Global sensitivity analysis of forming wrinkle defects in thermoplastic prepregs
-
摘要: 复合材料复杂构件成型过程中极易产生褶皱,影响构件成型质量和承载性能,因而迫切需要建立成型工艺参数对预浸料褶皱的定量映射关系,支撑构件的低缺陷成型制造。本文发展了一种多工艺参数耦合的热塑性预浸料褶皱缺陷全局灵敏度分析方法。基于非正交本构模型发展了热塑性预浸料宽温域赋形变形有限元仿真方法,将预浸料与模具的距离和预浸料面外弯曲的曲率相结合,提高了褶皱缺陷定量表征的可靠性,最终采用基于方差的 Sobol全局灵敏度指标,建立了一套能够定量计算赋形工艺参数对褶皱缺陷影响程度的全局灵敏度分析方法。通过典型平纹碳纤维/聚碳酸酯(CF/PC)材料单穹顶成型过程验证,结果表明: 在200~250℃温度范围和0.2~2.0 kPa压强范围内,赋形温度对CF/PC 预浸料褶皱缺陷的影响大于赋形压强,而且赋形过程中存在温度和压强的双参数耦合作用。Abstract: Wrinkles are easily produced during the forming process of complex composite structures, which affect the forming quality and load-bearing performance of the components. It is urgent to establish the quantitative mapping relationship between forming process parameters and prepreg wrinkles to support the low-defect forming manufacturing of components. In this paper, a global sensitivity analysis method for wrinkled defects in thermoplastic prepregs coupled with multiple process parameters is proposed. A finite element simulation method based on a non-orthogonal constitutive model is developed for the wide temperature domain deformation of thermoplastic prepreg. Combining the distance between the prepreg and the mold and the curvature of the out of plane bending of the prepreg improves the reliability of quantitative characterization of crease defects. Finally, a global sensitivity analysis method was established using the Sobol global sensitivity index based on variance, which can quantitatively calculate the impact of forming process parameters on wrinkle defects. It is verified through the typical carbon fiber/polycarbonate (CF/PC) material single dome forming process. The results show that in the temperature range of 200-250℃ and the pressure range of 0.2-2.0 kPa, the influence of temperature on the wrinkling defects of CF/PC prepreg is greater than that of pressure, and there is a dual parameter coupling effect of temperature and pressure during the forming process.
-
图 1 非正交本构模型坐标系定义
e1, e2—Direction of the local orthogonal coordinate system; f1, f2—Prepreg yarn orientation; α—Angle between f1 and e1; β—Shear angle; m1—Bisector of e1 and e2; m2—Direction orthogonal to m1 in a clockwise direction
Figure 1. Definition of coordinate systems of non-orthogonal models
表 1 平纹碳纤维/聚碳酸酯(CF/PC)机织物预浸料参数[14]
Table 1. Plain weave carbon fiber/polycarbonate (CF/PC) woven fabric prepreg parameters[14]
Parameter Fabric Weave Plain Density/(kg·mm−3) 1.461×10−6 Thickness/mm 0.35 Fiber volumn fraction/vol% 45 Glass-transition temperature Tg/℃ 150 Melting temperature Tm/℃ 220 Fabric image -
[1] 戎笑远. 热压罐成型碳纤维增强树脂基复合材料典型缺陷评价研究 [D]. 上海: 东华大学, 2022.RONG Xiaoyuan. Evaluation of typical defects of carbon fiber reinforced resin matrix composites by autoclave forming [D]. Shanghai: Donghua University, 2022(in Chinese). [2] 邓海, 王超, 杨京浩, 等. 碳纤维增强热塑性复合材料研究进展[J]. 吉林大学学报(工学版), 2023, 53(1): 18-30. doi: 10.13229/j.cnki.jdxbgxb20220600DENG Hai, WANG Chao, YANG Jinghao, et al. Research progress of carbon fiber reinforced thermoplastic composites[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 18-30(in Chinese). doi: 10.13229/j.cnki.jdxbgxb20220600 [3] GONG Y, XU P, PENG X, et al. A lamination model for forming simulation of woven fabric reinforced thermoplastic prepregs[J]. Composite Structures, 2018, 196: 89-95. doi: 10.1016/j.compstruct.2018.05.004 [4] 李源, 张琦, 夏礼栋, 等. 碳纤维增强热塑性复合材料成型工艺研究进展[J]. 现代塑料加工应用, 2022, 34(5): 52-55.LI Yuan, ZHANG Qi, XIA Lidong, et al. Research progress on forming process of carbon fiber reinforced thermoplastic composites[J]. Modern Plastics Processing and Applications, 2022, 34(5): 52-55(in Chinese). [5] 张学文, 王继辉, 陈宏达, 等. 单向增强热塑性复合材料热冲压成型仿真与优化[J]. 复合材料科学与工程, 2023(6): 104-114.ZHANG Xuewen, WANG Jihui, CHEN Hongda, et al. Numerical modeling and optimisaition in thermo-stamping process of unidirectional fiber reinforced thermoplastic composites[J]. Composites Science and Engineering, 2023(6): 104-114(in Chinese). [6] 孔令国, 王继辉, 陈宏达, 等. 压边力对非平衡平纹机织物预制体成型作用规律[J]. 复合材料学报, 2022, 39(4): 1798-1812.KONG Lingguo, WANG Jihui, CHEN Hongda, et al. Influence of blank-holder force on the draping process of unbalanced plain woven fabric preform[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1798-1812(in Chinese). [7] RASHIDI A, MILANI A S. Passive control of wrinkles in woven fabric preforms using a geometrical modification of blank holders[J]. Composites Part A: Applied Science & Manufacturing, 2018, 105: 300-309. [8] 卓鹏, 刘强, 赵龙, 等. 复合材料褶皱与试件性能的关系研究[J]. 