS@TiO2光催化降解RR195

    BQ—Benzoquinone; EDTA-2 Na—Ethylenediamine tetraacetate sodium; IPA—Isopropyl alcohol

    Figure  17.  Photocatalytic degradation of RR195 using HCS@TiO2 of with various radical scavengers

    图  18  TiO2和HCS@TiO2的四甲基哌啶(TEMPO)-e电子顺磁共振波谱(ESR)

    Figure  18.  Tetramethylpiperidine (TEMPO)-e electron paramagnetic resonance spectroscopy (ESR) of TiO2 and HCS@TiO2

    图  19  HCS@TiO2光催化降解RR195机制

    VB—Valence band; CB—Conduction band

    Figure  19.  Mechanism diagram of photocatalytic degradation of RR195 by HCS@TiO2

  • [1] 高超民, 于海瀚, 赵悦含, 等. ZnO@SnO2异质结复合纳米管的可控构筑及其光催化性能[J]. 复合材料学报, 2022, 39(12): 5856-5867.

    GAO Chaomin, YU Haihan, ZHAO Yuehan, et al. Controllable construction of ZnO@SnO2 heterojunction composite nanotubes and their photocatalytic properties[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5856-5867(in Chinese).
    [2] 蹇建, 杨德兴, 邝丹妮, 等. BiOBr@CdS/聚氨酯-蚕丝蛋白纳米复合膜的制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(8): 4037-4048. doi: 10.13801/j.cnki.fhclxb.20211012.002

    JIAN Jian, YANG Dexing, KUANG Danni, et al. Synthesis and visible light photocatalystic of BiOBr@CdS/polyurethane-silk fibroin nanocomposite films[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4037-4048(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211012.002
    [3] 傅炀杰, 张可欣, 毛惠秀, 等. AgI/NH2-UiO-66(Zr)异质结制备及其可见光催化性能[J]. 复合材料学报, 2022, 39(7): 3369-3375.

    FU Yangjie, ZHANG Kexin, MAO Huixiu, et al. Preparation and photocatalytic performance of AgI/NH2-UiO-66(Zr) heterojunction[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3369-3375(in Chinese).
    [4] 李瑞瑞, 牛炳康, 柴猛, 等. CuxO/TiO2纳米颗粒的制备及其光催化性能研究[J]. 中北大学学报(自然科学版), 2023, 44(4): 403-415.

    LI Ruirui, NIU Bingkang, CHAI Meng, et al. The preparation of CuxO/TiO2 nanoparticles and its photocatalytic activity[J]. Journal of North University of China (Natural Science Edition), 2023, 44(4): 403-415 (in Chinese).
    [5] 卫思颖, 马建中, 范倩倩. 量子点/TiO2复合光催化材料的研究进展[J]. 复合材料学报, 2021, 38(3): 712-721.

    WEI Siying, MA Jianzhong, FAN Qianqian. Research advances on quantum dots/TiO2 composite photocatalytic materials[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 712-721(in Chinese).
    [6] 吴健博, 石亮, 郑小强, 等. g-C3N4/BiOCl复合光催化剂作为2D/2D异质结用于光催化降解染料性能研究[J]. 复合材料学报, 2023, 40(1): 323-333.

    WU Jianbo, SHI Liang, ZHENG Xiaoqiang, et al. g-C3N4/BiOCl composite photocatalyst used as 2D/2D heterojunction for photocatalytic degradation of dyes[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 323-333(in Chinese).
    [7] 曾雄丰, 王梦幻, 王建省, 等. TiO2/石墨烯夹层结构复合材料的制备及光催化性能[J]. 复合材料学报, 2022, 39(2): 656-663.

    ZENG Xiongfeng, WANG Menghuan, WANG Jiansheng, et al. Preparation and photocatalytic properties TiO2/graphene nanocomposites with sandwich structure[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 656-663(in Chinese).
    [8] 谷麟, 俞海祥, 王宇, 等. TiO2/底泥复合材料的制备及其可见光催化性能评价[J]. 复合材料学报, 2019, 36(11): 2665-2673.

    GU Lin, YU Haixiang, WANG Yu, et al. Preparation of TiO2/river sediment composite and its visible light photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2019, 36(11): 2665-2673(in Chinese).
    [9] 董晓珠, 曾雄丰, 王建省, 等. β-FeOOH/TiO2复合薄膜的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3): 1173-1179.

