留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热塑性预浸料赋形褶皱缺陷的全局灵敏度分析

张佳晨 郭渊 吕柄熠 校金友 文立华 侯晓

张佳晨, 郭渊, 吕柄熠, 等. 热塑性预浸料赋形褶皱缺陷的全局灵敏度分析[J]. 复合材料学报, 2024, 41(2): 1070-1079. doi: 10.13801/j.cnki.fhclxb.20230920.003
引用本文: 张佳晨, 郭渊, 吕柄熠, 等. 热塑性预浸料赋形褶皱缺陷的全局灵敏度分析[J]. 复合材料学报, 2024, 41(2): 1070-1079. doi: 10.13801/j.cnki.fhclxb.20230920.003
ZHANG Jiachen, GUO Yuan, LYU Bingyi, et al. Global sensitivity analysis of forming wrinkle defects in thermoplastic prepregs[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1070-1079. doi: 10.13801/j.cnki.fhclxb.20230920.003
Citation: ZHANG Jiachen, GUO Yuan, LYU Bingyi, et al. Global sensitivity analysis of forming wrinkle defects in thermoplastic prepregs[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1070-1079. doi: 10.13801/j.cnki.fhclxb.20230920.003

热塑性预浸料赋形褶皱缺陷的全局灵敏度分析

doi: 10.13801/j.cnki.fhclxb.20230920.003
基金项目: 国家自然科学基金重点项目(52090051) ;陕西省重点研发计划(2021ZDLGY11-02);国家自然科学基金委员会-中国航天科技集团有限公司航天先进制造技术研究联合基金(U1837601)
详细信息
    通讯作者:

    校金友,博士,教授,博士生导师,研究方向为计算结构力学、复合材料结构设计 E-mail: xiaojy@nwpu.edu.cn

    文立华,博士,教授,博士生导师,研究方向为飞行器结构设计 E-mail: Lhwen@nwpu.edu.cn

  • 中图分类号: TB332

Global sensitivity analysis of forming wrinkle defects in thermoplastic prepregs

Funds: Key Project of National Natural Science Foundation of China (52090051); Key Research and Development Plan of Shaanxi Province (2021ZDLGY11-02); The Joint Fund of Advanced Aerospace Manufacturing Technology Research of National Natural Science Foundation of China and China Aerospace Science and Technology Corporation (U1837601)
  • 摘要: 复合材料复杂构件成型过程中极易产生褶皱,影响构件成型质量和承载性能,因而迫切需要建立成型工艺参数对预浸料褶皱的定量映射关系,支撑构件的低缺陷成型制造。本文发展了一种多工艺参数耦合的热塑性预浸料褶皱缺陷全局灵敏度分析方法。基于非正交本构模型发展了热塑性预浸料宽温域赋形变形有限元仿真方法,将预浸料与模具的距离和预浸料面外弯曲的曲率相结合,提高了褶皱缺陷定量表征的可靠性,最终采用基于方差的 Sobol全局灵敏度指标,建立了一套能够定量计算赋形工艺参数对褶皱缺陷影响程度的全局灵敏度分析方法。通过典型平纹碳纤维/聚碳酸酯(CF/PC)材料单穹顶成型过程验证,结果表明: 在200~250℃温度范围和0.2~2.0 kPa压强范围内,赋形温度对CF/PC 预浸料褶皱缺陷的影响大于赋形压强,而且赋形过程中存在温度和压强的双参数耦合作用。

     

  • 图  1  非正交本构模型坐标系定义

    e1, e2—Direction of the local orthogonal coordinate system; f1, f2—Prepreg yarn orientation; α—Angle between f1 and e1; β—Shear angle; m1—Bisector of e1 and e2; m2—Direction orthogonal to m1 in a clockwise direction

    Figure  1.  Definition of coordinate systems of non-orthogonal models

    图  2  热塑性复合材料局部典型褶皱缺陷形貌

    Figure  2.  Shape of local typical wrinkle defects of thermoplastic composites

    图  3  织物到模具的距离和织物表面曲率计算

    nP—Normal vector at node P

    Figure  3.  Calculation of fabric-to-mold distance and fabric surface curvature

    图  4  使用距离法、曲率法和综合表征方法表征典型褶皱缺陷

    Figure  4.  Characterization of typical wrinkle defects using distance, curvature and combined methods, respectively

    图  5  单层平纹CF/PC预浸料的单穹顶结构赋形实验及模型示意图

    Figure  5.  Schematic diagram of the preforming model of the single dome structure of CF/PC monolayer prepreg

    图  6  210℃下CF/PC预浸料赋形褶皱缺陷仿真与实验对比

    Figure  6.  Comparison of wrinkle defect in simulation and experimental results of CF/PC prepreg at 210℃