航空制造技术, 2014(459): 101-102, 105. doi: 10.3969/j.issn.1671-833X.2014.15.021ZHUO Peng, LIU Qiang, ZHAO Long, et al. Experimental investigation on the relationship between wrinkles and properties of composites laminates[J]. Aeronautical Manufacturing Technology, 2014(459): 101-102, 105(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.15.021 [9] GUZMAN-MALDONADO E, WANG P, HAMILA N, et al. Experimental and numerical analysis of wrinkling during forming of multi-layered textile composites[J]. Composite Structures, 2019, 208: 213-223. doi: 10.1016/j.compstruct.2018.10.018 [10] LIANG B, HAMILA N, PEILLON M, et al. Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 111-122. doi: 10.1016/j.compositesa.2014.08.020 [11] BOISSE P, HAMILA N, VIDAL-SALLE E, et al. Simulation of wrinkling during textile composite reinforcement forming: Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology, 2011, 71(5): 683-692. doi: 10.1016/j.compscitech.2011.01.011 [12] BOISSE P, HUANG J, GUZMAN-MALDONADO E. Analysis and modeling of wrinkling in composite forming[J]. Journal of Composites Science, 2021, 5(3): 81. doi: 10.3390/jcs5030081 [13] WANG P, HAMILA N, BOISSE P. Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix[J]. Composites Part B: Engineering, 2013, 52: 127-136. doi: 10.1016/j.compositesb.2013.03.045 [14] 吕柄熠, 王时玉, 校金友, 等. 基于非正交本构模型的热塑性机织物预浸料宽温域赋形褶皱缺陷仿真方法[J]. 复合材料学报, 2023, 40(4): 2355-2364.LYU Bingyi, WANG Shiyu, XIAO Jinyou, et al. A simulation method of forming wrinkle defects in thermoplastic woven fabric prepregs in a wide temperature range based on non-orthogonal constitutive model[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2355-2364(in Chinese). [15] KHAN M A, SALEEM W, ASAD M, et al. A parametric sensitivity study on preforming simulations of woven composites using a hypoelastic computational model[J]. Journal of Reinforced Plastics & Composites, 2016, 35(3): 243-257. [16] SHEN H, YAO L, LEGRAND X, et al. Characterization of wrinkle morphologies by surface waviness evaluation method during deep forming of multilayer composite preforms[J]. Composite Structures, 2023, 306: 116586. doi: 10.1016/j.compstruct.2022.116586 [17] MATVEEV M Y, ENDRUWEIT A, FOCATIIS D S, et al. A novel criterion for the prediction of meso-scale defects in textile preforming[J]. Composite Structures, 2019, 226: 111263. doi: 10.1016/j.compstruct.2019.111263 [18] LEE J S, HONG S J, YU W, et al. The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch[J]. Composites Science and Technology, 2007, 67(3-4): 357-366. doi: 10.1016/j.compscitech.2006.09.009 [19] GIORGIO I, HARRISON P, DELLISOLA F, et al. Wrinkling in engineering fabrics: A comparison between two different comprehensive modelling approaches[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Science, 2018, 474(2216): 20180063. [20] VIISAINEN J V, HOSSEINI A, SUTCLIFFE M P F. Experimental investigation, using 3D digital image correlation, into the effect of component geometry on the wrinkling behaviour and the wrinkling mechanisms of a biaxial NCF during preforming[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106248. doi: 10.1016/j.compositesa.2020.106248 [21] SHEN H, WANG P, LEGRAND X, et al. Characterisation and optimisation of wrinkling during the forming of tufted three-dimensional composite preforms[J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105651. doi: 10.1016/j.compositesa.2019.105651 [22] DÖRR D. Simulation of the thermoforming process of UD fiber-reinforced thermoplastic tape laminates[D]. Karlsruhe: Karlsruher Institut für Technologie, 2021. [23] PITCHAI P, JHA N K, NAIR R G, et al. A coupled framework of variational asymptotic method based homogenization technique and Monte Carlo approach for the uncertainty and sensitivity analysis of unidirectional composites[J]. Composite Structures, 2021, 263: 113656. doi: 10.1016/j.compstruct.2021.113656 [24] BALOKAS G, KRIEGESMANN B, ROLFES R. Data-driven inverse uncertainty quantification in the transverse tensile response of carbon fiber reinforced composites[J]. Composites Science and Technology, 2021, 211: 108845. doi: 10.1016/j.compscitech.2021.108845 [25] SHARMA N, NISHAD M, MAITI D K, et al. Uncertainty quantification in buckling strength of variable stiffness laminated composite plate under thermal loading[J]. Composite Structures, 2021, 275: 114486. doi: 10.1016/j.compstruct.2021.114486 [26] YU F, CHEN S, HARPER L T, et al. Simulating the effect of fabric bending stiffness on the wrinkling behaviour of biaxial fabrics during preforming[J]. Composites Part A: Applied Science and Manufacturing, 2021, 143: 106308. doi: 10.1016/j.compositesa.2021.106308 [27] CAKMAK U D, MAJOR Z. Experimental thermomechanical analysis of elastomers under uni- and biaxial tensile stress state[J]. Experimental Mechanics, 2014, 54(4): 653-663. doi: 10.1007/s11340-013-9820-8