    DONG Xiaozhu, ZENG Xiongfeng, WANG Jiansheng, et al. Preparation of β-FeOOH/TiO2 composite film and its photocatalytic performance[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1173-1179(in Chinese).
    [10] 李跃军, 曹铁平, 孙大伟, 等. Bi@Bi4Ti3O12/TiO2等离子体复合纤维的制备及增强可见光催化性能[J]. 复合材料学报, 2020, 37(3): 609-617.

    LI Yuejun, CAO Tieping, SUN Dawei, et al. Preparation and highly enhanced visible-light photocatalytic performances of Bi@Bi4Ti3O12/TiO2 plasmonic composite fibers[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 609-617(in Chinese).
    [11] 樊婷玥, 任煜, 赵紫瑶, 等. Ag6Si2O7-TiO2/PP复合光催化材料的制备及其抗菌性能[J]. 复合材料学报, 2022, 39(8): 3915-3921.

    FAN Tingyue, REN Yu, ZHAO Ziyao, et al. Preparation and antibacterial properties of Ag6Si2O7-TiO2/PP composite photocatalytic material[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3915-3921(in Chinese).
    [12] 胡金娟, 马春雨, 王佳琳, 等. Ag-Ag2O/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J]. 复合材料学报, 2020, 37(6): 1401-1410. doi: 10.13801/j.cnki.fhclxb.20191217.001

    HU Jinjuan, MA Chunyu, WANG Jialin, et al. Preparation and photocatalytic properties of Ag-Ag2O/TiO2-g-C3N4 nanocomposites[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1401-1410(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191217.001
    [13] 郑小强, 佟占鑫, 吴健博, 等. Bi2O3-TiO2复合氧化物光催化环己烷选择氧化[J]. 复合材料学报, 2022, 39(7): 3262-3270.

    ZHENG Xiaoqiang, TONG Zhanxin, WU Jianbo, et al. Photocatalytic selective oxidation of cyclohexane with Bi2O3-TiO2 composite oxide[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3262-3270(in Chinese).
    [14] 李燕, 孙宝, 王爱国, 等. TiO2-g-C3N4复合材料的制备及其在水泥石表面的应用[J]. 复合材料学报, 2020, 37(8): 1981-1988.

    LI Yan, SUN Bao, WANG Aiguo, et al. Preparation of TiO2-g-C3N4 composites and its application in cement stone surface[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1981-1988(in Chinese).
    [15] 谢若兰, 何欢, 杨世利, 等. TiO2-g-C3N4-Bi2O3复合异质结构催化材料在水处理中的应用[J]. 复合材料学报, 2021, 38(9): 3036-3044.

    XIE Ruolan, HE Huan, YANG Shili, et al. Application of TiO2-g-C3N4-Bi2O3 composite heterogeneous catalytic materials in water treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3036-3044(in Chinese).
    [16] 刘袁, 房国丽, 严祥辉, 等. 基底表面缺陷对TiO2/Bi2WO6复合材料微观结构和光催化性能的影响[J]. 复合材料学报, 2023, 40(5): 2783-2793.

    LIU Yuan, FANG Guoli, YAN Xianghui, et al. Effect of substrate surface defect on the microstructure and photocatalytic activities of TiO2/Bi2WO6 composites[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2783-2793(in Chinese).
    [17] 廖燕敏, 黄俊健, 杨小霞, 等. 晶面异质结纳米二氧化钛/二维石墨相氮化碳复合材料的光催化性能研究[J]. 化学研究与应用, 2021, 33(5): 927-934. doi: 10.3969/j.issn.1004-1656.2021.05.020

    LIAO Yanmin, HUANG Junjian, YANG Xiaoxia, et al. Study on photocatalytic performance of crystal surface heterojunction nanometer titanium dioxide/two-dimensional graphite phase carbon nitride composites[J]. Chemical Research and Application, 2021, 33(5): 927-934(in Chinese). doi: 10.3969/j.issn.1004-1656.2021.05.020
    [18] 周小桔, 钱俊, 胡正龙, 等. PbTi0.85Ni0.15O3/TiO2纳米棒阵列复合材料的压电光催化性能[J]. 复合材料学报, 2024, 41(3): 1371-1382.

    ZHOU Xiaoju, QIAN Jun, HU Zhenglong, et al. Piezo-photocatalytic property of PbTi0.85Ni0.15O3/TiO2 nanorod array composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1371-1382(in Chinese).
    [19] 郭佳允, 傅炀杰, 张柯杰, 等. g-C3N4/POPs异质结制备及其可见光催化性能[J]. 复合材料学报, 2023, 40(2): 904-910.