    图  7  不同赋形温度T和压强p下的褶皱缺陷形貌

    Figure  7.  Shape of wrinkle defects at different forming temperatures T and pressures p

    图  8  不同温度下CF/PC预浸料的纤维剪切角变化拟合曲面

    Figure  8.  Fitting surface for fiber shear angle variation of CF/PC prepreg at different temperature

    图  9  不同赋形工艺参数下CF/PC预浸料的褶皱缺陷程度

    Figure  9.  Degree of wrinkle defects in CF/PC prepreg under different forming process parameters

    图  10  CF/PC预浸料赋形工艺参数对褶皱缺陷的影响程度

    Figure  10.  Influence of forming process parameters of CF/PC prepregon wrinkle defects

    图  11  褶皱缺陷程度随赋形温度和压强的变化幅度

    Figure  11.  Variation amplitude of the degree of wrinkle defects with the forming temperature and pressure

    表  1  平纹碳纤维/聚碳酸酯(CF/PC)机织物预浸料参数[14]

    Table  1.   Plain weave carbon fiber/polycarbonate (CF/PC) woven fabric prepreg parameters[14]

    Parameter Fabric
    Weave Plain
    Density/(kg·mm−3) 1.461×10−6
    Thickness/mm 0.35
    Fiber volumn fraction/vol% 45
    Glass-transition temperature Tg/℃ 150
    Melting temperature Tm/℃ 220
    Fabric image
    下载: 导出CSV
  • [1] 戎笑远. 热压罐成型碳纤维增强树脂基复合材料典型缺陷评价研究 [D]. 上海: 东华大学, 2022.

    RONG Xiaoyuan. Evaluation of typical defects of carbon fiber reinforced resin matrix composites by autoclave forming [D]. Shanghai: Donghua University, 2022(in Chinese).
    [2] 邓海, 王超, 杨京浩, 等. 碳纤维增强热塑性复合材料研究进展[J]. 吉林大学学报(工学版), 2023, 53(1): 18-30. doi: 10.13229/j.cnki.jdxbgxb20220600

    DENG Hai, WANG Chao, YANG Jinghao, et al. Research progress of carbon fiber reinforced thermoplastic composites[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 18-30(in Chinese). doi: 10.13229/j.cnki.jdxbgxb20220600
    [3] GONG Y, XU P, PENG X, et al. A lamination model for forming simulation of woven fabric reinforced thermoplastic prepregs[J]. Composite Structures, 2018, 196: 89-95. doi: 10.1016/j.compstruct.2018.05.004
    [4] 李源, 张琦, 夏礼栋, 等. 碳纤维增强热塑性复合材料成型工艺研究进展[J]. 现代塑料加工应用, 2022, 34(5): 52-55.

    LI Yuan, ZHANG Qi, XIA Lidong, et al. Research progress on forming process of carbon fiber reinforced thermoplastic composites[J]. Modern Plastics Processing and Applications, 2022, 34(5): 52-55(in Chinese).
    [5] 张学文, 王继辉, 陈宏达, 等. 单向增强热塑性复合材料热冲压成型仿真与优化[J]. 复合材料科学与工程, 2023(6): 104-114.

    ZHANG Xuewen, WANG Jihui, CHEN Hongda, et al. Numerical modeling and optimisaition in thermo-stamping process of unidirectional fiber reinforced thermoplastic composites[J]. Composites Science and Engineering, 2023(6): 104-114(in Chinese).
    [6] 孔令国, 王继辉, 陈宏达, 等. 压边力对非平衡平纹机织物预制体成型作用规律[J]. 复合材料学报, 2022, 39(4): 1798-1812.

    KONG Lingguo, WANG Jihui, CHEN Hongda, et al. Influence of blank-holder force on the draping process of unbalanced plain woven fabric preform[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1798-1812(in Chinese).
    [7] RASHIDI A, MILANI A S. Passive control of wrinkles in woven fabric preforms using a geometrical modification of blank holders[J]. Composites Part A: Applied Science & Manufacturing, 2018, 105: 300-309.
    [8] 卓鹏, 刘强, 赵龙, 等. 复合材料褶皱与试件性能的关系研究[J]. 航空制造技术, 2014(459): 101-102, 105. doi: 10.3969/j.issn.1671-833X.2014.15.021

