Research progress of cellulose nanofibers based electromagnetic shielding materials
-
摘要: 纤维素纳米纤维 (CNFs) 作为一种新型的一维纳米材料,具有来源广泛、长径比高、力学性能优异等特点。以CNFs为载体或增强相通过不同的方法可以制备出多种多样的电磁屏蔽功能复合材料,如气凝胶、薄膜和海绵等。本文基于电磁屏蔽的原理,综述了CNFs基电磁屏蔽材料的制备方法及研究进展,并比较了不同的CNFs基电磁屏蔽材料在结构和性能上的差异,最后对CNFs基电磁屏蔽功能复合材料未来的发展方向进行了展望。Abstract: Cellulose nanofibers (CNFs), a new type of one-dimensional nanomaterials, have the characteristics of wide sources, high aspect ratio and excellent mechanical properties. A variety of electromagnetic shielding composite materials, such as aerogels, films and sponges, can be prepared by using CNFs as the carrier or reinforcement phase through different methods. In this paper, based on the principle of electromagnetic shielding, the preparation methods and the research progress of different CNFs-based electromagnetic shielding composites are reviewed, and the differences in the structure and performances of different CNFs-based electromagnetic shielding materials are compared. Finally, the research trends and application prospects of CNFs-based electromagnetic shielding functional composites are prospected.
-
图 3 真空辅助自组装制备的薄柔性碳纳米管(CNT)/MXene/CNFs复合纸的电磁屏蔽机制及性能[20]
Figure 3. Electromagnetic shielding mechanism and performance of thin flexible carbon nanotubes (CNT)/MXene/CNFs composite paper prepared by vacuum assisted self-assembly[20]
rGO—Reduced graphene oxide; SSE—Normalized ratio of shielding effectiveness; t—Thickness
图 4 冷冻干燥法制备的CNFs/Ag NWs气凝胶的电磁屏蔽机制及性能[44]
Figure 4. Electromagnetic shielding mechanism and performance of CNFs/Ag NWs aerogel prepared by vacuum assisted self-assembly[44]
Ag NW—Ag nanowires; PDMS—Polydimethylsiloxane; SWCNT—Single-walled carbon nanotube; MWCNT—Multi-walled carbon nanotube; PS—Polystyrene; PU—Polyurethane; PEI—Polyethyleneimine; SE—Shielding effectiveness; SSE/d—SE divided by density and thickness of materials; EMI—Electromagnetic interference; Pin—Incident power; Pref—Reflected power; Pout—Transmitted power; PVP—Polyvinyl Pyrrolidone
图 6 Co/C@CNFs气凝胶和CNFs/Ag NWs@Fe3O4复合海绵的制备、电磁屏蔽机制及性能[51-52]
Figure 6. Preparation, shielding mechanism and performance of Co/C@CNF aerogel and CNF/Ag NWs@Fe3O4 composite sponges[51-52]
SET—Total shielding effectiveness; SER—Shielding effectiveness induced by reflection loss; SEA—Shielding effectiveness induced by absorption loss
表 1 金属或金属氧化物/CNFs基电磁屏蔽材料的类型、厚度、电磁屏蔽效能及适用频率
Table 1. Types, thickness, shielding effectiveness and frequency range of metal or metal oxide/CNFs based electromagnetic shielding materials
Type Thickness/mm Electromagnetic shielding effectiveness/dB Frequency Ref. CNF/MXene/FeCo 0.34 58.0 8-12 GHz [53] LM/CNF 0.3 65.0 4-18 GHz [54] CoNi@C-Ag NWs/CNF — 82.0 8-12 GHz [55] Fe3O4@rGO/CNF — 23.0 8-12 GHz [56] CNF/MXene@Ga — 52.8 8.2-12.4 GHz [57] CNF/TRGO@Ni 0.015-0.02 32.2 8-12 GHz [58] CoFe2O4@MXene-Ag NWs/CNF 0.1 70.9 8.2-12.4 GHz [59] CNF/Ag NW conductive paper 0.04 39.3 8.2-12.4 GHz [60] CNFs/Ag NWs sponges — 81.2 8.2-12.4 GHz [61] CNF/Ag NWs hybrid aerogels — 70.0 8.2-12.4 GHz [44] Ag@PDA@CNFs 3.2 120.85 10-1500 MHz [45] CNFs@PDA@Ag NPs — 93.8 8.2-12.4 GHz [46] CNF-MXene/Ag NWs 0.033 54.1 8.2-12.4 GHz [62] CNF@MXene@Ag NW 0.035 55.9 8.2-12.4 GHz [63] CNF/MXene-Ag NWs — 61.9 8.2-12.4 GHz [64] Notes: LM—Liquid metal;TRGO—Thermal reduction of graphene oxide; AgNPs—Silver nanoparticles. 表 2 碳材料/纤维素纳米纤维基电磁屏蔽材料的类型、厚度、电磁屏蔽效能及适用频率
Table 2. Types, thickness, shielding effectiveness and frequency range of carbon/CNFs based electromagnetic shielding materials