    GUO Jiayun, FU Yangjie, ZHANG Kejie, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 904-910(in Chinese).
    [20] 杨光, 陈松, 丁会敏, 等. 空心纳微米碳球的制备研究进展[J]. 化学工程师, 2019, 33(9): 65-67. doi: 10.16247/j.cnki.23-1171/tq.20190965

    YANG Guang, CHEN Song, DING Huimin, et al. Effect of modified semi-coke structure on its adsorption performance[J]. Chemical Engineer, 2019, 33(9): 65-67(in Chinese). doi: 10.16247/j.cnki.23-1171/tq.20190965
    [21] 张兴淼, 张威, 李伟. 碳基空心结构纳米材料的制备与应用[J]. 黑龙江大学工程学报, 2021, 12(3): 42-56. doi: 10.13524/j.2095-008x.2021.03.036

    ZHANG Xingmiao, ZHANG Wei, LI Wei. Synthesis and aoolication of carbon-based hollow nanomaterials[J]. Journal of Engineering of Heilongjiang University, 2021, 12(3): 42-56(in Chinese). doi: 10.13524/j.2095-008x.2021.03.036
    [22] 李会敏, 王晓冬, 李玥, 等. 柔性Ag@TiO2/碳纳米纤维膜的制备及光催化性能[J]. 电镀与涂饰, 2021, 40(5): 393-399.

    LI Huimin, WANG Xiaodong, LI Yue, et al. Preparation and photocatalytic activity of flexible Ag@TiO2/carbon nanofiber membrane[J]. Electroplating & Finishing, 2021, 40(5): 393-399(in Chinese).
    [23] 常薇, 雷超, 罗杰, 等. 二氧化钛/石墨烯气凝胶的制备及光催化性能[J]. 西安工程大学学报, 2022, 36(6): 54-59. doi: 10.13338/j.issn.1674-649x.2022.06.008

    CHANG Wei, LEI Chao, LUO Jie, et al. Preparation and photocatalytic activity of titanium dioxide/graphene aerogel[J]. Journal of Xi'an Polytechnic University, 2022, 36(6): 54-59(in Chinese). doi: 10.13338/j.issn.1674-649x.2022.06.008
    [24] SONG S Z, QIN T, LI Q, et al. Single Co atoms implanted into N-doped hollow carbon nanoshells with non-planar Co-N4-1-O2 sites for efficient oxygen electrochemistry[J]. Inorganic Chemistry, 2021, 60(10): 7498-7509.
    [25] ZHOU S H, LIU S K, SU K, et al. Facile synthesis of Ti3+ self-doped and sulfur-doped TiO2 nanotube arrays with enhanced visible-light photoelectrochemical performance[J]. Journal of Alloys and Compounds, 2019, 804: 10-17.
    [26] FANG J, GAO X H, SUN J, et al. An efficient TiO2/rGO hybrids with enhanced photocatalytic degradation toward Reactive Red 195[J]. Environmental Engineering Science, 2021, 38(6): 555-564.
    [27] GGHICOV A, TSUCHIYA H, MACAK J M, et al. Annealing effects on the photoresponse of TiO2 nanotubes[J]. Physica Status Solidi, 2006, 203(4): R28-R30.
    [28] 周毛毛, 蒋阳, 谢于辉, 等. 纳米二氧化钛的制备、改性及其在聚合物基复合材料中的应用研究进展[J]. 复合材料学报, 2022, 39(5): 2089-2105. doi: 10.13801/j.cnki.fhclxb.20211106.002

    ZHOU Maomao, JIANG Yang, XIE Yuhui, et al. Preparation and modification of nano-TiO2 and its application in polymer matrix composites research progress[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2089-2105(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211106.002
    [29] CRUZ M, GOMEZ C, DURAN-VALLE C J, et al. Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix[J]. Applied Surface Science, 2017, 416: 1013-1021.
    [30] 郭佳允. 新型多孔有机聚合物复合材料的制备及其环境光催化性能研究[D]. 杭州: 浙江工商大学, 2022.

    GUO Jiayun. Preparation and environmental photocatalytic properties of novel porous organic polymer composites[D]. Hangzhou: Zhejiang Gongshang University, 2022(in Chinese).
  • 加载中
图(19)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  237
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-09-03
  • 录用日期:  2023-09-09
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2024-05-15

目录

    /

    返回文章
    返回