    ZHUO Peng, LIU Qiang, ZHAO Long, et al. Experimental investigation on the relationship between wrinkles and properties of composites laminates[J]. Aeronautical Manufacturing Technology, 2014(459): 101-102, 105(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.15.021
    [9] GUZMAN-MALDONADO E, WANG P, HAMILA N, et al. Experimental and numerical analysis of wrinkling during forming of multi-layered textile composites[J]. Composite Structures, 2019, 208: 213-223. doi: 10.1016/j.compstruct.2018.10.018
    [10] LIANG B, HAMILA N, PEILLON M, et al. Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 111-122. doi: 10.1016/j.compositesa.2014.08.020
    [11] BOISSE P, HAMILA N, VIDAL-SALLE E, et al. Simulation of wrinkling during textile composite reinforcement forming: Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology, 2011, 71(5): 683-692. doi: 10.1016/j.compscitech.2011.01.011
    [12] BOISSE P, HUANG J, GUZMAN-MALDONADO E. Analysis and modeling of wrinkling in composite forming[J]. Journal of Composites Science, 2021, 5(3): 81. doi: 10.3390/jcs5030081
    [13] WANG P, HAMILA N, BOISSE P. Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix[J]. Composites Part B: Engineering, 2013, 52: 127-136. doi: 10.1016/j.compositesb.2013.03.045
    [14] 吕柄熠, 王时玉, 校金友, 等. 基于非正交本构模型的热塑性机织物预浸料宽温域赋形褶皱缺陷仿真方法[J]. 复合材料学报, 2023, 40(4): 2355-2364.

    LYU Bingyi, WANG Shiyu, XIAO Jinyou, et al. A simulation method of forming wrinkle defects in thermoplastic woven fabric prepregs in a wide temperature range based on non-orthogonal constitutive model[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2355-2364(in Chinese).
    [15] KHAN M A, SALEEM W, ASAD M, et al. A parametric sensitivity study on preforming simulations of woven composites using a hypoelastic computational model[J]. Journal of Reinforced Plastics & Composites, 2016, 35(3): 243-257.
    [16] SHEN H, YAO L, LEGRAND X, et al. Characterization of wrinkle morphologies by surface waviness evaluation method during deep forming of multilayer composite preforms[J]. Composite Structures, 2023, 306: 116586. doi: 10.1016/j.compstruct.2022.116586
    [17] MATVEEV M Y, ENDRUWEIT A, FOCATIIS D S, et al. A novel criterion for the prediction of meso-scale defects in textile preforming[J]. Composite Structures, 2019, 226: 111263. doi: 10.1016/j.compstruct.2019.111263
    [18] LEE J S, HONG S J, YU W, et al. The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch[J]. Composites Science and Technology, 2007, 67(3-4): 357-366. doi: 10.1016/j.compscitech.2006.09.009
    [19] GIORGIO I, HARRISON P, DELLISOLA F, et al. Wrinkling in engineering fabrics: A comparison between two different comprehensive modelling approaches[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Science, 2018, 474(2216): 20180063.
    [20] VIISAINEN J V, HOSSEINI A, SUTCLIFFE M P F. Experimental investigation, using 3D digital image correlation, into the effect of component geometry on the wrinkling behaviour and the wrinkling mechanisms of a biaxial NCF during preforming[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106248. doi: 10.1016/j.compositesa.2020.106248
    [21] SHEN H, WANG P, LEGRAND X, et al. Characterisation and optimisation of wrinkling during the forming of tufted three-dimensional composite preforms[J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105651. doi: 10.1016/j.compositesa.2019.105651
    [22] DÖRR D. Simulation of the thermoforming process of UD fiber-reinforced thermoplastic tape laminates[D]. Karlsruhe: Karlsruher Institut für Technologie, 2021.
    [23] PITCHAI P, JHA N K, NAIR R G, et al. A coupled framework of variational asymptotic method based homogenization technique and Monte Carlo approach for the uncertainty and sensitivity analysis of unidirectional composites[J]. Composite Structures, 2021, 263: 113656. doi: 10.1016/j.compstruct.2021.113656
    [24] BALOKAS G, KRIEGESMANN B, ROLFES R. Data-driven inverse uncertainty quantification in the transverse tensile response of carbon fiber reinforced composites[J]. Composites Science and Technology, 2021, 211: 108845. doi: 10.1016/j.compscitech.2021.108845
    [25] SHARMA N, NISHAD M, MAITI D K, et al. Uncertainty quantification in buckling strength of variable stiffness laminated composite plate under thermal loading[J]. Composite Structures, 2021, 275: 114486. doi: 10.1016/j.compstruct.2021.114486
    [26] YU F, CHEN S, HARPER L T, et al. Simulating the effect of fabric bending stiffness on the wrinkling behaviour of biaxial fabrics during preforming[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106308. doi: 10.1016/j.compositesa.2021.106308
    [27] CAKMAK U D, MAJOR Z. Experimental thermomechanical analysis of elastomers under uni- and biaxial tensile stress state[J]. Experimental Mechanics, 2014, 54(4): 653-663. doi: 10.1007/s11340-013-9820-8
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  249
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 修回日期:  2023-08-05
  • 录用日期:  2023-09-07
  • 网络出版日期:  2023-09-20
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回