Type Thickness/mm Electromagnetic shielding effectiveness/dB Frequency Ref. CNT-CNF bulk materials (CCNBs) 0.2 40.0 8.2-12.4 GHz [65] CNF@GNS — 27.4 8.2-12.4 GHz [66] CNF/SBC 3 70.0 0.4-2.0 THz [67] CNF/MWCNT 0.15 45.8 8.2-12.4 GHz [68] rGO/CNF 23 26.2 8.2-12.4 GHz [69] TOCNFs/CNT/Ti3C2Tx 0.012 20.5 8.2-12.4 GHz [21] CNF/MXene/MCHS 0.05 41.7 8.2-12.4 GHz [70] Notes: GNS—Graphene nanosheets; SBC—Sustainable biocarbon; TOCNFs—Oxidized CNFs; MCHS—Mesoporous carbon hollow spheres. 表 3 聚合物/CNFs基电磁屏蔽材料的类型、厚度、电磁屏蔽效能及适用频率
Table 3. Types, thickness, shielding effectiveness and frequency range of polymer/CNFs based electromagnetic shielding materials
Type Thickness/mm Electromagnetic shielding effectiveness/dB Frequency Ref. PANI/CNF 1 23.0 8.2-12.4 GHz [50] PPy/PVA-CNP 0.138 23.0 8.2-12.4 GHz [71] PANI/CNF — 32.0 8.2-12.4 GHz [72] Ag@PDA@CNFs 3.2 120.85 10-1500 MHz [45] CNFs@PDA@AgNPs — 93.8 8.2-12.4 GHz [46] CNF/PANI 0.28 25.2 8.2-12.4 GHz [73] Notes: PANI—Polyaniline; PPy—Polypyrrole; PVA—Polyvinyl alcohol; CNP—Cellulose nanopaper. 表 4 MXene/CNFs基电磁屏蔽材料的类型、厚度、电磁屏蔽效能及适用频率
Table 4. Types, thickness, shielding effectiveness and frequency range of MXene/CNFs based electromagnetic shielding materials
Type Thickness Electromagnetic shielding effectiveness/dB Frequency/GHz Ref. Ti3C2Tx/TOCNF 0.038 mm 39.6 8.2-12.4 [75] Silicone-MXene/CNF — 39.5 8.2-12.4 [43] PC-MXene 0.9 μm 33.3 8.2-12.4 [76] CNF/MXene/MCHS 0.05 mm 41.7 8.2-12.4 [69] CNF/BNNS/MXene — 60.7 8.2-12.4 [41] TM/BC — 60.0 8.2-12.4 [47] CNF@MXene films 0.035 mm 40.0 8.2-12.4 [40] CNF@MXene@Ag NW 0.035 mm 55.9 8.2-12.4 [63] CNF/MXene-Ag NWs — 61.9 8.2-12.4 [64] CNF/MXene composites — 39.0 8.2-12.4 [77] DM@CNF — 41.9 8.2-12.4 [78] CNF/MXene composite film 0.076 mm 54.68 8.2-12.4 [79] MXene/CNF composite film 0.02 mm 36.51 8.2-12.4 [80] MXene/CNF composite film — 50.2 8.2-12.4 [81] d-Ti3C2Tx/CNF 0.047 mm 25.8 8.2-12.4 [74] Notes: PC—Physical and chemical; BNNS—Boron nitride nanosheets; TM—Ti3C2Tx; BC—Bacterial cellulose; DM—Dopamine modified MXene. -
[1] CHEN Y, YANG Y, XIONG Y, et al. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding[J]. Nano Today, 2021, 38: 101204. doi: 10.1016/j.nantod.2021.101204 [2] SHU J C, CAO W Q, CAO M S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding[J]. Advanced Functional Materials, 2021, 31(23): 2100470. [3] CHENG J, LI C, XIONG Y, et al. Recent advances in design strategies and multifunctionality of flexible electromagne-tic interference shielding materials[J]. Nano-Micro Letters, 2022, 14(1): 80. doi: 10.1007/s40820-022-00823-7 [4] WANG C, MURUGADOSS V, KONG J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding[J]. Carbon, 2018, 140: 696-733. doi: 10.1016/j.carbon.2018.09.006 [5] JIANG D, MURUGADOSS V, WANG Y, et al. Electromagne-tic interference shielding polymers and nanocomposites—A review[J]. Polymer Reviews, 2019, 59(2): 280-337. doi: 10.1080/15583724.2018.1546737 [6] LIU H, WU S, YOU C, et al. Recent progress in morphologi-cal engineering of carbon materials for electromagnetic interference shielding[J]. Carbon, 2021, 172: 569-596. doi: 10.1016/j.carbon.2020.10.067 [7] XU H, YIN X, LI X, et al. Lightweight Ti2CT x MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10198-10207. [8] ZHANG M, HAN C, CAO W Q, et al. A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor[J]. Nano-Micro Letters, 2020, 13(1): 27. [9] WANG X X, SHU J C, CAO W Q, et al. Eco-mimetic nano-architecture for green EMI shielding[J]. Chemical Engi-neering Journal, 2019, 369: 1068-1077. doi: 10.1016/j.cej.2019.03.164 [10] SHAHZAD F, ALHABEB M, HATTER CHRISTINE B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. doi: 10.1126/science.aag2421 [11] IQBAL A, SHAHZAD F, HANTANASIRISAKUL K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene)[J]. Science, 2020, 369(6502): 446-450. doi: 10.1126/science.aba7977 [12] LU Y, SUN Q, YANG D, et al. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution[J]. Journal of Materials Chemistry, 2012, 22(27): 13548-13557. doi: 10.1039/c2jm31310c [13] CHUNG D D L. Materials for electromagnetic interference shielding[J]. Materials Chemistry and Physics, 2020, 255: 123587. doi: 10.1016/j.matchemphys.2020.123587 [14] FUGETSU B, SANO E, SUNADA M, et al. Electrical conduc-tivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper[J]. Carbon, 2008, 46(9): 1256-1258. doi: 10.1016/j.carbon.2008.04.024 [15] LYU L, LIU J, LIU H, et al. An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding[J]. Engineered Science, 2018, 2: 26-42. [16] NAEEM S, BAHETI V, TUNAKOVA V, et al. Development of porous and electrically conductive activated carbon web for effective EMI shielding applications[J]. Carbon, 2017, 111: 439-447. doi: 10.1016/j.carbon.2016.10.026 [17] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: A review[J]. Advanced Functional Materials, 2020, 30(47): 2000883. doi: 10.1002/adfm.202000883 [18] GEETHA S, SATHEESH KUMAR K K, RAO C R K, et al. EMI shielding: Methods and materials—A review[J]. Journal of Applied Polymer Science, 2009, 112(4): 2073-2086. doi: 10.1002/app.29812 [19] LI J, DING Y, YU N, et al. Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance[J]. Carbon, 2019, 158: 45-54. [20] CAO W, MA C, TAN S, et al. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding[J]. Nano-Micro Letters, 2019, 11(1): 72. doi: 10.1007/s40820-019-0304-y [21] WANG B, LI Y, ZHANG W, et al. Ultrathin cellulose nano-fiber/carbon nanotube/Ti3C2T x film for electromagnetic interference shielding and energy storage[J]. Carbohydrate Polymers, 2022, 286: 119302. doi: 10.1016/j.carbpol.2022.119302 [22] ALILA S, BESBES I, VILAR M R, et al. Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study[J]. Industrial Crops and Products, 2013, 41: 250-259. doi: 10.1016/j.indcrop.2012.04.028 [23] BRINCHI L, COTANA F, FORTUNATI E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications[J]. Carbohydrate Polymers, 2013, 94(1): 154-169. doi: 10.1016/j.carbpol.2013.01.033 [24] HU L, LIU N, ESKILSSON M, et al. Silicon-conductive nano-paper for Li-ion batteries[J]. Nano Energy, 2013, 2(1): 138-145. doi: 10.1016/j.nanoen.2012.08.008 [25] YUE X, ZHANG T, YANG D, et al. Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management[J]. Nano Energy, 2019, 63: 103808. doi: 10.1016/j.nanoen.2019.06.004 [26] SYDNEY GLADMAN A, MATSUMOTO E A, NUZZO R G, et al. Biomimetic 4D printing[J]. Nature Materials, 2016, 15(4): 413-418. doi: 10.1038/nmat4544 [27] RAJALA S, SIPONKOSKI T, SARLIN E, et al. Cellulose nano-fibril film as a piezoelectric sensor material[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15607-15614. [28] LI T, ZHANG X, LACEY S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18(6): 608-613. doi: 10.1038/s41563-019-0315-6 [29] HOKKANEN S, BHATNAGAR A, SILLANPÄÄ M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity[J]. Water Research, 2016, 91: 156-173. doi: 10.1016/j.watres.2016.01.008 [30] KLEMM D, KRAMER F, MORITZ S, et al. Nanocelluloses: A new family of nature-based materials[J]. Angewandte Chemie International Edition, 2011, 50(24): 5438-5466. doi: 10.1002/anie.201001273 [31] BANG J H, SUSLICK K S. Applications of ultrasound to the synthesis of nanostructured materials [J]. Advanced Materials, 2010, 22(10): 1039-1059. [32] ZEIGER B W, SUSLICK K S. Sonofragmentation of molecular crystals [J]. Journal of the American Chemical Society, 2011, 133(37): 14530-14533. [33] HENRIKSSON M, HENRIKSSON G, BERGLUND L A, et al. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers[J]. European Polymer Journal, 2007, 43(8): 3434-3441. doi: 10.1016/j.eurpolymj.2007.05.038 [34] ZIMMERMANN T, PÖHLER E, SCHWALLER P. Mechanical and morphological properties of cellulose fibril reinforced nanocomposites [J]. Advanced Engineering Materials, 2005, 7(12): 1156-1161. [35] IWAMOTO S, NAKAGAITO A N, YANO H, et al. Optically transparent composites reinforced with plant fiber-based nanofibers[J]. Applied Physics A, 2005, 81(6): 1109-1112. doi: 10.1007/s00339-005-3316-z [36] CHENG Q, WANG S, HAN Q. Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization[J]. Journal of Applied Polymer Science, 2010, 115(5): 2756-2762. doi: 10.1002/app.30160 [37] TISCHER P C S F, SIERAKOWSKI M R, WESTFAHL H J, et al. Nanostructural reorganization of bacterial cellulose by ultrasonic treatment [J]. Biomacromolecules, 2010, 11(5): 1217-1224. [38] PÄÄKKÖ M, ANKERFORS M, KOSONEN H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J]. Biomacromolecules, 2007, 8(6): 1934-1941. doi: 10.1021/bm061215p [39] ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose nanofibers [J]. Nanoscale, 2011, 3(1): 71-85. [40] ZHOU B, ZHANG Z, LI Y, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and mxene layers[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4895-4905. [41] SHANG Y, JI Y, DONG J, et al. Sandwiched cellulose nano-fiber/boron nitride nanosheet/Ti3C2T x MXene composite film with high electromagnetic shielding and thermal conductivity yet insulation performance[J]. Composites Science and Technology, 2021, 214: 108974. doi: 10.1016/j.compscitech.2021.108974 [42] ZENG Z, WANG C, SIQUEIRA G, et al. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance[J]. Advanced Science, 2020, 7(15): 2000979. doi: 10.1002/advs.202000979 [43] XIN W, MA M G, CHEN F. Silicone-coated MXene/cellulose nanofiber aerogel films with photothermal and Joule heating performances for electromagnetic interference shielding [J]. ACS Applied Nano Materials, 2021, 4(7): 7234-7243. [44] ZENG Z, WU T, HAN D, et al. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding[J]. ACS Nano, 2020, 14(3): 2927-2938. doi: 10.1021/acsnano.9b07452 [45] WU L P, LI Y Z, WANG B J, et al. Electroless Ag-plated sponges by tunable deposition onto cellulose-derived templates for ultra-high electromagnetic interference shielding[J]. Materials & Design, 2018, 159: 47-56. [46] XU Y, QIAN K, DENG D, et al. Electroless deposition of silver nanoparticles on cellulose nanofibrils for electromagnetic interference shielding films[J]. Carbohydrate Polymers, 2020, 250: 116915. doi: 10.1016/j.carbpol.2020.116915 [47] ZHOU Z, SONG Q, HUANG B, et al. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance[J]. ACS Nano, 2021, 15(7): 12405-12417. doi: 10.1021/acsnano.1c04526 [48] JIANG Y, XU Y, DENG S, et al. 3D printing of ultralight MWCNT@OCNF porous scaffolds for high-efficiency electromagnetic interference shielding[J]. Carbohydrate Polymers, 2023, 314: 120945. doi: 10.1016/j.carbpol.2023.120945 [49] HU D, HUANG X, LI S, et al. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding[J]. Composites Science and Technology, 2020, 188: 107995. doi: 10.1016/j.compscitech.2020.107995 [50] GOPAKUMAR D A, PAI A R, POTTATHARA Y B, et al. Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 20032-20043. [51] FEI Y, LIANG M, YAN L, et al. Co/C@cellulose nanofiber aerogel derived from metal-organic frameworks for highly efficient electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 392: 124815. doi: 10.1016/j.cej.2020.124815 [52] CHEN Y, LUO H, GUO H, et al. Anisotropic cellulose nano-fibril composite sponges for electromagnetic interference shielding with low reflection loss[J]. Carbohydrate Polymers, 2022, 276: 118799. doi: 10.1016/j.carbpol.2021.118799 [53] MA M, TAO W, LIAO X, et al. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding[J]. Chemical Engineering Journal, 2023, 452: 139471. doi: 10.1016/j.cej.2022.139471 [54] LIAO S Y, WANG X Y, LI X M, et al. Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding[J]. Chemical Engineering Journal, 2021, 422: 129962. doi: 10.1016/j.cej.2021.129962 [55] LIANG C, HE J, ZHANG Y, et al. MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding[J]. Composites Science and Technology, 2022, 224: 109445. doi: 10.1016/j.compscitech.2022.109445 [56] LI M, XU Q, JIANG W, et al. Preparation and investigation of Fe3O4@rGO/CNF foams for electromagnetic inter-ference shielding[J]. Fibers and Polymers, 2023, 24(2): 771-778. doi: 10.1007/s12221-023-00063-5 [57] HE Y, YANG J, CHEN W, et al. Gallium-doped MXene/cellulose nanofiber composite membranes with electro/photo thermal conversion property for high performance electromagnetic interference shielding[J]. Chemical Engineering Journal, 2023, 464: 142565. doi: 10.1016/j.cej.2023.142565 [58] HAN G, MA Z, ZHOU B, et al. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2021, 583: 571-578. doi: 10.1016/j.jcis.2020.09.072 [59] GUO Z, REN P, LU Z, et al. Multifunctional CoFe2O4@MXene-AgNWs/cellulose nanofiber composite films with asymmetric layered architecture for high-efficiency electromagnetic interference shielding and remarkable thermal management capability[J]. ACS Applied Materials & Interfaces, 2022, 14(36): 41468-41480. [60] CHEN Y, PANG L, LI Y, et al. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105960. doi: 10.1016/j.compositesa.2020.105960 [61] CHEN Y, ZHANG L, MEI C, et al. Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35513-35522. [62] CHENG R, WANG B, ZENG J, et al. Janus-inspired flexible cellulose nanofiber-assisted MXene/silver nanowire papers with fascinating mechanical properties for efficient electromagnetic interference shielding[J]. Carbon, 2023, 202: 314-324. doi: 10.1016/j.carbon.2022.10.079 [63] ZHOU B, LI Q, XU P, et al. An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management[J]. Nanoscale, 2021, 13(4): 2378-2388. doi: 10.1039/D0NR07840A [64] ZHANG F, REN P, GUO Z, et al. Asymmetric multilayered MXene-AgNWs/cellulose nanofiber composite films with antibacterial properties for high-efficiency electromagnetic interference shielding[J]. Journal of Materials Science & Technology, 2022, 129: 181-189. [65] FENG X, WANG X, WANG M, et al. High-performance carbon nanotube-cellulose nanofiber bulk materials with multifunctional applications in thermal management and shielding from electromagnetic interference[J]. Journal of Materials Chemistry A, 2022, 10(41): 22271-22277. doi: 10.1039/D2TA05457D [66] LI L, MA Z, XU P, et al. Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020, 139: 106134. doi: 10.1016/j.compositesa.2020.106134 [67] PAI A R, LU Y, JOSEPH S, et al. Ultra-broadband shielding of cellulose nanofiber commingled biocarbon functional constructs: A paradigm shift towards sustainable terahertz absorbers[J]. Chemical Engineering Journal, 2023, 467: 143213. doi: 10.1016/j.cej.2023.143213 [68] ZHANG H, SUN X, HENG Z, et al. Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding[J]. Industrial & Engineering Chemistry Research, 2018, 57(50): 17152-17160. [69] YANG W, ZHAO Z, WU K, et al. Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2017, 5(15): 3748-3756. doi: 10.1039/C7TC00400A [70] TAO W, MA M, LIAO X, et al. Ellulose nanofiber/MXene/mesoporous carbon hollow spheres composite films with porous structure for deceased reflected electromagnetic interference shielding[J]. Composites Communications, 2023, 41: 101647. doi: 10.1016/j.coco.2023.101647 [71] PARIT M, DU H, ZHANG X, et al. Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications[J]. Carbohydrate Polymers, 2020, 240: 116304. doi: 10.1016/j.carbpol.2020.116304 [72] PAI A R, BINUMOL T, GOPAKUMAR D A, et al. Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers [J]. Carbohydrate Polymers, 2020, 246: 116663. [73] ZHANG K, GU X, DAI Q, et al. Flexible polyaniline-coated poplar fiber composite membranes with effective electromagnetic shielding performance[J]. Vacuum, 2019, 170: 108990. doi: 10.1016/j.vacuum.2019.108990 [74] CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspiredstructure and superior electromagnetic interference shielding properties[J]. ACS Nano, 2018, 12(5): 4583-4593. doi: 10.1021/acsnano.8b00997 [75] ZHAN Z, SONG Q, ZHOU Z, et al. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2019, 7(32): 9820-9829. doi: 10.1039/C9TC03309B [76] WU N, ZENG Z, KUMMER N, et al. Ultrafine cellulose nano-fiber-assisted physical and chemical cross-linking of MXene sheets for electromagnetic interference shielding[J]. Small Methods, 2021, 5(12): 2100889. doi: 10.1002/smtd.202100889 [77] MA M, LIAO X, CHU Q, et al. Construction of gradient conductivity cellulose nanofiber/MXene composites with efficient electromagnetic interference shielding and excellent mechanical properties[J]. Composites Science and Technology, 2022, 226: 109540. doi: 10.1016/j.compscitech.2022.109540 [78] LIAO Q, LIU H, CHEN Z, et al. Flexible and ultrathin dopamine modified MXene and cellulose nanofiber composite films with alternating multilayer structure for superior electromagnetic interference shielding performance[J]. Frontiers of Physics, 2023, 18(3): 33300. doi: 10.1007/s11467-022-1234-6 [79] LI J, XU L, PAN H, et al. Self-assembling ultrathin MXene/cellulose nanofiber/MXene composite film for high-performance electromagnetic interference shielding[J]. Nano, 18(7): 2350051. [80] FENG S, ZHAN Z, YI Y, et al. Facile fabrication of MXene/cellulose fiber composite film with homogeneous and aligned structure via wet co-milling for enhancing electromagnetic interference shielding performance[J]. Composites Part A: Applied Science and Manufacturing, 2022, 157: 106907. doi: 10.1016/j.compositesa.2022.106907 [81] FENG S, YI Y, CHEN B, et al. Rheology-guided assembly of a highly aligned MXene/cellulose nanofiber composite film for high-performance electromagnetic interference shielding and infrared stealth[J]. ACS Applied Materials & Interfaces, 2022, 14(31): 36060-36070.